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ABSTRACT

The modified tight-binding approximation has been analyzed in

detail and is applied to the derivation of an expression for electron-

phonon spectral function (EPSF) which enters the strong coupling

equations of superconductivity. Numerical calculations of the EPSF

and the electron phonon coupling parameter A for five transition

metals, V, Nb, Mo, W. Ta have been performed.
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1. INTRODUCTION

In order to understand quantitatively the electrical, thermal and

superconducting properties of metals one needs a proper description of the

electronic states. A systematic, self-consistent treatment of the electron-

electron and electron-phonon interactions plays an important role in this

aspect ' . For simple metals one can introduce a weak pseudopotential

to describe the interaction between the ions and electrons and, therefore,

this part of the problem can be treated in perturbation theory.

On the other hand, for transition metals and their compounds (TMC)

where the electron-ion interaction potential is in no sense weak, such a

first-principle theory does not exist. Furthermore, the electron properties

of most transition metals and their compounds are dominated by relatively

tightly bound d-electrons. Therefore, the tight-binding approximation for

the d-electrons has been used widely for a qualitative description of the

electronic and thermal properties of TMC .

Over the last decades there have been many attempts to develop a

microscopic theory of phonon spectra and electron-phonon coupling in TMC.

There are mainly two approaches for dealing with the electron-phonon inter-

action in TMC. Firstly, it has been suggested that in transition metals

the electron-phonon interaction may be described by the rigid muffin-tin

approximation (RMTA) ' . There has been a significant step towards under-

standing the electron-phonon interaction in TMC. Unfortunately, the correct

calculations of RMTA electron-phonon matrix elements <j('|VV|K^ is a very

difficult task, especially for low momentum transfer and in low temperature
5)-9)

region . Moreover, one must explicitly require the knowledga of the

wave functions and potential gredients at all points in space.

Another question referring to very general properties concerns the

problem of the superconductivity in TMC and related materials . In order

to understand quantitatively this phenomenon one needs a proper description

of electron-phonon interaction, too. This has been -one of the central themes

in the theory of metals ' . The recent discovery of high temperature

superconductivity in- ceramic compounds has stimulated great efforts towards

its theoretical understanding. A number of- theories has been proposed that

essentially involves strong electron-phonon interaction , The isotope

shift, though small in the oxide superconductors, is however not zero and

seems to suggest a syncretic mechanism in which phonon mediation plays a

role . The primary determinant of the superconducting transition

temperature T c is the electron-phonon coupling parameter A. It is there-

fore of considerable importance to attempt to predict in a qualitative way

from the first principles how A varies from one material to another. Of

special interest in this regard are the transition metals, their alloys and
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their compounds for it is their electronic structure which cannot be usefully

viewed in terms of weakly perturbed free-electron bands. The advantage of

the tight-binding approximation for the description of d-band transition

metals and their compounds has long been recognized. In particular, great

efforts have been devoted to the calculation of the electron-phonon coupling

in this approach. Stimulating ideas have been initiated by Frohlich

More detailed formulation was developed in papers " . It was argued that

with Bloch functions constructed from atomic orbitals, the modified tight-

binding approximation (MTBA) is more appropriate for calculating the electron-

phonon coupling than the ordinary Bloch formulation.

The itiost important function related to the electron-phonon interaction

is the electron-phonon spectral (or Eliashberg) function a"F(w) , that

describes the average coupling of electrons at the Fermi surface to phonons

of energy fiw. From this function other important parameters can be

derived . . In this paper we calculate EPSF of transition metals in MTBA.

Our goal is a realistic calculation which can be compared with experiments.

It should be stressed that the way we treat the problem gives rise then to

the fundamental principles of the MTBA and results that are the main subject

of the present study.

2. MODIFIED TIGHT-BINDING APPROXIMATION

The tight-binding theory of electrons considers the wave functions

of electrons in crystals prescribed in principle by the theory of atomic

structure. According to the tight binding theory, we accept the wave

functions of electrons around each atom as the basic wave functions of the

problem. Frohlich pointed out that the situation in metals with incomplete

inner shells is radically different from the situation in metals with

complete inner shells already in the proper treatment of electron-phonon

interaction. It is evident that the free electron model leads to a

description of a single electron in terms of a Bloch wave function which in

zero order is independent of the lattice vibrations. Now consider an inner

shell. In contrast to the ordinary approach where the atomic orbitals are

centred on the mean ionic positions, the wave function of an electron in a

deformed lattice is written in the MTBA as a Bloch sum of atomic orbitals

centred on the displaced ionic positions 5?e = Se + Ue

(1)

Re

Frohlich ' supposed that when the lattice oscillates the parts of the

electronic wave function near an ion should follow it adiabatically. It

-3-

the tight binding approximation this implies the whole localized wave

function. Of course,, this wave function can be developed in the displacement

3. =1-3°

£ v.
This approximation is usually called the MTBA. The detailed investigation of

the electron-phonon interaction matrix element has been examined in papers

It was shown that this scheme describes quite well the superconductivity

in the case of transition metal alloys.

