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Abstract. A reduced s-f Hamiltonian is introduced to describe the low energy
acoustic magnons in two-sublattice antiferromagnetic semiconductor. A mean-field
approximation has been constructed using the irreducible Green functions. The con-
tribution of the conduction electrons to the energy and the damping of the acoustic
antiferromagnetic magnons have been evaluated.

Pestome. [lns onucaHuss HH3KOSHePreTHUECKMX aKYCTHYECKMX MArHOHOB B JByIOA-
PELIETOYHOM anTH(epPOMarHUTHOM MNONYNPOBOAHMKE BBelleH pPEeLyLUUupOBaHHBIA §-f ra-
MunprTonuan, [IpH YIOMOUIM HEeNPUBOMWMMX (yHKnuA I'puHa nOCTpoeHO mpubmmienne
cpenuero nonst. OneneH BKAAN 3ACKTPOHOB IPOBOAMMOCTY B SHEPTHIO U 33TYXaHHE aKyCTH-
YeCKHX aHTH(dePpPOMArHUTHRIX MATHOHOS,

- 1. Introduction

The theoretical study of the spin wave spectrum within the framework
of the exchange s-f model for the magnetic semiconductors [1]is an important problem
in the study of magnetic materials from the non-Heisenberg type. A distinct feature
of the magnetic semiconductors is the presence of free carriers in the conduction band
and localized magnetic moments in the lattice sites, which define the magnetic proper-
ties of the undoped material. The role of the conduction electrons is reduced to induc-
ing indirect exchange interaction between the magnetic ions which produces an addi-
tional temperature dependence in the spectrum and the damping -of the magnons.

The detailed study of the magnon spectrum in ferromagnetic semiconductors has
been reported [2—6]. It is shown that the conduction electron subsystem acquires a
magnetic moment under the effect of the local spins and plays the role of a second
magnetic lattice. In this way the magnon spectrum of a ferromagnetic semiconductor
includes parallel to the acoustic magnons also an optical mode and Stoner continuum
[3—6]. The role of inelastic electron-magnon interaction processes on magnon lifetime
has been studied [4, 6]. The mechanism of damping due to the electron-hole magnon
decay with spin flip has been examined in detail [3, 4].

On the other hand, the magnon spectrum and the damping in antiferromagnetic
semiconductors is practically lacking in the literature. The effect of weak s-f exchange
interaction on the magnon dispersion in non-degenerate and degenerate antiferromag-
netic semiconductors has been reported [7, 8]. A decoupling procedure has been applied
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to the equations of motion for the spin Green function in boson representation, the
resulting dispersion law of the acoustic spin waves is not linear in the long wavelength
region.

In the present work we consider the low energy magnons in a two sublattice
antiferromagnetic semiconductor using the irreducible Green function [6, 9]. A reduced
Hamiltonian is introduced for the exchange s-f model for the antiferromagnetic semi-
conductor, which provides the possibility to determine correctly the acoustic spin wave
spectrum. Within the framework of mean field approximation we analyse the spectrum
and the damping of the low energy magnons in a two sublattice antiferromagnetic
semiconductor.

2. Model

The exchange s-f model is the generally accepted model for an anti
ferromagnetic semiconductor [10, 11]. The magnetic moments formed for example in
EuTe by the 4f electrons are ordered in two interpenetrating sublattices ¢ and b.
Each lattice is ferromagnetic but the full magnetic moment of the semiconductor is
zero at any temperature. As a rule, due to the strong 4f electron delocalization, the
system of magnetic moments at the sites of the two sublattices is described by the
Heisenberg Hamiltonian

Hf=21 qu_qa.S_qb, o (1)
q

where the exchange integral Jy gives the interaction between iwo spins from the diffe-
rent sublattices in the near neighbour approximation. ‘

- The second subsystem of the antiferromagnetic semiconductor namely the con-
duction electrons is usually described by the Hamiltonian

