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Abstracf. \Vithin the framework of the exchange s-f model the electronic 
spectrum of a wide band antiferromagneLic semiconductor is studied. The method of 
irreducible Green functions is used. It provides a possibility to account both the elec-
lron-magnon inelastic scattering processes and the ele_ctron scattering over the fluctu-
ations of the sublattice magnetization. The renormalization of the electronic spectrum 
has been determined in a wide temperature rang~. It is concludecl that a "blue shift" 
should be observed with decreasing teinperature. A11 the electronic states in anti-
ferromagnetic semiconductors are notably with a f.inite life time even at T=0. 

Pe3roMe. B p~MI(ax 06MelinOi"~ s-f MO,xeJIH HCCJle~OBaH 9JreKTpoHHbl~ cneKTp lIIH-
poFc030m{oro aHTHtp~ppdMarHldTHoro noJlynpOBOJLHHKa. ~cnoub30Banc;1 lvreTo!1 nenpuBO-
Jl:rlMbl~ tpyHKn:H~ rprllla; KoTopblfi JxaeT B03Mo)lc}rocTb eJl:HHbl,M: 06pa30M paccMaTpklBaTb 
3JlexTpoH-MaF}IoHl~bre Heynpyrlde lrpolleccbl pacce;IHkl;1 ~l npol~eccbl paccesl:HH,1 3J]eKTpo-
HOB Ha tpJrytCTyal~:Ii;rx HaMarnH,!eHHocT,1 noApellreTo}(. B IIIHpo}rolvl TeMJlepaTypHoM I(f!Tep-
BaJle oHpe,leJI;reTca nepeHopMPrpoBr(a cneKTpa 3JleKTpOH013. C!1;eJra[{ BbluoA o B03Mo)}(HOM 
Ha6JnO~eH~IH ,,cplHero c;lBrira" B cnefCTpe nop!roui:ernl:sl npH yMelJbmel{klkl TeMnepaTypbl-
\.rKa3aHo I{a xoHe*1,iOe 3aTyxaHHe 9JleKTpOilHblX cocTonHHI"4 B aHTHtpeppOMlrHPITHOM noJly-
npoBo~~l}il(e ~a}Ire IJp,1 T=0. 

1 . Introductlon 

One of the most interesting problems in the physics of magnetic se-
miconductors is related to the study of the electron-magnon interaction processes. The 
electrons in these condensed systems could be conditionally divided into two groups : 
free carriers in the conduction band that form the semiconductor's electrical conduct-
ivity, and electrons that are localized at the atoms (d- or f-electrons) which define the 
atoms magnetic properties [1]. The magnetic semiconductors are also interesting be-
cause they are described by a model Hamiltonian, whose applicability has been reliably 
determined [i, 2]. 

The calculation of,the re-normalized spectra of the magnetic. and electronic sub-
systems and the corresponding densities of states is necessary to describe a number 
of properties of the magnetic semiconductors. Moreover, from the point of view of 
their magnetic order, they are ferromagnetic (EuO, EuS), metamagnetic (EuSe) and 
antiferromagnetic (EuTe). As a rule, the ferromagnetic semiconductors [1, 3] are the 
main object of theoretical studies. In a number of papers published recently [4-10] 
using the many-particle approaches, it was shown that the exchange interaction bet-
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ween t'ne subsystems of localized spins and the itinerant electrons yields a tJ-omplicated 
temperature and concentrational dependence on the electronic quasiparticle spectrum. 

Pew papers [11-16] are only devoted to the theoretical study of antiferromag-
netic semiconductors. In these compoun.ds the itinerant electron motion occurs on the 
background of a complicated rr!_agnetic structure (a two-sublattice structure in the sim-
plest case). As a rule the mean field approximation turns out to be insufficient [{2] 
because missing the cor_relation elfects between the electrons. 

In the present work, the re-norrnalized quasiparticle spectrum. of the wide-band 
an~:iferromagnetic semiconduct.or ~s ,ealculated by the irreducible Green iunction method 

[17, •18], which has been successfully applied to .the study of- the elementary excitation ~pec~tr~'ih fer~omagn~tic~ semicondtictor~~ [9, iO] and antiferrolvi~~rietic dielectrics [19]. 

