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Summary. — The aim of the present interdisciplinary review is to carry out a
comparative analysis of the notions of thermodynamic entropy, information entropy
and entropy of non-equilibrium states and flow of entropy from a critical perspective.
The problems of temporal evolution and time directionality are discussed in this
context as well. The interrelation of these notions is studied with focusing on the
non-equilibrium entropy. The paper is aimed to clarify the notion of entropy, entropy
production and its generalizations. The Boltzmann, Gibbs, von Neumann, Shannon,
Renyi, Tsallis and others types of entropy are considered concisely. The notions
of the steady state, local state and local equilibrium are analyzed thoroughly to
expose similarities and dissimilarities of various approaches to the definition of the
entropy of nonequilibrium states. The extremal principles for entropy and entropy
production are analyzed and discussed in this connection. The purpose of the present
study is to elucidate certain aspects of the non-equilibrium statistical mechanics,
namely the principal role of the correct description of the temporal evolution of a
system and the corresponding procedure of averaging. We also touch tersely the
intriguing problems of directionality of time and causality as well as relevance of
constructal law that accounts for the phenomenon of evolution.

514 1. Introduction
517 2. Temporal evolution and arrow of time
521 3. Entropy and statistical thermodynamics
526 4. Variety of entropies
535 5. Irreversible processes and thermodynamic fluxes
540 6. Temporal ordering and Clausius-Duhem inequality
542 7. Steady state, local state and local equilibrium
546 8. Extremal principles and entropy production
553 9. Linear response formalism and entropy production
557 10. NSO method, extremal principles and entropy production
562 11. Conclusions

(∗) E-mail: kuzemsky@theor.jinr.ru
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1. – Introduction

For what is time? Who can readily and briefly explain this?
Who can even in thought comprehend it, so to utter a word about it?

St. Augustine

The objective of this paper is to provide a thorough discussion on the time evolution
and its implications with regard to approach to equilibrium of open systems in the con-
text of non-equilibrium statistical thermodynamics. It is known that the irreversibility
in time of all processes occurring in nature plays an important role from various points
of view. The theory of non-equilibrium phenomena and irreversible processes is aimed
to formulate an adequate formalism for their description. By definition evolution is the
alteration of the state of the system with the passage of time. In general, this alteration
is a random process. Thermodynamic properties of many-particle systems may be de-
rived through appropriate thermodynamic functions and macroscopic (thermodynamic)
entropy. Entropy is a non-conservative quantity and as such is a basic concept of ther-
modynamics and distinctive, marked characteristic of thermal phenomena in the real
world. According to the laws of thermodynamics, reversible evolution is an evolution
with constant entropy. In the thermodynamic approach entropy generation is a mea-
sure of the irreversibility. In other words, entropy changing characterizes the irreversible
behavior in a system during the process. For quantum systems the entropy should in-
clude quantum-mechanical correlations arising from the off-diagonal elements of density
matrix.

It is worth mentioning that a close relationship exists between the concepts of entropy
and probability, the most famous of which is associated with the name of Boltzmann.
Hence entropy and probability are intrinsically related. It can be showed that the concav-
ity property of the entropy is related directly to a given probability distribution function
for an ideal gas in which binary collisions dominate. Concavity is directly related also
to the logarithm of a probability distribution. It is interesting that by relating the en-
tropy directly to a probability distribution function, one can show that a non-equilibrium
version of the entropy function may be deduced.

In the last decades essential progress has been made in our understanding of entropy
and entropy generation in both the fundamental aspects and application to concrete
problems. In order to understand how the complex concept of entropy emerged, we will
discuss some of these results in terse form.

The concept of entropy was introduced by Clausius in 1876. Then Planck in four
seminal papers entitled “On the principle of increasing of the entropy” (1887-1891) has
analyzed the temporal behavior of the entropy. He concluded that “. . . for each process in
nature there is corresponding increasing of the entropy” [1]. Nevertheless it has become
clear that rather deep ideas will be required if one starts with the reversible equations of
motion and then, after averaging, ends up with the irreversible ones.

Boltzmann conjectured [2] that the second law of thermodynamics is a consequence
of the dynamical behavior (collisions) of the particles of a gas. Boltzmann proposed a
statistical analogue of thermodynamic entropy linking the concept of entropy with molec-
ular disorder or chaos [2]. In the Boltzmann approach [2] the irreversibility feature was
connected with the assumption that information about individual molecular dynamics is
forgotten after the collisions. In contrast, only the probability distribution of velocities
among the particles was remembered. Hence, this lack of memory (or continual random-
ization) may be considered as the real source of irreversibility. As it was shown clearly
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by Bogoliubov [3], the system should be large enough [4] in order for the randomization
assumption to be reasonably applicable. The concept of Boltzmann entropy stimulated
interest to the foundation of statistical mechanics [5].

P. Ehrenfest and T. Ehrenfest [6] raised the question whether a function exists which,
like entropy in the equilibrium state of an isolated system, achieves its extreme value in
a stationary non-equilibrium state. In their words [6]: “Consider an irreversible process
which, with fixed outside constraints, is passing by itself from the non-stationary to the
stationary state. Can we characterize in any sense the resulting distribution of state
as the ‘relatively most probable distribution’, and can this be given in terms of the
minimum of a function which can be regarded as the generalization of the H-function?”
Unfortunately that paper [6] contained an essential disadvantage. It may lead to the
conclusion that the Boltzmann expression only is directly related to the entropy, whereas
the Gibbs entropy is unfounded. The problem of the proper description of irreversible
processes is disputable up to now. Mehra and Sudarshan [7] noted that “. . . the current
situation in statistical mechanics, especially in the treatment of irreversibility, is rather
confused in its conceptual structure and mathematical formulation”.

In the thermodynamics of thermal processes it is convenient to consider two types of
systems, namely closed and open. In classical mechanics the closed systems have quasi-
periodic orbits, whereas the open systems have at least some aperiodic orbits which
extend to infinity. It is worth mentioning that the classical statistical mechanics, which
deals with many particles, incorporates an additional important notion, namely the con-
cept of probability [8-13]. It turns out that it is possible to characterize a system by the
Hamiltonian flow in 6N -dimensional phase space Γ.

The notion of entropy is tightly related with the concepts of the irreversibility and
the open and closed systems. Indeed, the entropy of thermally isolated systems does not
increase. The idea of entropy provided a new look on the treatment of the irreversible
behavior in macroscopic thermodynamics [14-16]. In statistical mechanics the concept of
entropy is closely related to information theory and information entropy [5, 8-13,17-20].

Energy, entropy, and information are all around us [12, 21-36]. Entropy and entropy
generation [37-41] are the basic notions when we describe diverse phenomena ranging
from physics and chemistry to cosmology and biology [42-44]. Their importance is clearly
visible in many areas of practical interest [45-54], such as kinetic of chemical reactions,
thermal conductivity and gas flow, transport and dissipative phenomena, theory of tur-
bulence, simulated annealing, information and biological aspects, global energy, etc.

Entropy and entropy production (generation) also form the basis of various advanced
formulations of both equilibrium and non-equilibrium statistical mechanics and thermo-
dynamics of irreversible processes [54-61]. It is well known also that the principles of
extremum of the entropy and entropy production play a fundamental role in equilibrium
and non-equilibrium statistical physics [8-13,17,18,51,60,62-72].

As was mentioned above, the notion of entropy was introduced by Clausius in the
context of the interpretation of the second law of thermodynamics [34-36] and was an-
alyzed further by Boltzmann, Gibbs and Planck. Nowadays, the problem of the no-
tion of entropy is still under meticulous attention of many researchers. The subject
is well explored and the literature is vast [37-41]. In spite of this, the last decades
showed that there is scope for further extension of the existing methods and princi-
ples [5, 8-13,17,18].

