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The Hamiltonian of the electron—phonon interaction is derived and applied to the description of
disordered transition metal alloys. The coupled set of equations for the electron and phonon (reen
functions is derived with the help of the cquation-of-motion technique. Neglecting the vertex
corrections in the self-cnergy operators the closed self-consistent system of equations is obtained.
The relevant configurational averaging is performed in the framework of the CPA. The electronie
specific heat in the low-temperature limit is calculated.

BpiBeIeH raMHJABTOHHAH, OMMCHBAKIUMI CHJILHO CBA3AHHBIC HIeRTPOHLL B DA3yITOpPL10-
YCHHOM CIIJIABC 11€DPeXO0THDIX MEeTAT10B ¢ YUeTOM ATERTPOH—HOIONIOr0 B3ANMOTEHCTRUA.
C 10MOLIBY MeTO01a YPAaBielHil IBUARCHUA HOIYUeHa CBA3AHHAN CHUTEMA YPaBHEIHH T4
)IEKTPOHHOI U POHOHUON (hyHIITHH I'puna. B npcHeOpeKCHUH BePIIHHHBIMH IO PAB-
KaMH R MACCOBOM OllepaTope TOJIVYeHa 3aMEHYTad caMOCOrVIACOBAHHAH CHCTEMA § pab-
genuii. HondurypauuonHoe yepeHelne IIPOBCICHO B DaMKAX NMPpHOJTHIREIINH KOrep CHT-
HOTO TOTCHIIMAMA. BodemoeHa IIU3ROTEMICparypliaa 3 JI¢RTPOHHaA TEeHLIOCMROUTL

ClLJIaBel.

1. Introduction

In recent years there has been recognized that the microscopic description of certaln
unusual features [1, 2] of the disordered transition metal alloys requires the proper
treatment of the electron—phonon interaction.

The eleetron—phonon interaction in disordered binary alloys has been studied by
many authors. Chen et al. [3] introduced the model in which phonons were treated
phenomenologically while electrons were described CPA. The electron—phonon
interaction was deseribed by the local operator. The model was later generalized
by Kolley and Kolley [4] and Wysokinski [5] for the off-diagonal disorder. Allen [6]
attempted to develope the complete theory of the interacting electron—phonon
system. He considered solids with weak static (impurities) and dynamic (phonons)
disorder. The limitation of the theory is the weakness of disorder. The application of
Allen’s theory to the disordered transition metal alloys is not clear. Girvin and .Jonson
7] used the same Hamiltonian as in [3] but developed a more complete many-body
theory of the clectron-phonon interaction in strongly disordered metal alloys. Sac-
chetti [8] introduced a very simple model for treating the electron—phonon interaction
in the low-temperature region in random binary alloys. This author uses the results
of the Migdal theory [9] of the electron—phonon interaction in simple metals for dis-
ordered allovs. However, the explicit form of the Hamiltonian as well as the derivation
of the used formulae are not given in this paper.

The purpose of our paper is to develop the complete microscopic self-consistent
theory of the electron-phonon interaction in substitutionally disordered transition
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metal alloys. For the description of the electron-phonon interaction we generalize
the Bari&ié et al. [10] model to the case of alloys. Barisi¢ et al. [10] (to be referred to
as BLTF)} introduced a model of the electron—phonon interaction in the transition
metals and their compounds. This model is a direct gencralization of the well-known
Hubbard model Lo the case of deformed lattice and is formulated in the Janguage of
the tight-binding (TB} approximation. Additionally the ‘‘rigid ion” approximation
is used for the derivation of the BLF Hamiltonian.

The BLF model was successfully applied to the caleulation of the superconducting
transition temperature T, the McMillan parameter, cohesive energy and paramag-
netic susceptibility of the transition metal [11 to 141. The BLF’s tight-binding ap-
proach to the problem was later clarified in papers [15 to 17]. Holas et al. {18] and
Plakida et al. [19] used the BLF model to calculate the renormalized electron and
phonon speetra in crystal in the band and the atomic limits, respectively. The present
paper generalizes their results to alloys.

