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Abstract. A reduced s-f Hamiltonian is introduced to describe the low energy 
acoustic magnons in two-sublattice antiferrornagnetic semiconductor. A mean-field 
approximation has been constructed using the irreducible Green functions. The con-
tribution of the conduction electrons to tbe energy and the damping of the acoustic 
antiferromagnetic magnons have been evaluated. 

Pe310Me. ;~JISI on}rcaHH:,1 ma3K03HepreTPlqecl(Hx aKycTH*IecB:Plx MarHOHOB B ILBynoA-
pelneToqHOhi alrrHtpeppoMarmiTHoM noJlynpOBOJLHHKe BBeneH pell:ylll~ipoBaHHbl~ sf ra-
MHJlbToH~raH. npl~ noMou;H HeHpHBO~xuMblX tpyHKll?I~ rpnHa nocTpoe~lo npH6JIHx(eHI(e 
cpe;~Hero noux. OIJlenell BK'raxt 9JleKTpOHOB npOBOAHMOCTH. B 3HeprHIO H 3aTyxaHHe ascycTld:-
qecK11;x aHTld:tpeppoMarru(THblx MarHoHol;. 

l . Introduction 

The theoretical study of the spin wave spectrum within the framework 
of the exchange s-f model for the magnetic semiconductors [l] is an important problem 
in the study of magnetic materials from the non-Heisenberg type. A distinct feature 
of the magnetic semiconductors is the presence of free carriers in the conduction band 
and localized magQetic moments in the lattice sites, which define the magnetic proper-
ties of the undoped material. The role of the conduction electrons is reduced to induc-
ing indirect exchange interaction between the magnetic ions which produces an addi-

tional temperature dependence in the spectrum and the damping •of the magnons. The detailed study of the magnon spectrum in ferromagnetic semiconductors has 
been reported [2-6]. It is shown that the. conduction electron subsystem acquires a 
magnetic moment under the eifect of the local spins and plays the role of a second 
magnetic lattice. In this way the magnon spectrum of a ferromagnetic semiconductor 
includes parallel to the acoustic magnons also an optical mode and Stoner continuum 
[3-6]. The role of inelastic electron-hlagnon interaction processes on magnon lifetime 

has been studied [4• 6]. The mechanism of damping due to the electron-hole magnon decay with spin flip has been examined in detail [3, 4]. 
On the other hand, the magnon spectrum and the damping in antiferromagnetic 

semiconductors is practically l'acking in the literature. The effect of weak s-f exchange 
interaction on the magnon dispersion in non-degenerate and degenerate antiferromag-
netic semiconductors has been reported [7, 8]. A decoupling procedure has been applied 
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to the equations of motion for the spin Green function in boson representation, the 
resulting dispersion law of the acoustic spin waves is not linear in the long wavelength 
region. 

In the present work we consider the low energy magnons in a two sublattice 
antiferromagnetic semiconductor using the irreducible Green function [6, 9]. A reduced 
Hamiltonian is introduced for the exchange s-f model for the antiferromagnetic semi-
conductor, which provides the possibility to determine correctly the acoustic spin wave 
spectrum. Within the framework of mean field approximation we analyse the spectrum 
and the damping of the low energy magnons in a two sublattice antiferromagnetic 
semiconductor. 

2. FAodel 

The exchange s-f model is the generally accepted model for an anti~ 
ferromagnetic semiconductor [10, 1 I]. The magnetic inoments formed for example in 

; EuTe by the 4f electrons are ordered in two interpenetrating sublattices a and b. 
= Each latttce is ferromagnetic but the full magnetic moment of the semiconductor is 

zero at any temperature. As a rule, due to the strong 4f electron delocalization, the 
system of maguetic moments at the sites of the two sublattices is described by the 

j Heisenberg Hamiltonian 

=! 
where the exchange integral Jq gives the interaction between two spins from the diffe-
rent sublattices in the near neighbour approxiination. 

The second subsystem of the antiferromagnetic semiconductor namely the con-
duction electrons is usually described by the Hamiltonian 

Hs = ~7 tk [a+(ko) b (ko)+ b+(k(5) a (ka)] (2) 
k* 

and these electrons are considered as s-electrons. Here the operators a+(ka), a(kci) and 
j b+(k(5), b(k(y) create or annihilate an electron with a wave vector k and spin ci in 

sublattice a or b, respectively. The form bf Hamiltonian (2) proves that the electron 
motion in a given sublattice is realized through the second sublattice of the antiferr07 
magnetic semiconductor. 