For example, Thurner, Corominas-Murtra and Hanel [60] noticed the fact that there
are at least three distinct ways to conceptualize entropy: entropy as an extensive thermo-
dynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a mea-
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sure for information production of ergodic sources (Shannon), and entropy as a means
for statistical inference on multinomial processes (Jaynes maximum entropy principle).
Even though these notions represent substantially different concepts, the functional form
of the entropy for thermodynamic systems in equilibrium, for ergodic sources in informa-
tion theory, and for independent sampling processes in statistical systems, is degenerate,
H(p) =

∑
k pk log pk. They emphasized that for many complex systems, which are typ-

ically history-dependent, non-ergodic, and non-multinomial, this is no longer the case.
Authors attempted to show that for such processes, the three entropy concepts lead to
different functional forms of entropy, which they proposed refer to as SEXT for extensive
entropy, SIT for the source information rate in information theory, and SMEP for the en-
tropy functional that appears in the maximum entropy principle, which characterizes the
most likely observable distribution functions of a system. Authors explicitly computed
these three entropy functionals for three concrete examples: for Polya urn processes,
which are simple self-reinforcing processes, for sample-space-reducing processes, which
are simple history-dependent processes that are associated with power-law statistics,
and finally for multinomial mixture processes.

Lieb and Yngvason [73] presented a foundation for the second law of classical thermo-
dynamics in terms of the entropy principle. Their starting point was the basic empirical
fact that under “adiabatic conditions” certain changes of the equilibrium states of ther-
modynamical systems are possible and some are not. The second law of thermodynamics
in their opinion is the assertion that the possible state changes are characterized by the
increase (non-decrease) of an (essentially) unique state function, called entropy, which
is extensive and additive on subsystems. More precisely, they provided an empirically
accessible axiomatic derivation of an entropy function defined on all equilibrium states
of all systems that has the appropriate additivity and scaling properties, and whose in-
crease is a necessary and sufficient condition for an adiabatic process between two states
to be possible. In a subsequent paper [58] they discussed the question of defining entropy
for non-equilibrium states. Lieb and Yngvason [58] carried out a careful analysis of the
problem and pointed out some of the problems connected with defining entropy in non-
equilibrium situations. Their conclusion was that it is generally not possible to find a
unique entropy that has all relevant physical properties. They did shown, however, that
one can define two entropy functions, called S− and S+, which, taken together, delimit
the range of adiabatic processes that can occur between non-equilibrium states. The
concept of comparability of states with respect to adiabatic changes plays an important
role in that line of reasoning.

In a complementary study Marsland, Brown and Valente [74] analyzed thoroughly the
problem of time and irreversibility in thermodynamics which is the paradigm example in
physics of a time-asymmetric theory. They concluded that the origin of the asymmetry
lies deeper than the second law. In their opinion a primordial arrow can be defined by the
way of the equilibration principle. By appealing to this arrow, the nature of the known
ambiguity in the Caratheodory version of the second law becomes somewhat clearer. It is
worth mentioning that Caratheodory [75] offered the first systematic and contradiction-
free formulation of thermodynamics on the basis of his mathematical work on Pfaff forms.
Moreover, his work on measure theory provided the basis for later improved formulations
of thermodynamics and physics of continua where extensive variables are measures and
intensive variables are densities. Caratheodory was the first to see that measure theory
and not topology is the natural tool to understand the difficulties (ergodicity, approach to
equilibrium, irreversibility) in the problem of foundations of statistical physics. He gave a
measure-theoretic proof of Poincaré recurrence theorem in 1919. This work provided the
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way for Birkhoff to identify later ergodicity as metric transitivity and for Koopman and
von Neumann to introduce the spectral analysis of dynamical systems in Hilbert spaces.
Mixing provided an explanation of the approach to equilibrium but not of irreversibility.
The subsequent extension of spectral theory of dynamical systems to locally convex
spaces provided the non-trivial time-asymmetric spectral decompositions for unstable
and non-integrable systems. In this way irreversibility may be interpreted in a natural
way. Following Caratheodory seminal work [76-78], formulations of thermodynamics
have gained ground that highlight the role of the binary relation of adiabatic accessibility
between equilibrium states.

Maes [79] has analyzed various forms of non-equilibrium entropies from the unified
standpoint to contrast the notion of entropy in equilibrium theory and its extension in
the light of non-equilibrium thermodynamics. He pointed out that in contrast to the
established entropy concept which is used for systems in thermodynamic equilibrium,
there is a variety of distinct entropies, suitable for non-equilibrium systems, which repre-
sent different physical models. Maes characterized systematically these entropies as they
related to heat, fluctuations, response, time asymmetry, variational principles, mono-
tonicity, volume contraction or statistical forces. What is remarkable, he found that not
all of those extensions yield state quantities as understood thermodynamically. He also
showed that these entropies do not fit well to a construction of non-equilibrium statistical
thermodynamics. Maes discussed also how aspects of dynamical activity can take over
for obtaining an extended Clausius relation [34-36].

In view of the above-mentioned problems connected with defining entropy in non-
equilibrium situations it will be of use to discuss and compare some selected aspects of
temporal evolution and entropy production principle in the context of Zubarev method
of the non-equilibrium statistical operator [8]. This method related deeply with the
extremum of information entropy [8-12] and, as such, may provide a background for non-
equilibrium statistical thermodynamics and also elucidate the wide scope of the whole
problem of irreversibility. A comparative study of various approaches is the main point
of our survey. The present review is the direct continuation of our previous paper [12].

2. – Temporal evolution and arrow of time

In this review, we draw attention to the connection of temporal evolution and direc-
tionality of time which is one of the big open questions in physics. In the context of
temporal evolution [39], it is of importance to emphasize that in the structure of ther-
modynamics one of its basic laws, namely the second law [7], differs very much from
other general laws of physics. It is not an equation, but instead states an inequality,
which becomes an equality only in the limiting case of a reversible process. There are
difficulties with the realization of this limit, because a reversible process is one in which
the thermodynamic system never deviates appreciable from equilibrium. However, a fi-
nite time process involves a disturbance of equilibrium. As a result, it is difficult (if not
impossible) to derive the fully correct equations concerning temporal evolution. It was
even said sometimes that time appears in thermodynamics not as a quantity but only
as the indicator of the sense of a quantity, the change of entropy. The second law of
thermodynamics states that for a closed system the entropy does not change. In general,
the total entropy of a system can not decrease without increasing the entropy of some
other systems. From the other side, time is not the usual physical time variable, but it is
a special device used for the temporal ordering of states. However, the entropy increase is
not the unique source of temporality. Many questions concerning the nature of time and
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its directionality are still under intensive debates [80-97] and require separate thorough
consideration.

As it was shown above, the time directionality of physical processes is related deeply
with the second law of thermodynamics. From the mechanical point of view taking into
consideration the dissipative forces, e.g. such as those which depend on velocity, may
lead to explicit time direction on the Hamiltonian. To resolve the problem of entropy
increase and the approach to equilibrium, a few different schemes were used [8, 98, 99].
One of the possible treatments employed a coarse-graining method. The other methods
were based on the derivation of generalized master equations.

There are hot discussions in the literature [80-97] relating to the intrinsic sources of
the arrow of time in thermodynamics and the temporal ordering and temporal direction
of thermodynamic and quantum processes. The common wisdom is that the thermo-
dynamic arrow of time is directed by the second law of thermodynamics [97, 100]. Or,
in other words, this arrow expresses itself via the second law, which states that entropy
tends to increase toward the future. This statement has been criticized by various au-
thors, e.g. by Hawking [101] and others, who pointed out that we attribute to time that
direction in which entropy increases.

