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INFLUENCE OF THE MAGNETIC ORDER ON CONDUCTION
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Abstract, Within the framework of the exchange s-f model the electronic
spectrum of a wide band antiferromagnelic semiconductor is studied. The method of
irreducible Green functions is used. It provides a possibility to account both the elec-
tron-magnon inelastic scattering processes and the electron scattering over the fluctu-
ations of the sublattice magnetization. The renormalization of the electronic spectrum
has been determined in a wide temperature range. It is concluded that a “blue shift”
should be observed with decreasing temperature. All the electronic states in anti-
ferromagnetic semiconductors are notably with a finite life time even at T=0.

Pesome. B pamxkax o6MeHnoi S-f MOIenM MCCHAEAOBaH SJIEKTPOHHBIH CIEKTp ILH-
POKO30HHOFO aHTH(PEpPOMATHHTHOrO [HONYOpPOBOAHMKA. KICNOMs30Bancst METOJ HENpHBO-
TUMBIX yrKimi Tprua, KOTOpbIi DaeT EO3MOXHOCT6 ENMHBIM 06pasoM paccMarTpHBaTh
3NEKTPOH-MATHOHKLIC HEYNpYThe TPOLEeccyl PACCEsHUS M NPOLeCCh pacCesiHHs 3IeKTpo-
HOB Ha (MIYKTYaUMsSX HAMATHHYEHHOCTH MOAPEINETOK. B HIMPOKOM TeMnepaTypHOM HuTep-
Baje ONpeRessieTcs NMEepeHOPMHUPOBKA CHeKTPA 31eKTPOHOB. Clenan BblBOA O BO3MOMKHOM
HabMOZEHNH ,CHHETO CABMCA“ B CHEKTPe MOMVOWIEHHS NPH YMEHplUEHUM TeMMepaTyphl-
YKa3aHO Ha KOHEU.OE 3aTYXaHue SMeKTPOHHBIX COCTOSIHME B aHTH(EPPOMITHUTHOM NOAY-
nposozuHKke gaxe npu T=0.

1. Introduction

One of the most interesting problems in the physics of magnetic se-
miconductors is related to the study of the electron-magnon interaction processes. The
electrons in these condensed systems could be conditionally divided into two groups:
free carriers in the conduction band that form the semiconductor’s electrical conduct-
ivity, and electrons that are localized at the atoms (d- or f-electrons) which define the
atoms magnetic properties [1]. The magnetic semiconductors are also interesting be-
cause they are described by a model Hamiltonian, whose applicability has been reliably
determined [1, 2]. ,

The calculation of the re-normalized spectra of the magnetic and electronic sub-
systems and the corresponding densities of states is necessary to describe a number
of properties of the magnetic semiconductors. Moreover, from the point of view of
their magnetic order, they are ferromagnetic (EuO, EuS), metamagnetic (EuSe) and
antiferromagnetic (EuTe). As a rule, the ferromagnetic semiconductors [l, 3] are the
main object of theoretical studies. In a number of papers published recently [4—10]
using the many-particle approaches, it was shown that the exchange interaction bet-

191



D. I. Marvakov et; al. . -

" ween the subsystems of localized spins and the itinerant electrons yields a complicated
temperature and concentrational dependence on the electronic quasiparticle spectrum.

Few papers [11—16] are only devoted to the theoretical study of antiferromag-
netic semiconductors. In these compounds the itinerant electron motion occurs on the
background of a complicated magnetic structure (a two-sublattice structure in the sim-
plest case). As a rule the mean field approximation turns out to be insufficient [12]
because missing the correlation effects between the electrons.

In the present work, the re-normalized quasiparticle spectrum of the wide-band
antiferromagnetic semiconductor is .calculated by: the irreducible Green function method
[17,~18], which has been successlully -applied to the study of-the elementary excitation
spectra in ferromagnetic semiconductors [9, 10] and antiferromagnetic dielectrics [19].
The method uses the equations of .motion for the two-time temperature Green funct-
jons [20] -and the decoupling procedure bemg applied only for an approximate calcu-
lation of the mass - operator. This. provides a possibility to obtain a seli-consistent
systems of equations by neglecting the renormalization of the electron-magnon inter-
action. Thus, the irreducible Green function method can be used fo calculate the
quasiparticle spectra accounting for the correlation effects by unified self-consistent way