Becanse the method of irreducible Green’s functions [22 to 24] we use here gives
very successful self-consistent solution of the many-hody part of the problem we
present the derivation of Dyson equations for electrons and phonons in some detail.
This approach is essentially equivalent to the so-called self-consistent many-body
theory described recently in [34].

2 The Model

The total Hamiltonian of the electron—ion system in the substitutionally disordered
alloy is written, for a given configuration of atoms, in the following form:

H:H2+Ht!e+ﬂe—i+ﬂi: (1)
where |

H? = Z €0t — Z’ Fiitia i

i ija

is the one-particle Hamiltonian of an electron in an alloy. The parameters €; and £;
are random quantities taking on the values €4, €5 and 124, A7, ¢BP depending on the
type of atoms oceupying sites ¢ and ¢, j. The prime in the second sum indicates that
summation over § is limited to the nearest neighbours of an atom located in site .
The electron—clectron scattering is approximated here by the Hubbard [20] intrasite

term with random parameters,

: _ 1 T . . gk Q
Hee = 5 Z Uity — g5 Nig — Uigllig - (2)
g

The third term in {1) represents the electron—ion interaction in alloys. This part of
the Hamiltonian js derived in the Appendix and it is a direct generalization of the
BLF modet,

Hq ;i = Z Z T?}(“? — 'Hff) ”t“'l_nﬂja ; (3)
i, },0 &
where
_ ?:1 T4y Ry

i

In (3) and (4) «f is the x-th component (x =, ¥, 2) of the displacement of an 1on
placed in an i-th site. g, is the Slater coefficient deseribing the exponential, exp (—air),
decrease of the d-function [10]. It is equal to ¢4(¢}) when an atom at a site 7 is of
A(B) type. R;; is the relative position vector of two ions at ¢ and j,
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This simple form of the interaction Hamiltonian reduces to that given by BLF in
the case of pertect crystal. However, it is not the only possihle and unique extension
of the BLF model.

The last part of the Hamiltonian represents the ion Hamiltonian and in the har-
monic approximation, we use here, 18 given by

-+ l DRI e (6)

M; denotes the mass of an ion at the ¢-th position, and it takes on two values MWy,

My, The dynamical matrix @ff 18, 1n gencral, a random quantity taking on various
values as a funetion of the oceupation and distance between the sites ¢ and 4.

For our main interest is the description of the eleciron—phonon interaction, we use
here the Hartree-Fock approximation for the Hubbard term

Ny . _ . -
I{DE = E L fatlias { g Ifrf<”'-1'—r:r> . ("f)

74T

Having this in mind we rewrite the Hamiltonian (1)

H — HE 4 H.+ H;, (8)
where
I, = Y €apt + X f-sjﬂﬂ%ﬂjm ’ (9)
io ijo
Eiﬂ — —I— I.;i<ﬂ11_g> (IO)

and /7, ; and H, are given by (3) and (6), respectively.

3. Elecetron Green Funetions

We use the two-time thermodynamic Green function (GF) [21]. Tn the site representa-
tion it is defined for electron operators by

GOt — 1) = Lawt) | aly(t)) = —10(t — 1) {[aw(t), ailt'}]5> . (11)

The calculations of (11) will be done with the help of the equation-of-motion technique
as developed and used 1n papers [18, 19, 22 to 24].