~ The conduction electrons and the local magnetic moments are related through the 
= Iocal spin-spin interaction 

Hs-f / ~i7 ~' {S-~• ce+(kO) c~ (l{+q, -(;)+z. S' oL+(k(s) ct (k+q, ~)}, (3) ~~N~J JV kq" a=a,b 

where the exchange interaction I has a typical value of 0.1 eV for EuTe [1]. Thus the 
total Hamiltonian of the two sublattice antiferromagnetic semiconductor is detined by 
the sum 

As shown elsewhere lll] using (4) in a wideband antiferromagnetic semiconductor 
two quasiparticle bands are formed with a dispersion law (for each electron spin 
projection) 
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where S. is the sublattice magnetization. It is supposed from the two degenerate bands 
-(W/2)Yk (Yk is the structure factor) that the width is W>!Sz and the structure ik = 

is simple cubic. Since in the ordered state there is always a gap between the quasi-
particle electron bands (5) only the lower energy band will be partially filled for any 
reasonable doping of the semiconductor. For this reason when considering the low 
energy acoustic magnons the electron interband transitions may be neglected and the 
spin wave dynamics may be described by the reduced Hamiltonian 

where 

Hs= ~~' I~k d+(k(,) d (ko) 

k* 

_ ~72v {S-q"oed+(ko) d(k+q,-cF)+z. Sz d+(kc;) d (k+q, o)}-

kqc a=a,b 
The operators d+(ka) and d(k(;) create or annihilate a quasiparticle in the low energy 
conduction band. 

The reduced Hamiltonian (6•-7) is the reference point for describing the acoustic magnons in a two-sublattice antiferromagnetic semiconductor. ' 

3. Method 

. When calculating the spin wave spectrum we shall follow the approach 
described m [12] It compnses the use of "anomalous averages" fixing the vacuum and 
providing a possibility to determine the generalized mean fields. For this purpose we 
consider the matrix Green function 

~:Sk+a I S-ka~ ~Sk+a I S:kb~-~ 

G(k, (o) < Sk+b I S11(a~ < Sk+b I S._._-kb~ (8) 

by taking effectively into account the role of the itinerant electrons in forming the 
magnon spectrum. 

The equation of motion of <Sk+ot i h~, where cL=a, b and h=S_-ka' S_-kb after 
introducing the irreducible functions in a way described in refs [6, 12] has the form 

~"[((0+co~)6aY~o)vka(l-6aY)]~Sk+v { h~'+ ~(Sz> <(5+ I h>=<[Sk+a' h];+<C'Lrah~. (9) 

We use here the following notations : 

j o)~=2 [<Sbz)J0+ T JqA ~b - o)g, 
J~ 

2T = (Dba=2[<Sz>Jk+ Jk_qAba = _ coakb, 

k a v~ 
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2<(S' q")i' (S~b )i'> +(S ~ s+> 

A~b= ~ ~q" qb -2V ~ r<S~> 

The rrreducible Green functions ~ C' I h~ are constructed using the operators ,. 
k* 

Cir =Air J_ Bif~. 
k~ k* -,- '**. 

2 '= I A'k'a J~f Jq {Sq+b (S~_q")ir_S~ q" (S'qb)i'}i', (11) 

~7 i' ~ '- z S1+ (d+ dp+q")i', Bk~= -Ji~ (Sk qa)"d+t dp+qi +2N ' k-q" p' 

where 

(Sq'.)i' = S'qa r<Sa'>\/~S q,o, ( 1 2) 
(dp+* dp+q')i' = dp+* dp+q"T (4p+* dp+q'>6q o 

and we have taken into account that the equality <Sb')=-<Saz> holds in antiferromag-
netic state, i. e. the magnetization of the two sublattices is in opposite directions. 