2, s-f model of‘ an 'antifetfoniégne:tic semicc)n'du‘ctor

~ " The exchange ‘s-f model is the generally ‘accepted model for magnetic
semiconductors [1]..We shall consider EuTe as a typical antiferromagnetic semiconduc-
tor. The magnetic moments, formed by the 4f electrons of Eu?+, are ordered in two
mterpenetratmg sublattices a and 6. Each lattice is ferromagnetic but the two subla
tices have opposite magnetization” and the total magnetic moment 'of the crystal 1s
zero at all temperatures. Due to the strong 4f electron localization, the system of
magnetic moments is described. by the Helsenberg Hamﬂtonlan

Hy= 3 3 09 Su. Sfﬁ—)f”sqa S (1)
S e @B o
where J“jf5 is the exchange 1ntegra1 between two spins at ; site of siblattice ¢ and j

site of sublattice B. This integral is considered as parameter. Here the spin operators
Sia (S40) have the generally accepted meaning.

Itinerant electrons that form the second subsystem’ of thé’ antlferromagnehc semi-
conductor are described by the Hamﬂtoman

H 22 t“ﬁa+(k0)ﬂﬁ(l§(¥) : HERATITR ,. SIS (@)
Here the operators a+(k<r) and aa(kc) are those that create and anmhllate an electron thh
wave vector k and spin o in the sublattice numbered: o and £ ate. the electron energies
(a=P) and the overlap mtegrals (a==B). As' a rule, to simplify, these electrons are con-

sidered as itinerant s-electrons. ‘
The two subsystems are coupled through a local spm-spln mteractlon " o
_f~—— Z Z S*" a+(ko)a<,(k+q—c)+chz a“ ko)aa(k—{—qc)}, f R (3)

—qe ¢
kgs - @

where the exchange mtegral I has the typxcal value 01 eV for EuTe [ ] Thus the
total Hamiltonian of the antiferromagnetic semiconductor is given by the sum
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1ak1ng into account that J®8~10—3 ¢V, when studying the e ectron subsystem one can
consider the reduced Hamiltonian

H~H+H_ S AR S B

“In subsequent” Sections the electronic spectrum of an antlferromagnetlc semicon-
duﬂ*or would be determined on the basis of the I—Iamxltoman (5).

3. Derivation of the Dyson equation

To calculate the electronic spectrum of a two-sublattice —antiferromag-
. netic semiconductor, we shall consider the two-time temperature Green function (GF)
in the following form:

G(t—1")=<<A(t), B{t')> =—i0(¢—t)<[A(t), B(t')};>. (6)

The structure of the Hamiltonian (2) shows that in this case it is suitable to choose a

matrix GF

<a,(ko)|a} (ko)> <a, (kc)]a+(k0)~\~»)
(M

G(kG ®) = (<a (ko) |a; (ko)> <a, (ko) |a;f (ko)>

where @ and b refer to the different sublattices. The equation of motion for the
Fourier transform of the elements of GF (7) are written as

N7 (08— t) < ay (ko)ah (ko)> = up— < Ay 0 (k)5 ®)

v

Thefo*llowing’ notations have been introduced here

Aow = \/_q }” <S:f§a au(k+9—0)+2:5% , au (kK +qo)| af (ko)>,
1, o=1(+) | R : )
% {—1 o= | (=) |

To sepaxate the mean field contributions from the hlgher ofder re- normahzatxons defmed
by the inelastic electron-magnon scattering, we introduce by analogy with ref. [9] the
1rreduc1ble GF using the operators

(SZ )zl’ <Sz >6q0 - ) ) (10)
This chmce is exactly determined by the condition | L
<[(S7 )" aa(ktq0). - ajf (ko)ly> =0, A | (1)

The irreducible GF are so defined that they could not be reduced by decoupling to
lower order functions. Moreover, the nonhomogeneous terms in the equatlons for the
irreducible GF vanish.