Proceeding in the standard way [21] we obtain the following equation for the
Fourier transform of (11):

> hinlw) Grjle) = 0y -+ 2 THluinte | 4j6)w » (12)

HX

where various symbols denole
X 2 X 2] 73 .
Uing = Uy — Uy, h‘f?l(m) = {w — ¢ i.') (Si'n — tip . (13)

To obtain the formula for the GF {uia,,| 5D, we differentiate it with respect to
the second time variable ¢'. We get

Z ‘;Eg?j(w) <<'ui1ﬂ'ﬁu | ﬂ';m»m — Z J—Tgej«'“itﬂﬂa | "“ﬁej”j;m»m . (14)
1

m
Defining now the zeroth-order GF, G} (w) by
E h?ﬂ-(ai) GE}?(@) — ai‘j (]-5)

r
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we can easily solve (12) and (14) for (;(w). To do this, we multiply bhoth sides of
equation (12) by ¢ from the left and sum up over 7, and similarly, multiply (14) by
% from the right and sum up over §. We have

Gi(m) = GF5(w) + ¥ G K e) (o) . (16)
if

The scattering operator K is equal (o

Kif-(m) — Z Z TT'?H«H'?HH'HJ' “gﬂﬂ;m))m ngﬂ . (17)

nm of

Equation (16) can be written in the form of the Dyson equation

Gy 5(m) = Gl ) + 3 G ) Miw) GTo) (18)
il

if one introduces the massoperator 37 (w) related to the scattering operator (17) by
the formula [22 to 24]

Ki{e) = My(w) - 3 W) Gﬂﬁ(m) Ki{ew) . (19)
3’

It follows fromi this equalion that M 1s a “proper part” (pp) of the scattering
operator (17). The proper part of an irreducible GF (in our case irreducible GF coin-
cides with GF) does not contain inner parts connected by one (/9-line. In the matrix
notatlion we expressed this fact as

Mlw)y = {K{m)}PP . (20)
The solution of the Dyson equation (18) can be writlen in the matrix form as
(Glw) = {(Gy) ™ - M)} L. {(21)

Henee, the determination of (¢ has heen reduced to the determination of G and .

Equations (20} and (17) give an exact representation of the mass operator in
terms of higher-order GF for a given configuration of atoms in alloy. To find explicit
expressions for M(w) tor different model parameters, suitable approximations to
evaluate the highcer-order GF in (17} should be used.

In order to caleulate the mass operator (20) sclf-consistently, we have to express
it approximatively by the lower-order GI'. The mass operator describes the inclastic
scattering processes of the electrons with phonons. Starting from this physical pieture
reasonable approximations for M can he found.

The GE standing in the r.h.s. of (17) can be written as

(- T
¥
i ﬁ, . drtj oo I .
{{”'?;L”ﬂrr { I‘f-rni'f”-:;?-ﬁ>}rﬂ - 2 f ’ (ﬂﬁm -+ ]) f dt © et <“E;I(” H;-tm”') “?ﬂ-ﬁﬂ-{}')ﬂ -
T {f) - - (0
o e (22)

Here § = (A37)71 with Iy the Boltzmann constant and 7' the absolute temperature.
We decouple the correlation function in (22) in the following way:

<'”§a£(i) ”:r;e.r:r(t) wiﬁ”?‘i{r> = <'“;?c.£“] “-?;0 <ﬂ;m(_i) Upe) - (23)

The approximate expression (23) results from neglecting the vertex corrections.
The used approximation of two inleracting modes can be represented graphically [9]

D T
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where a straight line describes the propagation of the electron and the wavy line
represents the phonon propagation.

Expressing the correlation functions in the r.h.s. of (23) through the GE's by
means of the spectral theorem we obtain from (23), {22), and (19)

[

I 4+ No) - nfo
M3(w) — [ f deo, dep, L 02 mon)

{1y — r:r)l (!Jz

v
—= LX)

1 . ‘ 1 T |
< E Z {'IT?;& [__ Im Gfﬂ.-m(f”l L JE'E]] [_ — Im <"\”:i-‘1 ; “Eu LOVEE TE:l T?HI} (‘24']

nm o T 7T

with
N(w) = [exp (fw) — 1], n{em) = |exp (fw) + 1]71. (25)

The equations (19) and (24) form a closed self-consistent system of equations for the
electron GF. The total electron GF G5; depends on the massoperator M3 which
in turn depends on the (. The phonon GF, entering into (24), also depends on the
electron GF. Now we are going to find the Hﬂlutiﬂll for the phonon (:F.