In addition, as was demonstrated in refs. [89,90], there are over two dozen theoretical
challenges to the second law, many of them laboratory testable. These facts may have
cast serious doubt on the continued universality of that law. Sheehan [90] reviewed some
representative challenges and considered the possibility that the thermodynamic arrow
of time might be reversed on local or global scales. Experiments were proposed to test
the connections between retrocausation and a reversed thermodynamic arrow. Hence the
problem of directionality still is in a fog.

The most debatable question remains, what is the reason or origin of the arrow of
time [80-82, 84-88, 90-95, 100, 102, 103]. Many hypotheses were proposed to fix a proper
origin. Zeh [91] investigated irreversible phenomena and their foundation in classical,
quantum and cosmological perspective. Conceptual problems regarding the arrow of time
in classical physics, quantum physics, cosmology, and quantum gravity were discussed.
Particular attention was paid to the dynamical role of the quantum indeterminism, and
to various concepts of timelessness. Zeh book contains an analysis of the physical con-
cept of time, a detailed treatment of radiation damping as well as discussion on quantum
entanglement and decoherence, arrows of time hidden in various interpretations of quan-
tum theory, and the emergence of time in quantum gravity. The author addressed these
and similar problems expressing the asymmetric evolution of time.

It should be stressed that entropy is a concept equally applicable to deterministic as
well as stochastic processes [12]. A specific approach to the arrow of time problem was
formulated in refs. [102,103]. It was shown that the entropy S, defined as

S = 〈χ ln χ〉 − 〈χ〉 ln〈χ〉,(1)

where χ stands for the natural time, may be of use for the study of the dynamical
evolution of a complex system. The notion of natural time was introduced by ascribing
to the k-th pulse of an electric signal consisting of N pulses the value χk = k/N . This
entropy exhibits positivity and concavity as well as stability or experimental robustness.
Authors claimed that certain experimental results reveal the reasonable workability of
considering the true time arrow in natural processes on the basis of their “entropic”
approach.
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Tuisku, Pernu and Annila [94] examined the concept of time by using the second law
of thermodynamics that was reformulated as an equation of motion. They speculated
that, according to the statistical notion of increasing entropy, flows of energy diminish the
differences between energy densities that form space. They identified the flow of energy
with the flow of time. The non-Euclidean energy landscape, i.e. the curved space-time,
is in evolution when energy is flowing down along gradients and equalizing the density
differences. The flows along the steepest descents, i.e. geodesics, were derived from the
principle of least action for mechanics, electrodynamics and quantum mechanics. The
arrow of time, associated with the expansion of the Universe, was identified with dissi-
pation of energy when high-energy densities transform by various mechanisms to lower
densities in energy and eventually to ever-diluting electromagnetic radiation. Moreover,
according to this approach, time in a quantum system takes an increment forward in the
detection-associated dissipative transformation when the stationary-state system begins
to evolve pictured as the wave function collapse. The energy dissipation is understood to
underlie causality so that an energy gradient is a cause and the resulting energy flow is an
effect. The account of causality by the concepts of physics does not imply determinism;
on the contrary, evolution of space-time as a causal chain of events is non-deterministic.
In summary, based on the above-mentioned common characteristics of evolutionary pro-
cesses, Tuisku, Pernu and Annila [94] proposed that the flow of time is the flow of energy.
The net energy flow is the basis of irreversibility.

Haddad [95] attempted to combine the two universalisms of thermodynamics and
dynamical systems theory to develop a kind of dynamical system formalism for clas-
sical thermodynamics. Specifically, using a compartmental dynamical system energy
flow model, Haddad developed a state-space dynamical system model that captures
the key aspects of thermodynamics, including its fundamental laws. In addition, he
established the existence of a unique, continuously differentiable global entropy func-
tion for his dynamical system model, and using Lyapunov stability theory, Haddad
concluded that the proposed thermodynamic (dynamic) model has finite-time conver-
gent trajectories to Lyapunov stable equilibria determined by the system initial ener-
gies. Finally, using the system entropy, Haddad claimed the absence of Poincaré recur-
rence for his thermodynamic model and formulated certain criteria of the connections
between irreversibility, the second law of thermodynamics, and the entropic arrow of
time. Moreover, Haddad [95] claimed that perhaps a better expression for the evolu-
tion of time in this context is the geodesic arrow of time, since, as Einstein theory of
relativity shows, time and space are intricately coupled, and hence one cannot curve
space without involving time as well. Thus, time has a shape that goes along with its
directionality.

From the other side, Ford [96] considered related complementary problems, namely he
pointed out that if a dynamical system is sufficiently complex, then as time progresses it
will share out energy and other properties amongst its component parts to eliminate any
initial imbalances, retaining only fluctuations. This is known as energy dissipation and it
is closely associated with the concept of thermodynamic irreversibility, measured by the
increase in entropy according to the second law [97]. Ford argued that it is of interest to
quantify such behavior from a dynamical rather than a thermodynamic perspective and to
this end stochastic entropy production and the time-integrated dissipation function have
been introduced as analogous measures of irreversibility, principally for stochastic and
deterministic dynamics, respectively. He attempted to compare these measures. First he
modified the dissipation function to allow it to measure irreversibility in situations where
the initial probability density function of the system is asymmetric as well as symmetric
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in velocity. Ford proposed that it will test for failure of what is possible to call the
obversibility of the system, to be contrasted with reversibility, the failure of which was
assessed by stochastic entropy production. He noted that the essential difference between
stochastic entropy production and the time-integrated modified dissipation function lies
in the sequence of procedures undertaken in the associated tests of irreversibility. Ford
argued that an assumed symmetry of the initial probability density function with respect
to velocity inversion (within a framework of deterministic dynamics) can be incompatible
with the past hypothesis, according to which there should be a statistical distinction
between the behavior of certain properties of an isolated system as it evolves into the far
future and the remote past. Imposing symmetry on a velocity distribution is acceptable
for many applications of statistical physics, but may introduce difficulties when discussing
irreversible behavior.

Roduner and Radhakrishnan [104] discussed an interesting aspect of the problem of
directionality and arrow of time. Their starting point is the second law of thermodynam-
ics which determines the direction of spontaneous processes in the laboratory, life and the
universe. They attracted attention to an important effect of kinetic barriers which inter-
cept equilibration and may preserve highly ordered, high energy non-equilibrium states.
Examples of such states are many modern materials produced intentionally for techno-
logical applications. Furthermore, all living organisms fuelled directly by photosynthesis
and those fuelled indirectly by living on high energy nutrition represent preserved non-
equilibrium states. The formation of these states represents the local reversal of the arrow
of time which only seemingly violates the second law. Since the works of Prigogine, it
is known that the stabilization of these states requires the dissipation of energy in the
form of dispersal heat. It is this feature of heat dissipation following the input of energy
that drives all processes occurring at a finite (non-zero) rate. Photosynthesis, replication
of living organisms, self-assembly, crystal shape engineering and distillation have this
principle in common with the well-known Carnot cycle in the heat engine. On the basis
of this analogy, authors proposed to call these essential and often sophisticated driven
processes by the term machinery of life.

Lucia [105] re-considered the relation between macroscopic irreversibility and micro-
scopic reversibility by considering atoms as open systems. The notion of constructal law
was used to formulate analytically Einstein’s, Schrodinger’s, and Gibbs’ considerations
on the interaction between particles and thermal radiation (photons). The result leads to
consider the atoms and molecules as open systems in continuous interaction with flows of
photons from their surroundings. The conjecture was that, in any atomic transition, the
energy related to the microscopic irreversibility may be considered as negligible. From
the other hand, when a big number of atoms (of the order of Avogadro’s number) is
considered, this energy related to irreversibility becomes so large that its order of magni-
tude must be taken into account. It was concluded [105] that macroscopic irreversibility
results related to microscopic irreversibility by flows of photons and amount of atoms
involved in the processes.