The method u~~s the equations .of motion, for the tWo-time temperature Green funct-
ions [20] -aud th_e decoupling'prbcedute being applied 6nly for an approximate calcu-
lation of the mass , operator. This. provides a possibility to obtain a sel~-consistent 
systerDs of equations by neglecting the ren,ormaliz;ation of the electron-magnon inter-
action. Thus, the irreducible Green function method can be used to calculate the 
quasiparticle spectra accounting for the correlation effccts by unified self-consistent way 

2. S-f mOdel oi an antiferromagnetic SernicOnductor 

the e~chang~ s-f model ,i~' tbe generally a~c;e'pfed model for magnetic 
semicoriduct0.rs [1].iWe shall consider Euj Te as a typical antifertomagnetic semiconduc-
tor. The 'm_agnetic mornents, formed by the 4f'elect~rons 'of 'Eu2+, are ordered in two 
iuterpenetrating sublattices a and b. Each lattice is ferromagnetic but the twO Strb',ai-
tices. 'nave opippsite magnetiz~tion-' and the to~al magnetic n~0,metrt' ,.:of the crystal is 
zer6 'at all, tethperatur~~. Du~ to th~ s'tron~_ ,'4f-~.feqtroh ' Ioca;1izat{~n, the system of 
magnetic rrfoments is_ described, by the Heisenberg Hamiltonian "~ 

'! ~~:.! •• '••• =L7 : Hf Jl~J~ Sla SJ~ Jqa~ Sda ' S*q~i (1) 
. i~j a~ < q,cr~ . . 

.. is the exchange integral between two spins at i site of sublattice o~ and j where JlaJ~ 

site of sublattice P. This integral is considered as parameter. Here the spin operatort5 
Sia (Sqa) have the generally acce,oted Ineanin._.o'. . 

Itinerant electrons that form the second su'osysterfl' of' th~' antifprromagnetic seml 
conductor are described by th~ H~,mjltonian 

s k _a ~ ~ , ; ~: ~ : ; '(2) ~ ' ' ka oe~. : ' , ' ' * L'.~< _ ' " , , 
Here the opera,tors at(k(r).and aa(kcY)"~re th0~~ iria~t cre~t.e and ~nnihilate. an electron .witri 

~vvave vecto,r k ~nd_ spin o:, in the sublatt'ice numbered ct and l~~ are~, the eledtron energies 

(ct=e) and the overiap integrals (a.+~)• As ~ rule,' to simplity,'these e,1ectf~ris are con.-
sidered as itinerant s-electrons. _ . ' " ; ;~ "'* 

The two sub~ysfems are_= coupled throtigh 'a foc~'l =spin-~pin interactiQr!- i . _ 

I = J~ 17 S• [S ~a at(k(~)a (k+q a)+zc Sqla at (ko)a (k+qcF)] ' (3) Hs-f -
kq' a 

wh~re thb e,xchange ,integral I has the typical v~l,ue O..1 eV.' for _'_EuTe [l~]. •Thus th~ 
total Hami.Itoniarl of the.antiferr6magnetic semiconductor is given.by the sum _ 
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h = f ff + Hs ~~ Hs- f' (4) Taking into account that J'"~_10-3 eV, when studying the elect.ron subsy_~tem one can 
eonsider the reduced Hamiltonian 

~ -In subseqtient' Sections the electroniC spectrum of an antiferromagnetic semicori-
duc*,or ~vauld be d_etermined on the ~asiS oi the. Hamiltor!_ian (5). . . 