4. Phonon Green Funetions

The general scheme of calculations is the same as in Section 3. Differentiating the
phonon GF

Dt~ ¢) = ()| i)y = 0 — 1) <L), 10 (26)

twice with respect to the first time variable £ we get for the Fourier transtorm

r,ugflﬂD?(m) = ;1045 —|— [ff-iif ~+ (ﬁm ] f)r;f(m) —
Y [Thlnstti | U — Taulttistng | 45 30] - (27)
Mo

The caleulation of the GF {upqttiqs | ), in the r.hus. of (27) can be performed in the
same way as in Sectlon 3. We get

Dy =Dyt + 33 DiPEDYT, (28)
ij jilii
where the zeroth-order phonon GF is given by
E {rfﬁﬂ{iaﬁﬂaym' _ [(piﬁ _|_ {I}m F]} Dﬂja( ) — afja;m (29)

s’
and

}]':_‘;‘I” (t',-.'}) — E TTfn[I injm ! T;'Tﬂ.mj T IT:Um _|_ ]q;mu] ij ’ I
Ho m, O | (30)

]Emmj[m) — <<a?:c:”na | ﬂ;ﬂamr—’»m '

FEmploying the same procedure (except of notation) as given by egnations (17) to
(20) we rewrite (28) in the form of the Dyson equation

D (w) = Do) - > D”"f‘( VITE () DEMw) (31)
4 ) J J

TN
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The proper part of the operator P has been denoted by /{. Tn order to have a seli-
consistent expression for the “phonon’ massoperator [{ we use the same approxima-
tion as {23),

{Upall) Aj5{t) Ut noy R {itpe(t) Apg) <”‘jﬂ(t) Wig) - (32)

Proceeding in the same way as previously, we arrive at the following expression tor //:

0
, 1 wltng) — il
() — f f dory A, @) M)
T 0 -
— X2

X 3T Im Gley) Tm Goi{m,) — In G (wy) T GFilms) —

nmia

— Im G%(ewy) Im G5 lw,) — Im Goj(ewy) Im Gilmg)} T (33)

Equations (19), (24) and (31), (33} form a closed set of the self-consistent equations for
electron (19} and phonon (31) GF’s in substitutionally disordered alloys in the presence
of electron-phonon interaction {3}.

5. The Configurational Averaging

As we mentioned previously, all the calculations just presented have been done
for a giren (although for the sake of simplicity not explicitly specified) configuration
of atoms in the alloy. All the quantities in our theory (G, D, M, Il as well as % and
D% depend on the whole configuration of the alloy. To obtain a theory of a real
macroscopic sample, we have to average over various configurations of atoms in the
sample [25 to 27]. The configurational averaging cannot be exactly made for a
macroscopic sample. Hence we must resort to an additional approximation.

First, let us write equations (19) and (31) (to be averaged) in a short matrix
notation (the meaning of symbols is ohvious),

Go — (199 -|. GO MG (34)
D — Do+ DITD . (35)

M and IT are in turn the functionals of G and 1),
M = M[G, D], [l =1HG]. (36)
I[f the process of taking configurational averaging is denoted by <...», then we have
(G = G + (GMG (37)

with a similar equation for {/J}.

Few words are now appropriate for the description of general possibilities. The
caleulations of <69 and (D" can he performed with the help of an arbitrary available
scheme. The best would be the self-consistent cluster theory valid for the off-diagonal
disorder |27]. In the present work for the sake of simplicity, we chose another possi-
hility and, at the cost of additional approximations in the model Hanultonian, apply
the single-site coherent potential approximation (CPA) as developed by Soven {28] (see
also [29]) for calculation of the clectron GF (G*), and by Taylor [30] for the phonon
GF ¢D%. The nccessary approximation is the periodicity (i.e. non-randomness) ot the