It is worth mentioning that the concept of constructal law was invented by Bejan [106-
110] in 1995 while reviewing entropy generation minimization for a symposium paper.
Bejan stated it as: “The constructal law is the law of physics that accounts for the
phenomenon of evolution (configuration, form, design) throughout nature, inanimate
flow systems and animate systems together”. Or, in another form, “For a finite-size
system to persist in time (to live), it must evolve in such a way that it provides easier
access to the imposed currents that flow through it.”

Hence the constructal law may be considered as a principle of physics of life and
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evolution [106-110]. Moreover, the constructal law accounts for the arrow of time [109],
which is, in Bejan’s opinion, the direction of the evolution of flow organization over
time. Bejan conjectured [109] that the arrow of time is painted much more visibly on an-
other self-standing phenomenon, namely the occurrence and change of flow organization
throughout nature, which he called the “other time arrow”.

The approach of Bejan to evolution processes accumulated many notions and concepts
of physics, biology, technology, and social sciences. It is complementary, in certain sense,
to the concept of complexity [111,112]. The constructal law is a stimulating concept, but
includes many delicate aspects. It raised hot discussions in the literature [113-117], which
shows that there exist essential differences in understanding of macroscopic irreversibility
and underling microscopic dynamical behavior and the nature of irreversibility in complex
systems.

To summarize, the nature of irreversibility in complex systems is not yet fully clear
and its description depends strongly on the particular model selected to it. To clarify
partially these complicated issues, we will discuss below some topics of non-equilibrium
statistical thermodynamics relevant for our purposes in terse form.

3. – Entropy and statistical thermodynamics

The second law of thermodynamics and the concept of entropy arose mainly from
practical studies of thermal engines and other devices [34, 35]. What will be provided
here is a sketchy reminder.

The general expression for entropy difference between the two states is

ΔS =
∫ B

A

dQ

T
.(2)

This expression says that the difference in entropy between the equilibrium states A and
B of a physical system may be determined by measuring the heat flow ΔQ over an ar-
bitrary reversible path connecting the states. Thermodynamic entropy is dimensionless:
[S] = L2T−2MΘ−1, where Θ is the temperature.

The condition of thermodynamic reversibility in terms of the free energy G or the
entropy S is expressed as ΔG = 0 or ΔS = 0. For an isothermal reversible process
(temperature T is a constant) one can write down the equality TΔS = ΔQ = 0 = ΔW .
Here W is the work done by the system and Q is the heat that the system exchanges
with a thermal reservoir. Note that the term reversible process means here the quasi-
static process. Hence, to find the entropy of a system, the thermodynamic definition of
temperature, T−1 = dS/dE should be used, where E is the energy.

In this connection it is of use to remember that in order to realize the entropy increase
in a system, heat (or a flux of heat) should be provided in some way for the system itself.
As a result, the temperature T will decrease: (∂T/∂z) < 0, where z is some relevant
variable of a process.

It is worth mentioning that there is a conceptual distinction [118, 119] between ther-
modynamic (empirical) entropy S and statistical entropy S. The statistical entropy is
by definition

S = −
∑

k

pk ln pk.(3)
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Here pk is the probability that the system under study is in the k-th state. In other
words, in terms of statistical physics, entropy is related to the number of microstates that
many-particle system can have for a given state which some selected set of macroscopic
variables are characterized (volume, temperature, pressure, etc.).

For establishing a connection between empirical (macroscopic) and statistical (mi-
croscopic) description of complex many-particle systems it was necessary to make an
important step and write down that

S = kBS,(4)

where kB is Boltzmann constant. The Boltzmann constant is equal to the ratio of the
gas constant R to Avogadro number NA

kB =
R

NA
= 1.38 · 10−23 J

K
= 86.3meV.(5)

This formula permits one to compute the thermodynamic entropy of isolated systems.
Entropy is a function of state; it is also, as a rule [119], an extensive variable. There is a
line of reasoning, proposed by Callen [120] which stresses that one of the most important
aspects of entropy is to see it as a thermodynamic potential like the others.

The notion of statistical entropy suggests, in particular, that the statistical mechanics
of a system in thermal equilibrium should be based on dynamics of particles and the
concept of phase space [8, 121-124]. Statistical entropy is the quantity of fundamental
importance. Let us consider the logarithm of the distribution function f(p, q, t) with a
minus sign

η = − ln f(p, q, t).(6)

This quantity is additive for multiplicative distribution functions and is related to the
entropy of the system. Indeed, η, like f , satisfies the Liouville equation

∂

∂t
f(p, q, t) = iLf(p, q, t);

∂

∂t
η = {H, η}.(7)

Here L is a linear operator iLf = {H, f} and H is the total Hamiltonian. The average
value of η

S = 〈η〉 = −
∫

f(p, q, t) ln f(p, q, t)dΓ(8)

plays a special role in statistical mechanics. It is called Gibbs entropy [8].
Let us consider now a rarefied gas, in which the states of the different particles are

nearly statistically independent. Hence the total distribution function can be represented
as a product of the distribution functions for the single particles

f(p, q, t) ∝
N∏

i=1

f1(pi, qi, t);
∫

f1(p1, q1, t)dΓ1 = N.(9)
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The Boltzmann entropy is defined as

SB = −
∫

f1(p1, q1, t) ln
f1(p1, q1, t)

e
dΓ1.(10)

It is worth noting that in the general case, when the multiplicative property (9) does
not hold, the Boltzmann entropy may also be formally defined by formula (4). It can
be shown that if the function f1(p1, q1, t) satisfies Boltzmann kinetic equation [2], then
the Boltzmann entropy increases. In the case of statistical equilibrium it is constant.
What is the most important in this context is the fact that the Boltzmann definition of
the entropy is adequate for the strongly rarefied gas only. It is less adequate in general
case. Contrary to this, the Gibbs definition of the entropy is more suitable, since in
the equilibrium case it gives the correct expression for the entropy as a thermodynamic
function [8]. It is well known that the entropy can be obtained by a suitable phase-space
averaging in different ensembles [8, 13]. According to Gibbs, the entropy is defined as
the Boltzmann constant times the logarithm of the total phase space volume less than a
given energy. Indeed, the Gibbs entropy is defined (for a microcanonical ensemble) as

S(E,N, V ) = ln Ω(E,N, V ).(11)

Here Ω is the statistical weight. Thus, for a microcanonical ensemble, when energy is
considered as a single integral of motion, the entropy is equal to the logarithm of the
statistical weight [8]. In general case when, in addition to the energy, there exist a few
additive integrals of motion Ps, the Gibbsian distribution takes the form

f(p, q) = Q−1(θ, F1, . . . , Fs) exp

⎧⎨
⎩−H(p, q)

θ
−

∑
1≤n≤s

FnPn(p, q)

⎫⎬
⎭ .(12)

Here Q is the partition function (or statistical integral) which is determined from the
normalization condition of the canonical distribution [8]. It is convenient to rewrite this
expression in the form

f(p, q) = exp

⎧⎨
⎩−Φ(F0, . . . , Fs) −

∑
0≤n≤s

FnPn(p, q)

⎫⎬
⎭ .(13)

Here we denote that

P0(p, q) = H(p, q), F0 =
1
θ
, Φ(F0, . . . , Fs) = lnQ.(14)

The thermodynamic potential Φ(F0, . . . , Fs) is called the Massieu-Planck thermodynamic
function [8]. Then we obtain the thermodynamic equalities and the most general expres-
sion for the entropy S in the form

〈Pn〉 = − ∂Φ
∂Fn

, Fn =
∂S

∂〈Pn〉
,(15)

S = Φ +
∑

n

Fn〈Pn〉 = Φ −
∑

n

Fn
∂Φ
∂Fn

.(16)
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It is known that the Boltzmann original definition of the entropy

S = kB ln W(17)

was written in terms of the probabilities of available microscopic states of composite
systems. Here W is the number of microstates which correspond to a macrostate of the
system (the thermodynamical probability of the macrostate). In spite of its popularity,
the Boltzmann approach led to hot discussions [5, 105].