3. Derivation of the DySOn equation 

To calculate the electronic spectrum of a two-sub]attice antiferromag 
netic semiconductor, we shall consider the two-time temperature Green function (GF) 
in the follo~ving form : 

Q({tTt')~:~-.~i~_.4(t), ~(t')> =,iiO(t=t')<[A(t), B(t!~]+>' (6) 
The structure of the Har~.iltonian (2) shows that in this case it is suitable to choose a 
matrix GF 

4~-_-- aa (ka) j a.~ (kO)~>_..- < aa (k(;) j at (ka) ,-p~-"~> 

G(k(J co) = <ab(~a) Iflt (ka)'-'-~~~'-'-( <ab (kO) I a, (ksi)'>~_~> ' (7) 

w'nere a and b refer~ to the d_ifferent sublattices. Tbe' equation of motion for the 
Fourier transform of the elements of GF (7) are written as 

~7 (o)~~Y-t'k'Y)-_=_.'= a.Y (kO){aj~; (ka)~• = 6~~r -= A_1('." I at (~~(;) >. (8) =,+.''* 

The -fo'll'owing notations ha.ve been introduced here 

I A )~ <S-' a.(k+q-O)+z.Sz a~ (k+q(;) I a~~ (ka) >, k* ~ = ' VVAd q - - qa q" 

z*=- I cr= ~ (-). 
To separate the mean field contributions from the higher order re-normalizations, delined 
'Lvy the inelastic electron-magnon scattering, we introduce by analogy with ref. [9] the 
irreducible GF using the operators 

(Sqz.)'r = Sqz~ _ < Sqza > 6qo. ( I O) 
This choice is exact]y determinecl by the condition 

<[(Siq,a)ira. (k+qO), at(k(5)]+> = O. (11) 
T~d irreducible GF are so defined that they could not be reduced by decoupling to 
10wer order ftmctions. Moreover, the nonhomogeneous terms in ,the equations for the 
irreducible CTF vanish. 

Taking into account (10), eqn. (~) acquires the form : 

~~7~'{[(o - 8a (k~)]6aY~ t~~ (1 - 8aY)}"'4.-_- aY(k(~) I a~+_(~a) ~ = 5.i3 - '--~~4~Aj<r. . I a~ (k(s)~ (1 2) 
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where 

I 
<Szo~ > . 

v!N 

To calculate the GF in (12) we use the_ equation of motion that is obtained after 
differentiating with respect to t'. Thus for GF O(ka, co) the Dyson equation is obtained 

( 1 4) G (kcl, co) = Go(kO, (o) + Go(kGi, (o)M(kO> co) G(k(5, co). 

Here '~Go(ka, o))= ~~1 describes the behaviour of the electronic subsystem in the gene 
ralized Hartree-Fock approximatiOn as 

~ (ka, o) = ~ 8a(ka) - t~b ( 1 5) 
tba a) - 8b (k~) 

and the mass operator M(ka, co) is given as a connected part of the irreducible matrix 
GF of higher order 

< A'~r",. j Ak+~ '~r>(c) <A~~.~ I Ak+~i~>(c) 

M(ko, co)= <4"__~AIL'.blAi<+~~'•/~~- (c)<Ai' iA+,ir>(c) ' (16) , , * k*,b k*,b 
in full analogy with the approach that is based on the diagram techni_.~ue. Equation 
(14) shows that the determinaticm of GF G(kO, co) is reduced to finding Go(kty, co) and 

the approximate calculation of the mass operator (16). ' 

4. Electronic Spectrum in mean field 

The GF elements in generaliZed Hartree-Fock approximation have 
the form: 

uk* , vk. G~a (ka, o)) co-8+(ko) t a)-~_(ka) ' 

uv 08b (ko, co) = = G~a(k(J, co), o)-8+(ko) ~ co-8_(ka) 

v~* + ul2(* 
G8b (k(;, a)) o-8+(ko) c0-8_(kcl) ' 

where 

1:kz , [ o ~; , u2k0= 2 ~:'k. 2 1 +z 1 -z 

<S~*> 
1:k [(tab)2+12S2]'/ Sz = ~~ ' 

Tt is assumed here that each sublattice is simply cubic and t~a=0 (a=a or b). The 
energies 8:k(ka)= ~xk yield two' quasiparticle electron energy bands in the mean field 
approximation. These bands form the so-called "Zener rr]odel" [12]. The Bloch zones 
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Jnfluence of the Magnetic Order 

~tab at T<TN When the sublattices are magnetically ordered remain degenerate along 
the spin direction. It is seen that the bottom of the lower quasiparticle band 
8_ (ka) would be shifted to lower energies with decreasing temperature and it would 
define in the optical spectra a "red shift". Unfortunately, there is a drastic contradict-
ion between the theoretical results in the mean field approximation and the experiment 
which in most cases produces a week "blue shift" [12]. To eliminate the contradiction 
it is essential to account for the inelastic interaction between electrons and magnons 
and the electron scattering by the fluctuations of the sublattice's magnetic moment. 
These processes may be evaluated by the mass operator. 