. ‘ - o .
transfer integrals ¢; and dynamical matrix ti)ff. Thus the only random parameters
in our model are now the energy levels ¢;, Coulomb correlations U;, the 1on masses
M, and the Slater coetficients ¢}.
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The CPA method as applied to the calculation of the clectron and phonon GE 1s
described by Elliott et al. [26]. Here we write the relevant final formulae only. The
matrix element of the (G in the site representation is expressed as

—— )] == — . ] _ — 3
(lop = ij2) N % w — 2w} — € (38)
where
bl
Cp — E tn,ﬂ e-—-ikﬂﬂ - (39)
n 1

» is the number of nearest neighbours of the site 0, and the coherent potential (or self-
energy) X%(m) is the solution of the CPA self-consistency equations. For the AgbB;_,

alloy these read [29]
Yow) = xeq + (1 — )€ - (€§ — =) Follw, X) (e5, — 2°), {404a)
Fw, 2) = 0%¥%(w): o= +. (40 b)

On the other hand, the matrix elements of <D for the A;B,_, alloy with B-type
ions being the defects are given by [30]

. 1 eﬁ el etk(Ri—R;)
Doy — PRy — Ty v , 41
% i (@) NM, G ol — Ew)] — w(k, v) (41

where w(k, v) is the v-branch of the phonon spectrum of the pure A-crystal, ej, is
the x-th component of the relevant polarization vector, and £{c») is a solution of equa-
tions [30],

Hw) = (1 — x) e 4 Ew) e — w)] o Dm), (42a)

Do) = Do) (42 1)
My — My

A TR 43

; 11_{11 ( )

Now, let us return to the caleulation of the configurationally averaged total GE’s
&S and <D>. To perform the remaining averages 1n (37), we use the approximation

COMGS — {G%S (MY () (44)

The calenlation of (M and (77> requires further averaging of the product of matrices.
We again use the prescription (44) there. However, the quantities like {(¢ig?> entering
into < M> and (/1) through {T7 71> are averaged here according to
P Q= xlg)® - (L - 2) (gp) f i—7,
{pTy” = { o ava | ¢ | IV € 1)
Q, = 22gd)? - 2w(1 — ) gl + (1 — 2 () H 147,

Equation (45) is written in a closed form as

(gigl> = @ + (@ -~ Q) Oy - (16)

The averaged guantities (in the following to be denoted by a bar, 1e. {G) = () are
periodic, so we can introduce the Fourler transform of them, 1.e.

| .
M) = % M) ethRi—Ri) (47)
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and similar formulae for 6% and GY. The “phonon funetions™, however, are additionally
cxpanded over polarization vectors €y,,

1

E’;}M(ﬂ}) = TN ;_: €Ly Ei; .ﬁm({xl) pik(Ri—Rj) (48)
Performing the configurational averaging of (18), (20}, {31), (33) and Fourier trans-
forniing the resulting expressions according to the above rules, we obtain

J— —

Gow) = (0 — L% w) — Mjlw) — €x)7" (49)
Do) = (01 — &)} — Ii(w) — o} k)™, (50)
where
_"1'7 E(fﬂ) —
), — Gy . -
CELTUE N (2N (0 gt Chep — Vh—p-q) AL K P — A p) -
4 M 40> N2 pgprax ’ ‘ v hord 1
4 U N (en)E ik — thog)* A%, k — g gqp) (51)
! ‘_-1{;‘”2;%? gra 4 ?
with

A%ley, k — q; qv) =

J dm, dw, | N{ew,) — niw — — ,
= .fJ‘ 2 2 1 RSO (@) T (G5 _gleng) T Dgpfens) (52}
a- (ry - - {-ﬂl — UJE
and g — (epfch,,
IR, ()2 — XoA0 o oy a3
[ () = = — 53, 2 (€hy)” k—p — "!"'p)z 5 (‘-“: E — p, p) +
M Al =N poa
( —