The Boltzmann formula was analyzed from various sides in general form [5,8,60,121,
122,124,125] to characterize it uniquely by physically plausible properties. In spite of this,
it should be considered as a kind of postulate [126]. In particular, the Boltzmann formula
was criticized in the literature on the ground that it gives a non-sufficient dynamical
foundation in view of the thermal motion of the particles, out of which a physical system
consists. There is numerous literature on Boltzmann entropy and its comparison with
Gibbs entropy [5, 60, 127-134], where there are various and controversial statements on
the interrelation of both the entropies (Boltzmann and Gibbs).

Vilar and Rubio [131] analyzed this interrelation critically. They compared the Boltz-
mann definition of entropy S(E) = kB ln Ω(E) in terms of the number of microstates
Ω(E) with energy E with the expression SG(E) = kB ln

∑
E′<E Ω(E′) examined by

Gibbs. They shown that SG(E) is either equivalent to S in the macroscopic limit or
becomes independent of the energy exponentially fast as the system size increases. The
resulting exponential scaling makes the realistic use of SG(E) unfeasible and leads in
general to temperatures that are inconsistent with the notions of hot and cold. In
other words, Vilar and Rubio showed that SG(E), in contrast to S, ceases to be a
function of the energy for decreasing Ω(E) in the macroscopic limit and that it does
so exponentially fast. Such exponential dependence makes a meaningful use of SG(E)
unfeasible not only for macroscopic systems but also for small systems with over tens
of elements and leads to temperatures that are inconsistent with the notions of hot and
cold.

Another delicate problem is the extensivity of entropy. Dunning-Davies [127] have
shown that the traditional approach using Carnot cycles to the problem of establishing
the existence of absolute temperature and entropy and to deriving the relation d′Q = TdS
remains valid for systems whose entropy is non-extensive as well as for systems whose
entropy is extensive. However, it is seen that the analytical approach to this problem
is valid only for systems whose entropy is extensive. Dunning-Davies presented two
methods for resolving this difficulty.

Addison and Gray [128] have examined the role of linearity in the definition of en-
tropy. They noted that, while discussions of entropy often treat extensivity as one of its
fundamental properties, the extensivity of entropy is not axiomatic in thermodynamics.
It was shown that systems in which entropy is an extensive quantity are systems in which
entropy obeys the generalized principle of linear superposition.

Mannaerts [129] reconsidered the notion of extensive quantity (or extensive property)
and claimed that a literature survey shows little consistency in the definitions of this
term as used in thermodynamics. The majority assumes that extensive quantities are
those that are proportional to mass. Taking the mathematical meaning of proportional
and taking the “mass” to be that of the system or subsystem, it was shown that the
proportionality assumption is only correct for a few extensive quantities under the con-
dition of constant composition. A large subset of extensive quantities are completely
independent of mass; for most systems extensive quantities are not proportional to mass,
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but mass is the (extensive) constant of proportionality. The common wisdom, based
on the additivity of extensive quantities, is the main leading principle for discussing this
subject. It was noted however, that two types of additivity need to be distinguished and
that a few intensive quantities are also additive.

Diebner and Rossler [130] have analyzed in detail a deterministic entropy to examine
the evolution of microscopically simulated out-of-equilibrium structures. They consid-
ered the H-function introduced by Boltzmann, who conjectured a way to define a de-
terministic microscopic entropy valid close to equilibrium. According to authors [130],
his original idea was the following: Replace the N -particle system by N overlayed one-
particle systems —as if each particle were alone. Then look only at the differences
between the state points of neighbouring particles. Boltzmann himself only looked at
the momentum subspace. As the system of particles approaches equilibrium, the mean
value, taken over all the individual differences, becomes a maximum. The same fact
still holds true for the logarithm of the same sequence of mean values obtained on the
way towards equilibrium. The absolute value of the resulting function, which becomes
maximal at equilibrium, is reduced to the H-function with minus sign; its positive ob-
viously qualifies as a deterministic entropy, valid close to equilibrium. It is known that
the H-function formalism can be well applied only close to equilibrium. Diebner and
Rossler [130] concluded that “The cosmos seems live on entropy according to Boltz-
mann.”

Byung Chan Eu [132] carried out a deep analysis of these problems and concluded
that generalized thermodynamics or extended irreversible thermodynamics assumes the
existence of thermodynamic intensive variables (e.g., temperature, pressure, chemical
potentials, generalized potentials) even if the system is removed from equilibrium. He
emphasized the necessity to properly understand the nature of such intensive variables
and, in particular, of their fluctuations, that is, their deviations from those defined in
the extended irreversible thermodynamic sense. The meaning of temperature was ex-
amined by means of a kinetic theory of macroscopic irreversible processes to assess
the validity of the generalized (or extended) thermodynamic method applied to non-
equilibrium phenomena. The Boltzmann equation was used to that aim. Since the
relative Boltzmann entropy has been known to be intimately related to the evolution
of the fluctuations in the intensive thermodynamic variables, Eu derived the evolution
equations for such fluctuations of intensive variables to lay the foundation for investi-
gating the physical implications and evolution of the relative Boltzmann entropy. In
this way the range of validity of the thermodynamic theory of irreversible processes
may be clarified. In addition, Eu examined also a special case of the evolution equa-
tions for the fluctuations of intensive variables, which also facilitate the investigation
of the molecular theory meaning of the zeroth law of thermodynamics. On this ba-
sis Eu derived an evolution equation describing the relaxation of temperature fluc-
tuations from its local value and presented a formula for the temperature relaxation
time.

By adopting the Boltzmann definition of the entropy, Sinha [133] gave a formulation
of entropy as a difference between the changes in Hamiltonian and potential energy. He
presented a derivation of a new formula of entropy from Boltzmann formula while incor-
porating potential energy changes. Thermal energy applied to particles in conservative
vector fields resulted in an increase in the potential and kinetic energy causing an increase
in entropy. However, in his approach, conservative fields associated with potential energy
gradients of the system act in opposition to the kinetic energy gradients reducing the
overall accessible states of the system and its entropy. Hence, entropy can be expressed
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as the ratio of difference between the input energy and potential energy of the system
to its temperature. As the input energy represents the changes in Hamiltonian of the
system, entropy can also be expressed as the difference in changes of its Hamiltonian and
potential energy. Hence, the formulation of entropy in terms of the changes in system
Hamiltonian and potential energy changes may provide some additional understanding
about the role of potential fields in determining entropy rate and its impact on order and
equilibrium.

4. – Variety of entropies

Grad [16] long ago pointed out that there are many faces of entropy. Since that time
the concept of entropy [37-41] was deepened and generalized greatly [50, 123, 135-140],
especially in the context of complex systems [141]. However, it was widely recognized
that there is no systematic single valued way of deriving the right entropy for a given
dynamical (statistical) system.