The MTBA was clarified and generalized in recent years in great

detail 2 3 ' " 2 ° \ Varma et al. have demonstrated that the tight-binding

scheme yields accurate quantitative results when the non-orthogonality of the

orbitals is incorporated. A very important aspect of this approach is that

phonon dynairiics has also been calculated by this method
28) This approach

and the Bloch approach under the RMTA lead to the same physical results

within the harmonic approximation . However, there is a considerable

difference between the tight-binding and RMTA results in predicting' anisotropic

properties for Nb 25^' ' . In Kuzemsky et al. 30^ we developed further
IS)

the ideas of MTBA, showing that the BLF approach gives a constructive and

workable formalism for the description of the interaction between the tight

binding electrons and phonons in TMC. In Vujicic et al. the BCS-

Bogolubov theory of the superconductivity was formulated on a general basis

using the language and technique of the two-time thermal Green's functions.

According to this, the problem reduces to finding the self-energy of a quasi-

particle in the generalized Hartree-Fock-Bogolubov approximation. The strong

coupling equations af superconductivity have been derived. The Cooper pairing

was described in the Wannier representation to highlight the atomic nature

of the electrons responsible for superconductivity in transition metals. In

the next section we will briefly recapitulate the main points of the BLF model.

3. THE MODEL

Following ' we consider a system of tightly-bound electrons in

the one-band approximation, described by the Hubbard Hamiltonian

• - z
ljO

a.
1 0

t.. a. a.
1J 10 JO

• \
(3)

where a! , a. are creation and annihilation operators for electrons at
10 10

the site ft., U is the Coulomb repulsion energy of the electrons at one site.

The hopping integral
ij

is given by



,. . d3r

where {*(r-5.)} are a complete orthonormal set of Wannier wave functions.

Considering small vibrations of ions we replace in Eq.(3) the ion position

t. by (5? + 3,), i.e. its equilibrium position plus displacement. To further

illuminate the problem under consideration we emphasize that in order to

describe the electron motion in deformed lattices in our formalism, the

Frohlich-Mitra HTBA must be generalized. The unperturbed electronic wave

function must be written as a Bloch sum of displaced and suitably orthonormalized

Wannier functions

d3r **(?-£.. - 3.) l-u.)
ij

(5)

As it follows from Eq.(5), the creation and annihilation operators a^, a l o

may be introduced in the deformed lattice so as to take partly into account

the adiabatic "follow up of the electron upon deformation of the lattice.

Hamiltonian (3) may be rewritten in the form

io

(6)

1-3. + .. .

For small displacements tĴ , we may expand t(R) as

t(5. + u. - 1 - 1 ) = t(g. - 5.) +

18) J X

In the ELF paper the following approximation, based on the nature of
tight-binding functions, was introduced

X0 m

(7)

(8)

Here qQ is a coefficient characterizing the exponential decrease of the

radial part of the d-function *(r) •^ *-, exp(-qQ|r|) (usually q is the

order of 1 A " 1 ) .

Finally, the full electronic Hamiltonian may be rewritten in the

following form

H

ia ija

(9)

(10)

ia

where tT. - t(5. - S.) at equilibrium positions.

(11)

The operator H _. (11) describes the interaction between lattice vibrations

and tightly bound electrons in the localized Wannier basis.

The Hamiltonian for the ionic subsystem is assumed to have the

usual form

H. =

ijag (12)

The total Hamiltonian is a sum of (10,11) and (12). The localized basis

representation, used above, underlines the localized nature of d-electrons.

It should be emphasized that such a form is necessary when one must consider

disordered transition metal alloys.

In the case of the crystal it is convenient to introduce the normal

co-ordinate operators

I
(13)

qv

where M is the mass of the ion and N their number in the crystal, e

is the polarization at the wave vector q and branch index <J of bare

phonon frequency uu . It follows that

qv

H . =
e-i (14)

where (5.-3.)-e

VMN

-5-

(15)

represents the matrix element of the electron phonon interaction in terns of

parameters qQ, t.. , M, e y , characterizing the transition metal. Thus,

as in the Hubbard model, the d- and S(p) bands are replaced by one

"effective" band in our model. However, the s electrons give rise to
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screening effects and are taken into account by choosing proper values

of Coulomb integral U and the acoustical phonon frequencies LUn . Note

that our representation of BLF Hamiltonian is valid for any Bravais lattices.