H, = Y7 ti[a*(ko) b (ko)+b+(ko) a (ko)] “ )
ko

and these electrons are considered as s-electrons. Here the operators a*(ko), a(ko) and
b*(ko), b(ko) create or annihilate an electron with a wave vector k and spin o in
sublattice @ or &, respectively. The form of Hamiltonian (2) proves that the electron
motion in a given sublattice is realized through the second sublattice of the antiferro-
magnetic semiconductor. '

The conduction electrons and the local magnetic moments are related through the
local spin-spin interaction

‘ ; : .
Hy_j= — W f? 2; {S—c, ot(ko) o (k+9, —0)+2: 57, a¥(ko)a(k+g, o)}, 3)
qc  o=a,

where the exchange interaction / has a typical value of 0.1 eV for EuTe [1]. Thus the
total Hamiltonian of the two sublattice antiferromagnetic semiconductor is defined by
the sum

H=H+H+H,_;. “4)

~ As shown elsewhere [11] using (4) in a wideband antiferromagnetic semiconductor
two quasiparticle bands are formed with a dispersion law (for each electron spin
projection) ‘
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tw= £k = V2 + S, 5)

where S, is the sublattice magnetization. It is supposed from the two degenerate bands
tr=—(W/2)yx (v« is the structure factor) that the width is W>/S, and the structure
is simple cubic. Since in the ordered state there is always a gap between the quasi-
particle electron bands (5) only the lower energy band will be partially f{illed for any
reasonable doping of the semiconductor. For this reason when considering the low
energy acoustic magnons the electron interband transitions may be neglected and the
spin wave dynamics may be described by the reduced Hamiltonian

A=H+H=H_, - (6)
where
H=— 3" twdt(ko)d (ko),

ko

Aer=—15 S 2 S )dtg o) ta Sy k)t o (D)

The operators d*(ko) and d(ko) create or annihilate a quasiparticle in the low energy
conduction band.

The reduced Hamiltonian (6—7) is the reference point for describing the acoustic
magnons in a two-sublattice antiferromagnetic semiconductor. ‘

3. Method

When calculating the spin wave spectrum we shall follow the approach
described in [12]. It comprises the use of “anomalous averages” fixing the vacuum and
providing a possibility to determine the generalized mean fields. For this purpose we
consider the matrix Green function

Gk, ©)= (<S‘J‘r“ |S5a> <S¢ S:k”>)
: <Sh Sz

—ka

®

> <SE|ST,>

by taking effectively into account the role of the itinerant electrons in forming the
magnon spectrum.

The equation of motion of <Sf >, where o=q, b and A=8—, , S—,, after
introducing the irreducible functions in a way described in refs [6, 12] has the form
2'[(m+mg)5w—-m;fg(1—BQY)]<S;;Y|h>’+ J—’N:<S§><c;ih>=<[5¢u, h)+<Cirh>. (9
Y .

We use here the following notations:

o5=2[ Doty 37 S | = et
q
10
mi’f=2[<sz>fk+y% S Jk~q43“]=-f»‘;b, (10
9
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2A(S%. qa)” (82 5 8 +(S 4a S;Z,) i
/N (SZ)

The irreducible Green functions <C¥ |hs are constructed using the operators
Cla=4it By

ab
A= :

ka?

A== Z Ja{S 8, (Si_ad) = Si_qa (So) 1" (11)

pac

Bia= *71\7 2 (Si—qa)”" @51 otal +21v 2 %o k~qa( s do+ac)”,

where o ’

(S2,)7 =8z, —(SINNb g0, | | (12)
(@, dpraof” =, dprae—(d, dpraoa0 | |

and we have taken into account that the equaﬂity (Sg):-—(Sg> holds in antiferromag-

netic state, i. e. the magnetization of the two sublattices is in opposite directions.
The -electron subsystem dynamics is described by the Green functions <o} | 2> de-

fined by the operators
of = 3 diy dvars 05, =(0)* | -
q

which include the electron spin flip processes. As in ref. [6] the equation of motion
yields A

JN [ ~y <Ppk!h> : .
<o} ® <SSt > —" 14
vl ( )2 I Y 2\/_\7 @y k v (14
Here
1 qixy "Mq7 1 a+ky "
Xi(®) = —++ =z
( ) N qz* O+Tq.k—Tq N quv Og k

is the electron susceptibility in the considered quasiparticle band with respect to the
spin flip of the system and