Thurner and Hanel [55, 56] re-analyzed the definition of entropy for complex statis-
tical systems. Many complex systems are characterized by non-Boltzmann distribution
functions of their statistical variables. In case if one wants to —justified or not— hold
on to the maximum entropy principle for complex statistical systems (non-Boltzmann),
Thurner and Hanel demonstrated how the corresponding entropy has to look like, given
the form of the corresponding distribution functions. By two natural assumptions that
i) the maximum entropy principle should hold and that ii) entropy should describe the
correct thermodynamics of a system (which produces non-Boltzmann distributions). As
a result the existence of a class of fully consistent entropies was deduced. Classical
Boltzmann-Gibbs entropy was recovered as a special case for the observed distribution
being the exponential, Tsallis entropy [123] the special case for q-exponential observa-
tions.

Entropy in a broad sense is a measure of uncertainty. Hence, the entropy of a ran-
dom variable can be treated as a measure of uncertainty associated with that random
variable [12,142,143]. Indeed, when the uncertainty of the value of that random variable
is large the corresponding entropy will be large. When the state of a physical system
is not fully determined by available data, it may be possible to some extent to make
a reasonable guess concerning the unknown state by applying the formalism of infor-
mation theory [12, 21-33]. The general theory of information [28-33] provides a unified
context for various directions in information studies, making it possible to elaborate on
a comprehensive definition of information [12]. Moreover it is of use in establishing rela-
tions between information, data, and knowledge to establish how different mathematical
models of information and information processes are related. The information-theoretic
entropy concept was formulated as the fundamental notion of this formalism [12]. This
line of reasoning was developed by numerous researchers [5,9-11,17-20] and was applied
successfully to statistical physics [8, 12,13,52,144-147].

Information theory was developed by Shannon [12,19,21,22,27-33,145-147], who intro-
duced the quantitative measure for the missing information (or an uncertainty measure)
in the discrete probability distribution {psi

}

H(S) = −
n∑

i=1

psi
log psi

.(18)

Here H(s) means the entropy of the source and {psi
} is the set of probabilities psi

of the
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occurrence of state si; the amount of information is I(si) = − log psi
. This expression

can be rewritten also in the form

H = −k
∑

i

pi ln pi.(19)

Here k is a positive constant. For a continuous case H(X) may be defined as

H(X) = −
∫ ∞

−∞
p(xi) log(p(xi)).(20)

However, Hobson [148] argued that the generalization Shannon definition to continuous
probability distributions f(x) has certain caveats. In order to escape the difficulties
associated with Shannon definition, Hobson [148] has proposed a generalized expression
for the basic information measure

H
(
p1, . . . pn; p0

1, . . . p
0
n

)
= k

∑
i

pi(ln pi/p0
i ).(21)

Here k is a positive constant. Hobson [148] considered a random experiment whose possi-
ble outcomes were z1, z2, . . . , zn. The prior probabilities were denoted as p0

1, . . . , p
0
n, and

the posterior probabilities as p1, . . . , pn. This expression seems to have all the properties
desired in an information measure [148, 149]. It was shown also that, subject to certain
prescribed and intuitively reasonable conditions, this formula is the unique expression
for the information contained in a message which alters the probabilities from the p0

i to
the pi.

It is of importance to mention in this context the notion of the entropy in quantum
physics. Quantum physics uses two basic ideas, namely, the “state” and the “observable”.
After measuring an observable and getting a particular outcome, which is called by
an eigenvalue, the state of the system is the corresponding eigenvector. The state of
a system (consisting of one particle or many particles) in quantum mechanics is fully
described by a function ψ(r, t) (or Ψ(r1, r2, . . . , t)). The function ψ(r, t) is a basic notion
of quantum physics. It is termed the wave function of the system. The wave function
is defined so that the probability of finding the particle in the interval x to x + dx is
P (x)dx = |ψ|2dx = ψ∗ψ dx. In quantum mechanics two kinds of states occur: the
pure state, represented for instance by a wave function ψ(r, t), and the mixed state,
represented by a density matrix ρnm. A mixed state may be regarded as a probability
distribution over a set of pure states. Similarly, in classical mechanics a pure state is
represented by a point in phase space and a mixed state by a probability distribution
over phase space.

Let us consider a quantum system which is characterized by some unknown pure
state |Ψ〉. It belongs to the set of orthonormal functions {|ψn〉}. Hence the quantal
state proposition is that the system under consideration is in state |ψn〉. In terms of
information theory a subjective probability distribution {Pn} may be defined over the
proposition, which satisfies the constraint

∑
i Pi = 1. The information-theoretic entropy,

or missing information function, may then be defined as

H = −k
∑

i

Pi ln Pi.(22)
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From the point of view of the quantum mechanical density operator formalism, it was
said that it may be interpreted as a compact invention for describing the informational
situation wherein each subjective probability in {Pn} represents the likelihood that its
associated state vector in {|ψn〉} is the correct one to be characterized by the density
operator

ρ =
∑

n

Pn|ψn〉〈ψn|.(23)

It was von Neumann [150] who connected an entropy quantity to a statistical operator
ρ. In other words, to calculate the statistical entropy one must find the volume of phase
space occupied by the system; the statistical entropy in this case will be written as

S = −Tr ρ ln ρ,(24)

where ρ is the density matrix. The introduction of entropy in quantum mechanics gives
in a compact form all the classical definitions of entropy. The temporal evolution of
the von Neumann entropy is governed by the Liouville-von Neumann equation [8,13] for
isolated quantum systems.

In the von Neumann approach, the process of measurement can be described as the
determination of statistical correlations between the state of the object and that of the
measuring apparatus. The measurement process [151,152] in quantum mechanics involves
a system and an apparatus which interact between themselves at some time and then
should be separated. Hence, the system under consideration is not isolated, i.e. is open.
However, the von Neumann approach describes the measuring process and irreversibility
in a somewhat idealized manner. The von Neumann entropy is invariant under the
unitary dynamics. In other words, the changes in the entropy of the system during
the measurement process should be estimated very carefully [151, 152], since even if the
quantum measurement process is irreversible, such irreversibility may be not quantified
by an increase of the von Neumann entropy. The property of concavity (see ref. [153])
in combination with comparison of the initial von Neumann entropy with the weighted
final entropy showed that the final entropy may be lower than the initial one. Klein’s
inequality [153] and related inequalities permitted one to establish that the Shannon
entropy corresponding to the probabilities pertaining the measurement outcomes of a
non-degenerate observable is always larger than or equal to the von Neumann entropy.
However, the detailed consideration of the quantum measurement processes [151,152] is
beyond the scope of the present review.

Stotland et al. [20] pointed out that a Shannon-based definition of information entropy
leads in the classical case to the Boltzmann entropy. Hence, it is tempting to regard the
von Neumann entropy as the corresponding quantum mechanical definition. But the
latter is problematic from quantum information point of view. Indeed, the information
entropy S[ρ] is a measure for the amount of extra information which is required in order
to predict the outcome of a measurement. If no extra information is needed one can say
that the system is in a definite statistical state with S = 0. A classical system can be
in principle prepared in a definite state. But this is not true for a quantum mechanical
system. Consequently Stotland et al. [20] introduced a new definition of entropy that
reflects the inherent uncertainty of quantum mechanical states. They derived for it an
explicit expression, and discussed some of its general properties. Authors pointed out
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Table I. – Variety of entropies.