Takmg into account (10) eqn. (8) acqulres the form:

z,w{ ~aa<kc>16ay—tav(1—6w>}<ay<ko)|a+<kc)> AL |0 (o), (12)
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where
gy (ko) =£2%— 2, LR RS 13)
k \!N 0o

To calculate the GF in (12) we use the equation of motion that is obtained after
differentiating with respect to #. Thus for GF G(ko, o) the Dyson equation is obtained
G (ko, 0) = G,(ko, ©) + Gy(ko, ®)M (ko, ©) G(ko, o). (14)
Here /Go(kc, m)= Q1 describes the behaviour of the electronic subsystem in the gene
ralized Hartree-Fock approximation as
. o—g, ko) —#°

Q(kc, (l)): -——tﬁ” a)—gb(k(f) )1

and the mass operator M(ko, ®) is ngen as a connected part of the irreducible matrix
GF of higher order

R A:{;alA+.ir>\(c) <A I'r IA]—({—éf;>(c)
M(kc; CO) /A” lA+ lr (L-)<Azr A+,f}‘>(ﬁ))’
in full analogy with the approach that is based on the diagram technique. Equatxon

(14) shows that the determination of GF G(kc o) is reduced to finding Go(kcs ) and
the approximate calculation of ‘the mass operator (16).

(15)

(16)

4. Electronic spectrum in mean field

The GF elements in generalized Hartree-Fock approximation have

the form:
2 2
Uis , Uks
Gs® (ko, 0) = o s.(ko) T o= (ko)
o ko Uys Vo a
G’ (ko, ©) = 5= ke) ~ o=c (ko) — J0 (K% @) ‘ 7
2 2
bb _ ks Yo
G (kc, 0) = o—¢.(ko) * o—¢&_(ko)
where
1 [Sz 1 ISZ
ll%(‘s:TJ'l-—ZjS-; y ‘Uicz—é—}'l’{‘zo'i}
T (18)
, (S5 '
Ty [(tﬁb)2+[2s‘g] kS, :\/N‘ R

Tt is assumed here that each sublattice is simply cubic and #2¢=0 (o=a or b). The

energies s4(ko)= L1, yield two quasiparticle electron energy bands in the mean field
approximation. These bands form the so-called “Zener model” [12]. The Bloch zones
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*¢#2 at T<T, when the sublattices are magnetically ordered remain degenerate along
the spin direction. It is seen that the bottom of the lower quasiparticle band
e_ (ko) would be shifted to lower energies with decreasing temperature .and it would
define in the optical spectra a “red shift”. Unfortunately, there is a drastic contradict-
ion between the theoretical results in the mean field approximation and the experiment
which in most cases produces a week “blue shift” [12]. To eliminate the contradiction
it is essential to account for the inelastic interaction between electrons and magnons
and the electron scattering by the fluctuations of the sublattice’s magnetic moment,
These processes may be evaluated by the mass operator.

5. Re-normalization of the quasiparticle spectrum

To find the re-normalization of the spectra and the damping of the
quasiparticles it is necessary to determinejthe self energy for each type of excitations.
This may be done by reverting to creation and annihilation operators of the quasipar-
ticles in terms of the #—v Bogolyubov transformation given by (18) Then the GF
for each kind of quasiparticle would have the form:

1 .
G, (ko) = s ‘ 19
+ (ko) co—si(kc)——zi (ko, ®) - (19)

where the self-energy operator X*(ko, ) comprises all matrix element of the mass
operator (16) and is given by the expression:
2

i
Zi(kc, (D) ={ 2

,02
} M+ Uys ‘Uko‘(Mab + Mba) + { 02 } Mbo, (20)
. ko

ko

An approximate expression for the mass operator elements (16) that is suitable for the
consideration of the role played by accounting for the different scattering processes
may be obtained in the following way. Using the spectral theorem [20] and the de-
coupling of the higher order correlation functions in a way described elsewhere {9, 19]
and neglecting the correlation in the electron and magnetic propagation M is given
by the expression:

Meb(ko) =5 37 [+do,do, LAN10:) s
X[m=e (@ @) (K+q—0, @3)+mis (q, @) (K+q0, 0} , (21)
In (21) the followmg notations have been used

m&i(q, oa)_————lm<S | S 5>

gup(ko, ©)=—— Im <aa (ko) | af (ko) >, (22)
i j +¢ T ; (I, B a b

The functions v(®) and n(®) are Bose and Ferml distributions, respectivély. Equation

(20), taking into account (21), represents an approximate self-consistent expression for
the mass operator of the corresponding kind of quasiparticles. ,
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Since the self-consistent: calculation of the mass operatoris not based on a definite
initial approximation, we may use as a:first- iteration approximation for the electron
spectral density gyp the two-pole express:on correspondmg to. the GF structure for a
meanfxeld L . B S SR o o