5. Re-normalization of the quasiparticle spectrum 

To find the re-normalization of the spectra and the damping of the 
quasiparticles it is necessary to determine: the self energy for each type of excitations. 
This may be done by reverting to creation and annihilation operators of the quasipar-
ticles in terms of the u-v Bogolyubov transformation given by (18). Then the GF 
for each kind of quasiparticle would have the foym: 

o)-8~(ko)-~~ (ko, co) 

where the self-energy operator ~+__(ka, co) comprises all matrix element of the mass 
operator ( 16) and is given by the expression: 

~~(ka, co) u~* M"a~uk*vk*(Mab+Mba) + (20) f vk* Mbb 

An approximate expression for the mass operator elements (16) that is suitable for the 
consideration of the role played by accounting for the different scattering processes 
may be obtained in the following way. Using the spectral theorem [20] and the de-
coupling of the higher order correlation functions in a way described elsewhere [9, 19] 
and neglecting the correlation in the electron and magnetic propagation M~~ is given 
by the expression : 

Ma~ (k(;) 12 1 +v(ol) ~ n(o2) = 2'q fi~dcoldc02 
N (o col~co2 

X. =[m~~~" (oj, (ol)g~~ (k+q--(;, o)~)+m~bz (q, col)g.~ (k+ q(;,~ co2)]" (21) 

In (21) the folldwing notations have been used 

m'd~(q, o)- ~ Im <S';~ [ Sj_q~ ~>_>._~' , 

g~~(k(s, co) = - Im < a~ (k(;) I a~(ka)~ , 
lc 

i, j=+, -, ; oe, P=a, b. z 

The functions v((o) and n(co) are Bose and Fermi distributions, respectively. Equation 
(20), taking into account (21), represents an approximate self-consistent expression for 
the mass operator of the corresponding kind of quasiparticles. 
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Si•nce the sel•fic6nsistent daiculation of the tnass operatofis not based ori a definite 
initial approximation, we 'may use as a: first iteration approximation for the electron 
spectral.density g~p t'ne two-pole expression eorresponding to the G~F' structure_ for a 

mean field ' - ' ~ . ~~ I " _ i - .'. ' 
~ ~ u~~ , v~a _, 

g.~ (kc~ o)) uk.1~'1" ~(co-Et(•ka).).~ . Lul{'vii<~.: ' •6~~=1;~:_' (k~)). ::- ," ', (2~) 

Snnllarly for the locallzed spm spectral denslty m.h~~(q,co) according to [19], we have 

6((D-z*coq)- , LlqVq '-6(~~~.e)q); -•. _ '2z~'sz ~ ~ ! ' 
' = , V'q2 : '_= ' U~ ~ 

where Uq and Vq de~ine the unitary Bds'e tr~tl~fortti~tion and o~ is the energy :of the atrti 
ferromagnetic magnon. It should be noted here that an itinerant electron concentration 

is supposed with a finite value. ' ' At low tem'peratures, as shown in [19], the spin operators S~~ are expressed simply 
by Sq+" and S-. Then, taking into accou.nt. (2=2) and (23) an d by neglecting the mter 

q" "* = * " *" * * ** ** band transitions for the self-energy operator of the. electrons frdm the low-energy b~nd 

E_(k(;), we obtain 

~-(ko o)) /~S 2 1 H-v(coq)-n[E_(k-q)j ~ v(o)q)+n[E_(k+q)] >1. , . 
, = 2N~q(Uq +Vq) q 0+0)q-E_(k+q) J (o~co -L;~(k-q) c 