Entropy Formula Reference

Boltzmann entropy SB = −
R

f1(p1, q1, t) ln f1(p1,q1,t)
e

dΓ1 Zubarev [8]

Gibbs entropy S = kB ln Ω(E, V, N) Zubarev [8]

von Neumann entropy S = −Tr ρ ln ρ Zubarev [8]

Shannon entropy H = −k
P

i pi ln pi

Shannon [21,22],

Lesne [147]

Fisher information I =
R

dr∇p∇p/p Frieden [154]

Kullback measure Ik[P : P 0] :=
P

i pi ln(pi/p0
i )

Kullback [155],

Hobson [156]

Kolmogorov entropy H(P ) = −
P

i f(Pi) log f(Pi) Kolmogorov [157,158]

Jauch-Baron entropy H(μ, ν) =
R

X
f ln(f)dν Jauch and Baron [149,159]

Sharma-Mittal entropy
HSM (P ; α, β) =

Sharma and Mittal [160]

1
21−β−1

" 

Pn
k=1 pα

k

!

β−1
α−1

− 1

#

Renyi entropy Hq(p) = 1
1−q

log
` R

p(x)qdx
´

Renyi [161]

Tsallis entropy ST (P, q) = 1
1−q

P

i pi

`

1 − pq−1
i

´

Tsallis [123]

Abe entropy SS
q =

(q−1)ST
q −(q−1−1)ST

−q

q−q−1 Abe [162-164]

Kaniadakis entropy Sκ(pi) =
P

i pi lnκ(1/pi) Kaniadakis [165-168]

Edwards granular entropy SEd ∝ −
R

P log P
Q

ω dA(ω) Edwards [169,170]

distinctions between the minimum uncertainty entropy of pure states, and the excess
statistical entropy of mixtures.

Beck [135] showed that the formalism of statistical mechanics can be generalized
by starting from more general measures of information than the Shannon entropy and
maximizing those subject to suitable constraints. He discussed some of the most im-
portant examples of information measures that are useful for the description of complex
systems [154-156, 159, 161-164, 171-174]. Examples treated are the Renyi entropy [161],
Tsallis entropy [123,174], Abe entropy [162-164], Kaniadakis entropy [165-168], Sharma-
Mittal entropies [135], and a few more. Important concepts such as the axiomatic founda-
tions, composability and Lesche stability of information measures were discussed as well.
Potential applications in physics include complex systems with long-range interactions
and metastable states, scattering processes in particle physics, hydrodynamic turbulence,
defect turbulence, optical lattices, and quite generally driven non-equilibrium systems
with fluctuations of temperature.

It will be of use to summarize the various entropies (incomplete list) in the form of
table I. A few remarks will not be out of place here. The trace of the Fisher informa-
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tion [143,154,171,172] matrix

I =
∫

dr∇p∇p/p(25)

is a scalar information quantity that has been shown [143, 154, 171, 172] to be a work-
able tool for the description of various physical phenomena. This includes such diverse
phenomena as the complex Schrödinger wave equation, the Maxwell-Boltzmann distri-
bution law, and Maxwell’s equations. In eq. (25), p is a probability density function p(x)
for a coordinate x whose unit specifies the physical situation, e.g., a length in quantum
mechanics, or a velocity in classical particle statistics.

Fisher information is related to the asymptotic variability of a maximum likelihood
estimator [173]. The idea being that higher Fisher information is associated with lower
estimation error. Shannon information [21,22] is totally different, and refers to the con-
tent of the message or distribution, not its variability. It was assumed sometimes that
the higher entropy distributions convey less information because they can be transmit-
ted with fewer bits. In fact, in the realm of communication theory, Shannon entropy
effectively bounds the performance of the strongest lossless compression possible. Hence,
according to noiseless coding theorem [28,31-33,154], a data source with higher entropy
requires a communication channel with higher capacity for reliable error-free communi-
cation.

There is a relationship between Fisher information and relative entropy. The book by
Frieden [154] defines and develops a unifying principle of physics, that of “extreme phys-
ical information”. The information in question is not Shannon or Boltzmann entropy
but, namely, Fisher information. Both statistical and physical properties of Fisher infor-
mation have been considered. Fisher information was shown to be a physical measure of
disorder, sharing with entropy the property of monotonic change with time. The informa-
tion concept was applied “phenomenally” to derive most known physics, from statistical
mechanics and thermodynamics to quantum mechanics, the Einstein field equations, and
quantum gravity. Many new physical relations and concepts were reconsidered, includ-
ing new definitions of disorder, time and temperature. The information principle was
based upon a new theory of measurement, one which incorporates the observer into the
phenomenon that he observes. The “request” for data creates the law that, ultimately,
gives rise to the data. In that sense the observer creates his local reality.

As regards Kullback measure [155], Hobson and Bin-Kang Cheng [156] have analyzed
and compared two widely used information measures. It was shown that the Kullback
measure, unlike the Shannon measure [21], provides the basis for a consistent theory of
information which extends to continuous sample spaces and to non-constant prior distri-
butions. It was shown also that the Kullback measure is a generalization of the Shannon
measure, and that the Kullback measure has more reasonable additivity properties than
does the Shannon measure. The results lend support to Jaynes’s entropy maximization
procedure [11].

Kolmogorov in 1958 proposed the use of information characteristics (namely entropy
characteristics) in the study of both metric spaces and of dynamical systems. He in-
troduced an entirely new metric invariant, coming from information theory, the entropy
of the dynamical system [175]. Kolmogorov showed in the context of ergodic theory
how Shannon concept of entropy could be extended to obtain an invariant for measure-
preserving transformations. He proposed that the entropy of a finite partition P can be
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written in the form

H(P ) = −
∑

i

f(Pi) log f(Pi).(26)

Kolmogorov entropy approach stimulated activity in that direction. Entropies of many
transformations of interest were calculated and a wide class of transformations were
shown to have completely positive entropy. In this line of reasoning the notion of topolog-
ical entropy has been formulated as an analog to measure-theoretic entropy. Topological
entropy was defined by various authors to characterize dynamical systems resulting from
continuous mappings. However, this notion is out of the scope of the present study.

In his papers of 1955-1956 Kolmogorov introduced the notion of ε-entropy of sets in
a metric space and thus obtained a means to estimate the metric mass of functional
classes and spaces. Using this notion, Kolmogorov gave an entropy interpretation of the
former results on the non-representability of functions in n variables of smoothness r as
the superposition of function of m variables of smoothness l if n/r > m/r. The thing is,
the ε-entropy of any class of functions is, roughly speaking, the amount of information
which allows to indicate a function of this class with precision ε.

Kolmogorov formulated also a reconstruction of information theory itself [176], a re-
construction based on the algorithmic approach. In the fundamental papers [157, 158]
Kolmogorov invented the algorithmic theory of information. The central position in this
theory was the notion of complexity of a finite object for a fixed (algorithmic) method of
its description [177,178]. This complexity was defined in a very natural way, as the min-
imal volume of description. Kolmogorov theorem established that among all possible al-
gorithmic methods of description there exist optimal ones, those for which the complexity
of the objects described turns out to be relatively small. Although the optimal method is
not unique, for two given optimal methods, the corresponding complexities differ no more
than an additive constant. The new notions turn out to be at the same time quite natu-
ral, unexpected and simple. In the framework of these ideas it turned out to be possible,
in particular, to define the notion of individual random sequence (which is impossible
in terms of classical probability theory). One must call random any sequence whose
complexity (under any optimal method of description of its initial segment) grows suffi-
ciently fast as the length of the segment increases. It should be noted that Kolmogorov
complexity and Shannon entropy of an information source have different definitions.

Skagerstam [149] analyzed some of the historical reasons for the “identification” of
the information-theoretical and thermodynamic entropy concepts. He considered the
question what is the connection between the entropy concept used in information theory
and that used, e.g., in statistical mechanics and other disciplines. His conclusion was that
in general they are different both as fundamental concepts and quantitative instruments
for analyzing the properties of physical systems.