. 1 1 i |
S (€h)? (Phep ~ ¢p & Ykep ¢ — Up-q) B, bk — p — q, P)

e
4;’” . ';:;’*r' 2 i
ARTT pay (53)

with

T W — Wy - Wy

> o0
K d'r d [ — ' — —
B, ff — p, P) = 'f f doy dwy al(org) = 1O T T Gole) s (54)

« is the distance between neighbouring atoms. For metals from the same row in the
Periodic Table the g,-values are equal to [10] g} = g5 = g,- In this case we have
Q, = @, = ¢ and (51), (53) have greatly simplified forms with single sums only.
Equations (49) to (54) form a closed self-consistent system of eqoations. In
principle, we can substitute in the r.h.s. of (52) and (54) any relevant initial Green
functions and caleulate the first approximation to mass operators // and M. The re-
normalized by the electron-phonon interaction electron and/or phonon spectrum ot

the alloy is determined by (49) andfor (50). Having obtained ¢/ and D we can, in
principle, caleulate by itcration the next approximations. This can be done with
the help of a computer and is outside the scope of the present paper. The numerical
results and farther discussion of averaging procedure and the role of vertex corrections
are intended to be presented in near future. Another important point is the spin
dependence of the electron—phonon selt-energy and the size of magnetic consequencies
of electron—phonon interaction. This effect can In certain sitnations be much larger

than expected [33].
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6. The Eleetronic Specific Heat

As a simple application of the developed theory we consider the low-temperature
electronic specific heat, ¢,. Usnally it 1s expressed as [31]

¢y — yT, (55)

where y is the so-called low-temperature specific heat coefficient. The measurement
of » is one of the most 1mportant experimental techniques of looking at the elec-
tronic states of alloys. The specific heat ¢, 18 defined as the temperature derivative

of the electronic energy £ of the system,

] ¢k
c'ﬂ — —' Y S (56)
A is the number of particles and the energy £ is given by
=(H, -+ Hey) = > E?GHG”-;Q + X fij(*’-’-?afljg) —
io ita
N TS — ) afags) - (57)

ijoa

By the spectral theorem [21] we express the correlation functions entcring into (57)
through the GF’s. Using then (12) and {14) we finally obtain

i 1
E= [ doon{w) 2 [-—-—-— T G0 -i- *a'E)] : (58)

— oo 7T

As is usually in alloys we take the configurational average of ¢, and thus of £. So

E — [do o r(e) D(m), (59)

— A7
where

|
Yo .- (60)

1
AN ke o — L%(w) — Milm) — €

Dio) = —In)

is the renormalized alloy density of states. Note, 1t 1s temperature dependent through

M (). Performing the integral (59) by the well-known low-temperature cxpansion
(cf. recent calculations of the specific heat of the disordered system with correlation
performed in |32]) we obtain for y '

I gy 1 . ‘?;TE'I){H;)
V= § H”!fBI)(EF) —l— E :'T‘HI"T!.! ﬁ'TT[

or in other form

1 - 1 € In Diey)

The second tern in brackets comes from the electron—phonon interaction. This many-
body interaction manifests itself in the term D(gy) as well. Equation (61) 1s a starting

point for the study of the concentration dependence of p. Tt can also be used to
explain the nonlincar behaviour of the ¢, »sT observed in some systems.

27 physica (b) 113/2
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7. Conelusions

We have presented a microscopic theory of the electron—phonon interaction in
strongly disordered (ransition metal alloys. The derived Hamiltonian contains ex-
plicitly the characteristic atomic parameters of both constituents. Working in the
site representation we obtalned the coupled set of exact equations for electron and
phonon GI's by the equation-of-motion technique. The ditferentiation of the GF
with respect to the first and second time variable enables us to dertve the exact
Dyson equations for the electrons and phonons. Neglecting the vertex corrections in
the mass operators the closed self-consistent system of equations is obtained. We

perform the configurational averaging so that the zeroth-order GF G has a simple
single-site CPA form. The calculated low-temperature coetficient of Lthe specific heat
allows the comparison of the theory with experiment. To do this, however, it is
necessary to perform the numerical calcnlations of the density of states. The resnlts
of such calculations will he presented elsewhere.