The =electron subsystem dynamics i.s described by the Green functions <at I h> de-
fined by the operators 

=~7 o:k+ ::k = (9t)+ ' ( '1 3) d+ dk+q~' O qt 

which include the electron spin flip processes. As in ref. [6] the equation of motion 

' ~1r <iPl' Ih~ <a+ I h~> IJNXk(co) <Sk+7 1 h-_-.'-~ + 2JJ'~~V p (op,k (14) I ~v P,k . ~=2 
Here 

nq+k ~ ~nq t nq+k ~ ~nq t X k ((o) N N a)+1::q+k~~q a)q,k 
is the electron susceptibility in the considered quasiparticle band wrth respect to the 
spin flip of the system and 

~7 DpY:i' = \ir_!d+ d ' )' r] 

- p-q~ p+k~/ \ pt p+q+kt ' 
J} +(S'_qY)ir [dp+_qt dp+k~ +d~t dp+q+k~ ' 

After substituting (14) in (9) the equation for the matrix Green function (8) has the 
following form : 

~ ~(k, co) =rl +'~O1(k, co). (16) 
Here ' 
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o)+co0+ 2'Xk(co), 7kco0+ 2 Xk((D) 

~(k, co) = f 12S I 12S (17~ _ 2zxk((o) ~ IYko0+ 2' Xk(co)f' (x)-ceo 

the structure factor of the lattice being Yk=(1/z) 2; lr eik ' Rl (z is the number of 

near neighbours) ; l 
7=(\2S. O \) 

O -2S. ' 

D"' i' ~rl D"'i' ~~~cC'k'. + 12Sz ~7 -ka> <C'~'.+12Sz I S-kb~ jS-

~l(k, co) = cop,k P cop,k - (18) 
~1 *~-<C'~'b+12S. Dp,k Dp,k j S]kb~ ~7 I S-_k. ~ < C'~'b + pS. 

Q)p,k (Dp,k 
Equation (16) is the reference point for deriving the Dason equatiOn in the irreducible 
Green function method [9]. - For this purpose it is necessary to write the equation of 
motion foir the function G~1(k, (o) and to introduce the corresponding irreducible parts. 

Then 

~(k, co) = ~o(k, co) + G~'o(k, co)M~~(k, o))G(k, co), ' ' . (19) 

where 

'~Go(k, o)) = ~~1(k, co) '= 7 ' (20) 
and the mass operator is given with accuracy up to 12 by the expression 

M~'(k, o)) I < C'~'. I Ck+",i' ~ ~ C'i'. I Ck+b,i' ~ . (21) 
~ 4~ ~C'~'b I Ck+di"'/~">~' ~C'~'blCk+ii'~ ' 

The formal solution of equation (19) may be written in the form 

(2 2) ~(k, o)= [G'~511(k, a)) - j~(k, e))]-1. . 

In this way to find the total Green function is reduced to determining the Green func-
tion in a mean field generalized approximation ~~Oo(k, (o) and the calculation of the mass 

operator '~M(k, co), defining the additional renormaliz~tion of the magnon op~rator and 
the magnon damping due to inelastic interactions. In the next Section we shall consi-
der the magnon spectrum and damping using the function G'~o(k,.co). 

4. Magnon spectrum and damping 

The Green function Go(k, (o) determines 
approximation the spectrum of the e]ementary excitations 
(20) are defined by the condition 

in a generalized Hartree-Fock 
[6, 9]. The poles of function 
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Taking into account that for W>!S. the itinerant electron- contribution is a correction 
to the main exchange interaction, we obtain for the magnon energy 

od:=+(ok= + {o) ~1-72 :F/2S _ ^~il-7klJ' 
(24) k - -. o k 2zXk 1+Yk _ .. 

We use here the notation xk=xk((ok). As seen from (24) the acoustic magnon dispers-
ion law becomes linear for k->0 

with a characteristic ,constant 

D(T) =zJSz/\ l- I 'I2S, Iim r' nq+ki~nqt (26) ~v Yq Aab) J~NS q ~ 4N k-o ~ cok+1Fq+k~1;q 
.q 

The first term in (26)-J expresses the magnon stiffness due to the direct exchange 
interaction between the local moments and the second term shows that the submag-
netic itinerant electrons in each sublattice produce an increase in the magnon energy 
in the wide band antiferromagnetic semiconductor by 

Ao = 12S.p(8p), 

where p(8F) is the density of quasiparticle states at the Fermi level. 
The presence of free electrons lays an essential role in forming the magnon dam-

ping. In the mean field approximation it is due to the presence of the two spin dege-
nerate electron bands (5) between which electron transition takes place with spin flip. 
Then 

1 cl 2S 

zjk!2' (nq+k~ n T)6(cok+1r +k T) ~ 
and in the long wavelength limit k-~O the damping shows the characteristic behaviour 
Yk- i k 12 I13], when k>kc~kF. 

Additional energy renormalization and damping of the antiferromagnons due to the 
inelastic scattering between magnons and electron is given by the imaginary part of 
the mass operator (21). Complete analysis of these corrections will be discussed in a 
separate paper. 
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