4. THE ELECTRON PHONON SPECTRAL FUNCTION

A very important aspect of the electron-phonon problem is the

understanding of the electron-phonon spectral functions. In this section

we shall calculate and compare them with experiment and previous

calculations.

In order to understand how such a concept naturally arises let

us consider the scattering process of electron and phonon. The transition

probability of this process is given by

" V (16)'

It is obviously more satisfactory to have a general technique. To do this

let us consider the scattering rate in thermal equilibrium of an electron in

state |K^ at the Fermi surface

(17)

Here the occupation of final electron states and the occupation number of

phonons have been taken into account and also the emission of phonons have

been allowed. Signs (±) denote the scattering rate due to phonon absorption

and emission, respectively. The functions L- are given by

- n(Ek,))

(18)

vhere v (u> ) and n(E. ) are the Bose and Fermi distribution functions,
qv K

respectively. Alternatively, we can express the same information in the

following form

dm (19)

-7-

This suggests a reason for introducing the coupling function
2)

? ->
a F(w.k) =

d2k-
|M (k.k"1 )\ - flu

qv
(20)

This function describes the electron-phonon interaction between an initial

state {R'y on the Fermi surface and all other states |K"> on the Fermi

surface which differ in energy from the initial state by "nw. The quantity

ct F(u,k) is dimensionless and is independent of the volume of the specimen.

He can now explain how the electron-phonon spectral or Eliashberg

function may be defined. The electron-phonon spectral distribution function

is the average of a F(u),K) over all K on the Fermi surface

(2n)3fi d"k

vk
(21)

The electron-phonon mass enhancement is perhaps the single most relevant

parameter for superconductivity since it gives an average strength of the

electron-phonon coupling. It is given by

A = 2 (22)

The electron-phonon spectral distribution function a~F(jj)) enters the

Eliashberg equations that govern the superconductive properties of

strong coupling superconductors. Before going into concrete calculations

it will be worthwhile to note that there is a great similarity between the

Eliashberg spectral function and the transport coupling function a^Ffui).

The latter gives another method to probe the electron-phonon interaction.

The function a" F(u) differs from the Eliashberg spectral function by the
2

scattering factor K (P,P') . Experimentally, much effort has been made

to determine accurately both types of functions.

Turn now to the Eliashberg equations. In Paper the system of

equations of superconductivity for the tight-binding electrons in the

transition metal has been derived. The equations of superconductivity have

been obtained in localized Wannier basis and give an alternative approach

to the theory of superconductivity in TMC, Our equations are analogous to
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the Eliashberg equations for the Bloch electrons. In momentum represen-

tation the obtained system of equations reduces to the standard form

of Eliashberg equation with'the electron phonon spectral function defined

by 3 0 )

SF SF

(23)

Here Dkv(w) is the phonon Green functions, defined in paper (Ref.3O). It is

obvious from the comparison (23) and (21) that at non-zero temperature the

phonon Green function in (23) describes the thermal broadening. To interpret

(23) let us note that the meaning of the a F(uo) is that it counts at fixed

frequency Q, how many phonons with m = £1 there are, and weights each

phonon by the strength and number of electron transitions from |kj> to

(k+q y across the Fermi surface in which this phonon can participate.

It is interesting to point out here that as a way of using of Eliashberg

equations soem authors make the following ansatz:

^ S(w - Si)
(24)

which corresponds to the system of electron and phonon with the Einstein

spectrum. Contrary to such phenomenological approach, in the present paper

we take into account the real phonon spectrum of transition metal.

5.< NUMERICAL RESULTS

Let us apply the results of previous sections to reasonable model

calculations of the electron-phonon spectral functions of five bcc

transition metals. We rewrite the expression (14) for the electron-phonon

interaction in the form

£ E v + "q") Q
q (25)

v (k,k

(26)

-9-

It is well known that the transfer integral t (R ) determine*the band width

W for the cubic lattices by

W = 2 • z • t°(Sx)

where Z is the number of n.n. The band energy is given by

tu(Rx) cos a

(28)

For the bcc transition metals like V, Nb, M^, W, Ta the band energy 2 7^ may

be written as (z = 8)

cos Cj kxa) cos(| k a) cos(i k a) t°(a) = t° • E

(29)

The calculations were done with the appropriate set of metal parameters.