The developed theory can be applied, after some modifications, to the study of
transition metal compounds. One can improve 1t using a more realistic Hamiltonian
or going beyond the single-site CPA.

Appendix

We present here the short derivation of the alloy counterpart of the BLEF Hamiltonian.
As is usual in the tight-binding approximation, we define the localized atomic wave
functions {for simplicity we take the nondegenerate d-band). In the binary A 13, _,
disordered alloy we can define two sets of atomie funetions: for the A-tvpe ton poten-
tial and for the B one. So
P2 ,
gt Tl = ROl — R el Ry, (A1)

2

In (Al) x = A(B) it the site 7 1s occupied by an A(B)-type ion. We assume the d-
tunctions ¢,(r — R;) to form a complete and orthonormal set

[ - R gglr - Ry & ~ 8. (42)

Note, If ¢ = j, then certainly » = , because a given site can be occupied by one
atom only. Thus, we can introduce the operators «; and a; creating and annihilating
the electron in a state ¢,(» — R;). The alloy one-clectron Hamiltonian

2
=24 3vre—nr) (A3)

2 Tt ]

can, therefore, be written in tering of these operators as

H — M i?jﬁuggﬂj{, , (A4)
i
where
K I'}E | T

Writing the potential term of the Hamiltonian in {A5) in the form

; Voir —R) = V(r —R) -+ Valr —R) + 3 V(r — Ry
[od, ]
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we can doubly use equation (Al) with functions ¢, — R) and ¢g(r — R;). For
» == f# we have thus two possibilities

e

ﬁj““ = [gXir - Ry) Va(r — R gp(r - R;) &°r (A0)

and

_—

(OB ok - R) Vu(r — R) ¢slr — Ry) &%, (A7)

where l?;.‘[ p(r — Ry;)) can be viewed as a “wereened’’ potential attached to the site i(j)
occupied by an ion of the type A(B). In the prescnt paper we take by definition

AB AB) AR .
t o= () (AR)
However, other definitions of fﬁ'}B are possible (e.g. i.‘f}” — a:ﬁ?“” — (1 — x} JEJ;“P'}. Thus,

in the tight-binding approximation one can construct the various models of the elec-
tron hopping in disordered transition metal alloys.

In the deformed lattice, for small displacement u;, relation (A2) 1s still valid as
it follows from the ‘‘rigid ion” approximation. So, the hopping integral in (A6),
(A7) does not depend on R, — R, but rather on (R; - R, — ;- u;),

[

AYR 1 |
f( & — _r(}f_li(i') If _,1('1") q?};{']' —!— R'E — Rj -— H; — 'HJ') dﬂ.?' —

(]
— I};“”(Ri — Ry — u; —wy) (A9)
(Y PR R w — ) (A10)

Expanding (A9) and {Al0) in a power series of (u, —u;) and noting that for cubic
fattices [10|

. (A)B
¢ty y R oon |
A (1 All
we obtain from (AS)

| ] . R
28 aft ;o G | x{3), i ;
f;f e t"-.;; [U‘} : 2 {g:.'_lffi }ﬁ(“) T qgfu }f _:{ (Hl_f — Hf) . (JH_Z)

£y

r?ﬁ({_}) means the hopping integral of the undeformed lattice. In this paper we assume
: o )3,
G0y = 0770) = ty

So {Al2) becomes

def
iy - — i

Y R..
B DR (R L TR (A13)
2 .h‘“

In the last formula we use the single indices 7, j to denote the site and type of an atom
at that site. Thus, the electron—phonon interaction Hamiltonian suitable for dis-
ordered alloys has the form

| g4 ¢ Ry .
Hc—i — Z _ﬂ_é__@ fi"j ITJ” (H‘i — Hf) Ligic - (:114)
{6 kg

The Hamiltonian (Al4) reduces to the BLF model in the case of a pure crystal.

7w
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