Lo

guﬁ (k(}‘, Q)) ':’ ukc‘d]co‘ 8((D—E+(k(;))+ %lllcng'](c 6(({}———;E_ (2{6)) (23)

Similarly, for the localized spm spectral densmy me =" (q,c)) accordlng to [19], we have

E’ U2 V2
[ U‘*,-V CNozmog— | UVa dotzod 09
TR ,V2 - U2 B ;

where Ug and Va defme the unitary Bose transformatxon and o4 is the energy- of the anti
ferromagnetxc magnon. It should be noted here that an itinerant electron concentratlon
is supposed with a finite value.

At low temperatures, as shown in [19], the spin operators Sg ‘are expressed sm]ply
by Sf and Sz. Then, taking into account (22) and (23) and by neglecting the inter-

band transmons for the self-energy operator of the electrons from the low-energy band
E_(ko), we obtain ,

5 — JERY [4+v(@g)— nfE (k—q)] . v(o )+’2[E_(k—l-‘{q)];
Z~(ke, 0)= R *V“)g{ ocop E0 oo —E-<k+q>‘}‘ ©5)
21382 ' v(mq +p [1+V(‘°q)]+” [E_(k+p)]Iv(eg)— V(wq+p)] G i
o N R

When derwmg (25) 1t shou&d be taken mto account that for a’ w1de band antxferromag-
netic’semiconductor the coefficients wy vy 1/\/2 up to the terms in 12 Expressmn (25)
generalizes the results for finite electron correlation obtained in [11,'14] on the basis
of a decoupling scheme of the equation of motion for the GF. It accounts for the
electron-magnon scattering processes with the participation--of one or two magnons.
Its structure shows that in an antiferromagnetic * semiconductor, the behaviour of the
electrons (regardless of their spin) comprises the typical peculiarities of the- electron
states in a ferromagnetic semiconductor both with spin up (1) and spin down ( | ) [9].

The real parl of the self-energy (25).determines the. re-normalization. of the :elec-
tronic spectrum. At T=0 and empty conduction band the shift of tbe band bottom
OF_ is given approximately by the expression: ; i Con gy

JR - 1
e S 31 @
q Vi-v4 4 , - ;

where W is the baud width and v4 is the structure factor. . - :
The mass-operator representation (16) provides a possibility to obtam an appro-

ximate expression-for temperatures close:to 7,. Using the static approximation for the

correlation functions of; the magnon subeystem (see [9)), the  following expression is

readily obtained: DS ) ST SR S L S AP
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MP(ko) = 12 37 i;jj’(‘o‘,{<’5‘—c Se.> gu(k+q—0, 0

T —qB ~qu

e i fer N . , 27
+ <87, ) (S5) "> Gup (K+go, 0)} &0

Then with the help of the correlation. functions from-[13] and (23),‘ ‘n‘eglecting the inter-
band transitions in the. case of wide-band semiconductor, we obtain .

- £ @A Oy R
(ko) = = L (1—9q). TR . 28
0= 2 Sy @)
where ’ .
L ass+ns
X ’ +(q) = -————(ity?)/ i
X (29)
5(q) = SS+1)8  p_6(824+85+1/2)
= sy 7T SSS
At T=T, the position of the band bottom is defined by the expression:
W 2SS+1 7 1 .
E_(0o)=— — 200+ 3 o (30)
q q

Taking into account that at 7=0

w 2§z 2§ 1 .

EOo)=—5—F—gy D T ' Gl
q Jl_yq

by comparing (30) and (31) it follows that a “blue shift” would be observed with

decreasing temperature. This sift for the model parameters /=0.1 eV, §=7/2, W=1eV

yields

AF_=F (T =Ty)—FE_(T=0)~—0.02 eV.

This estimate is in a good agreement with experiment — 0.03 eV for EuTe [12].

The representation of the self-energy operator, defined by (25) and (27), shows
that the quasiparticle states in the antiferromagnetic semiconductor possess a typical
peculiarity — even at 7=0 they turn out to be of finite life time. By this property
they differ essentially from the electrons in ferromagnetic semiconductors, where finite
damping at 7=0 have only the down spin states. A detailed study of the damping of
the electron states in the antiferromagnetic semiconductors requires a separate discussion.
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