The experimental band width u lead to appropriate value of t , as it

follows from Eq.(27). A special problem is to find the polarization ê 1

at the wave vector q and branch index v . For our aims it is reasonable

to accept the Bom-Karman model (cf. 33,34). It is the phenomenological

scheme allowing to calculate the energies and polarization vectors of phonons

for arbitrary vectors of the B.Z in terms of phenomenological parameters

called the force constants. The last quantities are obtained by fitting

this model to the experimentally available phonon frequencies

We are now ready to calculate the EFSF taking the Born-Karman scheme

mentioned above into account. An explicit calculation yields the following

EPSF

a"MN

d2k f d2k'

si
f

6 (to- 'JJ.
'k-k

SF

(30)
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It is convenient to write down the following equality

2 8a2

(31)

I t is easy to calculate

f <lZk V (2TI)3 f d2k _ (2TT)3 y, , _

(32)

where J( (£,) is the density of state per unit cell and Jf is the number

of unit cells^. For the bcc lattice we have

U - v - ^
c a

Now we get the final expression for the EPSF

2 a2 t 2

(33)

(2^)%^ HNZ JV= SF v

(34)

Using (22), the electron-phonon enhancement parameter A may be expressed as

(35)

The calculations were done for the spherical Fermi surface for the sake of

simplicity. The radii of the Fermi sphere can be calculated as

n2 i
(36)

-11-

where Z is the valence of an ion. The integrals which appear in Eq.(34)
38)

were calculated by the Monte-Carlo method . In Fig.l the electron-

phonon spectral functions for five bcc transition metals have been cal-

culated in the approximation Z = 2. Then, we may see that the present

calculations give relatively good description of the EPSF despite very

rough approximation which consists of integration on the spherical Fermi

surface. Roughly speaking, the common feature of our results presented in

Fig.l are the similarity of the obtained histograms to the phonon DOS (Cf.

39-42). Especially for the W our results are very close to phonon DOS F(m)
which have been obtained within the angle forces model

36)
In Table 1 we

presented the results for the parameter A which was calculated using Eq.{34).
43)-45)

There is remarkable consistency between our A and published data

6. DISCUSSION AND CONCLUSION

We have shown that the MTBA enables one to calculate the EPSF for

transition metals. From Fig.l it follows that the agreement of the

experimental EPSF with theoretical EPSF is quite good. The small differences

in shape of our spectral functions and those by other authors are

very natural. The reason for the difference in the predictions of MTBA

method and experiment is probably due to the averaging over the spherical

Fermi surface. It must be stressed that of course the effective number of

electron per ion Z is not equal to 2 but is closer to the atomic values,
46)

as was shown in paper . Nevertheless, it is evident that the phonon DOS

is the most important factor, which determines the structure of the EFSF.

The theoretical calculation of the superconducting critical
43) 45)

temperature is a very important task. Unfortunately, at present the

most serious problem in the theory of calculating the superconducting

transition temperature from first principles is that we do not have a complete
47)

understanding about the effect of electron-electron interaction on T .

In paper it was shown that we can obtain the same value of T for

various combinations of A and Coulomb pseudopotential u*. It is also

important to estimate the effects of the electron-phonon vertex corrections,

including high order correction, on the superconducting transition

temperature , which was omitted in our calculations '

In summary, in the present paper it was shown that the BLF approach

gives a constructive and workable formalism for the description of the

interaction between the tight-binding electrons and phonons in TMC. It is

worth noting that the BLF model has proved to be useful in the case of the

theory of electroconductivity for the one-band model fo the transition

-12-



metal, including shift of the Fermi surface and its deformation

Essentially new temperature dependence of the electroresistance in the low
temperature region was obtained there. The generalization of the electron-

of
30),3]

phonon interaction Hamiltonian for disordered binary alloy A B
51)transition metals have been done in paper . Using methods of papers

the theory for strong coupling superconductivity in disordered transition

metal alloys has been developed . The calculation of electro-conductivity

in disordered alloys has been performed in paper . The results of the

papers 3°)'31),5O)-53J an(j t n e p r e s e nt paper demonstrate the effectiveness

of the MTBA in the description of a variety of properties in the transition

metals and their alloys. This is achieved through the use of the Irohlich-

Friedel idea that in TMC the change of the electronic charge caused by the

displacements of the ions is described in the best way by using orbitals

which move with the ions.
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Table 1

No.

V

Nb

Mo

Ta

W

Z

5

5

6

5

6

3

3

4

4

.34

.95

.54

.3084

W - 2t
Ry z

0.58

0.69

0.72

0.75

0.77

0.

0.

0.

0.

0.

A"1

93

91

91

87

87

a A

3.040

| 3.300

• 3.147

3.306

: 3.165

Ha.

50

92

95

180

183

e.M.

.94

.91

.94

.95

.85

1.04

1.376
(1.48)

0.71
(0.803)

0.92
(0.97)

I
' 0.36 !

Values of various parameters for the five transition metals.

Fig.l The electron-phonon spectral function in HTBA for five

bcc transition metals.
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