+ ~l:2S~ ' •' -" ,v(o)~;~P) [ I +v((D~) l+n [E_(k+p)] [v(oS)=v(o)~+p)l 
N ~qp(U~Uq~p~~ qVq+p) ~'~ L.~ E ;r'k h\= ;'. 1 j, ~H-co , q+p . q ~ i\. +. *j 

When' d~~iv! ing :(~5) it shbul'd, be'tak:e~ irito:a'c: co~nt thaf fo'r~~=,ivide:iba.:~d an'ti'fertoirtl'~g~ 

netic'semic6nducto'ir the ~oefficierits ll~.'~~~'l(~~'l'l~~1 ttp t,o ttie :terms in 'I~, E-kpressiori: ,(i2:5) 

generalizes the results for finite electron correlation o'otained in [It, i-14] on' the basis 
of a decoupling scheme of the equation Qf mQtion for the GF. It accounts for the 
electron-magnon scattering processes with the participati,on ot one'or two mag,nons. 
Its structure shows that in an antiferromagnetic " seiniconductor, the behaviour of the 
electrons (regardless of t'neir ,spin) corlrpr=ises the typical p,eculiarities of , the electron 
states in a ferromagnetic semiconductor both ivith spin 'trp ( t ) arid' spin'ddwn (. ~ ) [9]: 

The real part of the self-energy (25) .dete~~m]1 ines ,,t,he re-n.o~ma~lizat,i=0'n._Qf t~e eleci 
tronic spectrum. At T=0 and empty conducti6ri barid the ~ shift -of' the band' bottoni 
6E_ is given approximately by tb_e expression: ., ,,<, ' j.., ,. >.., 

J2S l - ~7 2 61 _ = WN ~/ I ._ vq ' (26) 
where W is the band width and Yq is the structure factor. , . _ 

The mass-operator representation (16) provides a possibility to obtain an appro-

xirQate e_xpressio.n •for tempe,raitures close_ to T~r Using lhe static approxirnation for the 
correlation functions~ of ,the , magnon subsystem (see, [9]),, the following ,expr~~sion' 'is. 

readily obtained: _ ..';=_ , , :* :_ _ . I " , .. . _, . 
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IVi"~(k~) ' 12 ' +~~ de)~ {<St~~ Sq".'>g.~(k+q-a, co') - L~v~ f_ ~N = e)+cof 

+ <;(Siq~)i{- (S~.)il~ gq~ (~ + ~g, - ~)')}. (27) 
Then vith the help of the cor,elation- iunctions from- [.1_3] and (23), neglecting the i<i-rter-
band transitions .in the. case of wide-band se,miconductor, we obtain 

12 ,c=' +(q) + ~~'z(q) = ( I L Yq), / = ~7 . a)-E_(k.+q) . 

where 
X~' +(q) 2S(SHL1)j3 ' 

S(S+1)j3 B 6(S2+S+1i2). X"(q)= 1-Y~+BS'2 ' = 5S~(S+1)2 

At T=TN the position of the band bo*tom Is def,ried by the expressron 

LY/ J2S(S + I ) 1 

E_(Oa) = - - WN 2 q I ~Yq 

Taking into account that at T-=0 
1 W 12S2 12S E_(O(;) = - ---- -2 W WN 

by comparing (30) and (31) it tollows that a "blue shift'> would be, o'DServed with 
decreasing temper<ature. This sift for the model parameters J=0.1 eV. S=7/2. W= I eV 
yields 

AE_ = L:*~_(T = TN)--E_( T=0)~-- -0.0~2 eV. 

This estimate is in a good agreement with experlment - 0.03 eV for EuTe [12]. 
The representation of the self-energy operator, defined by (25) and (2/~), shows 

that the quasiparticle states in the antiferromagnetic semiconductor possess a typical 
peculiarity - even at T=0 they turn out to be of finite life time. By tbis property 
they differ essentially from the electrons in ferromagnetic semiconductors, where finite 
damping at T=0 have only the down spin states. A detailed study of the damping of 
the electron states in the antiferromagnetic semiconductors requires a separate discussion. 
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