Dy”? 2 {S+¢u[( pal p%ki)r (de dp+q+k1)’] - . | (15)

+(quv)"[ p—a? p+k1+dmdp+q+u]}

After substituting (14) in (9) the equation for the matrix Green function (8) has the
following form:

QG(k m) 1+01(k ®). - , (16)

Here
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ps, es,
0+ 0 +—5= xx(@), 7k®o+—2—Xk(m) S
, - an

Q(k, ) = ps, s,
R e -{Ykﬂlo +—5= Xk(w)},, - 0—0y——% 7(0)

the structure factor of the lattice being vx=(1/2) Ze"‘“’?z (z is the number of
3

near neighbours);

fz(QSz 0
0o -25,)

) <Cir 1 S, Z' *’“ |S=,.5 <Cir + IS, 2 "“ |S~k,,
Gi(k, @) = . (18)
btr bxr

D
<CLrrS, Xl 1S > <Cht DS, 2 s,

Equation (16) is the’ reference point for deriving the Dason equation in the irreducible
Green function method [9] For this purpose it is necessary to write the equation of

Ernotxon for the function Gy(k, ®) and to introduce the correspondmg meducxble parts.
hen

Ok, @) =Gk, @)+ Gk, 0)M(k, 9)G(k, ), o a (19)
where _ ' e ‘ , : L : |
Go(k m) Q“l(k, ®) =7 B - (20)

and the mass operator is given with accuracy up to /? by the expression

Mk, 0) = (21)

| [ <Cin|Chirs <Cl, | Clirs\
482 | <Ci | Chirs <Cin | Cirs |

The formal solution of equation (19) may be Writfen in the form 3
Gk, 0)=[G5 ' (k, 0)—M(k, o)) IR e (22)

In this way to find the total Green function is reduced to determmmg the Green func-
tion in a mean field generalized approximation G,(k, ©) and the calculation of the mass

operator M(k, ®), defining the additional renormalization of the magnon operator and
the magnon damping due to inelastic interactions. In the next Section we shall consi-

der the magnon spectrum and dampmg using the function Gy(k, ©).

4. Magnon speetriim and dampmg

‘The Green function Gy(k, ) determines in a generalized Hartree-Fock
approxxmatnon the spectrum of the elementary excitations [6, 9]. The poles of func‘uon
(20) are defined by the condition
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det Ok, ©)=0. - . o TR (23)

Taking into. account that for WIS, the itinerant électfdn fcon{ribut'ion isa correction
fo the main exchange interaction, we obtain for the magnon- energy

s, iy o ‘
mg=imk=:{m0\/l—vi Tyt k} S @)

: 1_+v

We use here the notation yi=1y(0y). As seen from (24) the acoustic magnon dispers-
ion law becomes linear for £—0

oF=+D(T)|k| @

with a characteristic constant
n -n
=2JS{ 1— 12321 V7 Tatkl  Tat . %
D(T) z-] z( JNS ?Yq ) P 0% mk—(-'tq_'_k-—rq ‘ ( )

The first term in (26)~J expresses the magnon stiffness due to the direct exchange
interaction between the local moments and the second term shows that the submag-
netic ifinerant electrons in each sublattice produce an increase in the magnon energy
in the wide band antiferromagnetic semiconductor by

Ao=128,0(ex),

where p(gp) is the density of quasiparticle states at the Fermi level.

The presence of free electrons lays an essential role in forming the magnon dam-
- ping. In the mean field approximation it is due to the presence of the two spin dege-
nerate electron bands (5) between which electron transition takes place with spin fhp
Then

nl2S,
Y= 4§ “{’2 (7q+1y—nq1) 8 (Ok+Tark —Tg) . (27)

and in the long wavelength limit k—0 the damping shows the characteristic behaviour
T~k [?* [13], when &>k ~k. .

Additional energy renormalization and damping of the antiferromagnons due to the
inelastic scattering between magnons and electron is given by the imaginary part of
the mass operator (21). Complete analysis of these corrections will be discussed in a
separate paper.
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