Jauch and Baron [159] discussed similar questions and they also constructed an en-
tropy function that gives the standard formulas for entropy as defined by Boltzmann in
statistical mechanics or by Shannon in information theory. Skagerstam also discussed
the Jauch-Baron entropy concept [159] and explicitly showed that, for classical systems
in thermodynamic equilibrium, there exists a very simple connection between this gen-
eral definition and the ordinary experimental entropy. He also noticed that the problem
of giving a precise meaning for entropy so that it can be applied to the description of
irreversible processes in physics is perhaps, at present, not a well-defined question. This
is so because we do not have any general universal method for treating such processes.



532 A. L. KUZEMSKY

Various specific definitions of the entropy concept were studied in the last decades.
Consider the Shannon entropy of a n-dimensional random vector with density p, defined
as

H(p) = −
∫

p(x) log p(x)dx.(27)

The Shannon measure has been generalized by various authors and has found numer-
ous applications in various disciplines ranging from physics to economics. Sharma and
Mittal [160] generalized the Shannon entropy in the following form:

HSM (P ;α, β) =
1

21−β − 1

⎡
⎣( n∑

k=1

pα
k

) β−1
α−1

− 1

⎤
⎦ .(28)

The Renyi entropies also generalize the Shannon entropy. Renyi [161] found that the
Shannon expression does not represent the only possible measure of uncertainty. He
formulated certain axioms and showed that these axioms are satisfied by a more general
definition, namely

SR(P, q) =
1

1 − q
log

(∑
i

p(x)q

)
,(29)

for discrete case and for continuous case as

SR(P, q) =
1

1 − q
log
(∫

p(x)qdx

)
.(30)

Here SR is the q-Renyi entropy (or Renyi entropy of order q, where q �= 1). The limit of
Renyi entropy for q → 1 gives the Shannon entropy, namely

lim
q→1

SR(P, q) −→ −
∫

p(x) log p(x)dx.(31)

Tsallis [123] proposed a generalization of Shannon entropy to non-extensive systems, e.g.
self-organized critical systems, etc., as

ST (P, q) =
1

1 − q

∑
i

pi

(
1 − pq−1

i

)
.(32)

Note that the Shannon measure is additive, whereas the Tsallis one is pseudo-additive.
Tsallis entropy leads to Shannon entropy as well. The limit for q → 1 gives the Shannon
entropy. The relationship between Renyi entropy and Tsallis entropy is

SR(P, q) =
1

1 − q
log(1 + (1 − q)ST (P, q)).(33)

Hence, the parameter q describes the deviations of Renyi and Tsallis entropies from the
standard Shannon entropy.
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Abe [162-164] showed that a connection between the generalized entropy and theory
of quantum groups, pointed out by Tsallis, can naturally be understood in the framework
of q-calculus. Abe presented a new entropy which has q ↔ q−1 invariance and discussed
its basic properties. In his work [162], Abe showed, using q-calculus, that Tsallis postu-
late for the entropy, in fact, contains the q-deformation structure in itself. In a sense,
this observation turns out to be more fundamental than the above-mentioned similarity.
Based on this idea, Abe then presented a new generalized entropy of the form

SS
q =

(q − 1)ST
q − (q−1 − 1)ST

−q

q − q−1
.(34)

This expression can be interpreted as the q ↔ q−1 symmetric modification of Tsallis
entropy ST . Hence Abe showed the possibility of a consistent q-deformation-theoretic
approach to constructing a class of extended thermodynamics.

Kaniadakis [165-168] proposed “a consistent framework for generalized statistical me-
chanics” by considering two-parameter deformations of logarithm, exponential, and en-
tropy of the form

Sκ(pi) =
∑

i

pi lnκ (1/pi) .(35)

A consistent generalization of statistical mechanics was obtained [165-168] by applying
the maximum entropy principle to a trace-form entropy and by requiring that physically
motivated mathematical properties were preserved. The emerging differential-functional
equation yielded a two-parameter class of generalized logarithms, from which entropies
and power-law distributions follow. These distributions potentially could be relevant in
many anomalous systems. Within the specified range of parameters, these entropies pos-
sess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and
are Lesche stable. The Boltzmann-Shannon entropy and some one-parameter generalized
entropies already known belong to this class. The two-parameter class of deformed loga-
rithms includes an infinity of one-parameter deformed logarithms that can be specified by
selecting a relation between specific parameters. These entropies and their distribution
functions were compared, and the corresponding deformed algebras were discussed.

It is worth noting that Lesche stability criterion [102, 103], which states that an en-
tropic measure is stable if its change upon an arbitrarily small deformation of the distri-
bution representing fluctuations of experimental data remains small. By means of this
stability criterion, Lesche showed that the Boltzmann-Gibbs-Shannon entropy is stable,
while the Renyi entropy is unstable. Abe later proved that the Tsallis entropy is also
stable, while the escort entropy [123,164] is not. Finally, the stability was also shown for
the Kaniadakis entropy.

Recently Deng [179] reconsidered Dempster-Shafer evidence theory which has been
widely used in many applications due to its advantages to handle uncertainty. However,
how to measure uncertainty in evidence theory has been until recently an open issue.
The main contribution of Deng paper [179] was that a new entropy, named as Deng
entropy, was presented to measure the uncertainty of a basic probability assignment
(BPA). Deng entropy is the generalization of Shannon entropy since the value of Deng
entropy is identical to that of Shannon entropy when the BPA defines a probability
measure. Numerical examples were considered to illustrate the efficiency of Deng entropy.
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Abellan [180] continued this line of reasoning by considering the theory of evidence
(or Shafer-Dempster theory) which has been widely used in applications. The Shafer-
Dempster theory was based on the concept of a basic probability assignment. An impor-
tant part of this theory was the quantification of the information-based uncertainty that
this function represents. Abellan [180] discussed the measure of uncertainty (or informa-
tion) in this theory, called the Deng entropy, which has appeared as a useful alternative
to the measures presented so far. This measure quantifies both types of uncertainty
found in Shafer-Dempster theory, then it was considered as a total uncertainty measure.
It was shown that this measure does not verify some of the essential properties for a
total uncertainty measure in Shafer-Dempster theory such as monotonicity, additivity
and subadditivity. Also, the definition of this new measure produces other debatable sit-
uations. These shortcomings call in question the utility of this measure in applications.
For details on the Deng entropy we refer to papers [179,180].

An especial and tricky example of the generalized “entropy” was proposed by Ed-
wards in the context of theory of granular or glassy systems. He called it “new kinds
of entropy” [169, 170, 181-183]. It should be noted that statistical mechanics of jammed
granular states is rather non-trivial. In granular materials particles only interact when
they touch. There are particles with hard cores and particles with soft cores. The last
are deformable particles which repel with a finite force when they overlap. Inter-particle
scattering processes are inelastic and do not conserve energy.

To deal with such complicated systems Edwards proposed two new entropies in his
papers [169,170]. Both of them do not belong to the “traditional conservative statistical
mechanics”. The first deals with the states of granular or glassy systems which may
be, in principle, confined by a suitable experimental pathway. This assumption implies
that an entropy may be defined [169,170] for them by deriving an appropriate analog of
Boltzmann equation in which the pathway to the steady state has an increasing entropy
until the state characterized by a compactivity (or compactness) X = (∂V )/(∂S) is
reached. Here V is the volume and S is the “entropy”.

The second problem in Edwards’ opinion [169] was to consider a state where energy
flows in and flows out, leaving a steady state, e.g., a steady turbulent flow. Time-
dependent correlation functions may be reasonably well defined and hence a probability
of the history of the system may be defined. Author investigated whether such systems
will possess an entropy defined by the usual

∫
P log P , but now P is the probability of the

entire history of the system and the integral is over all histories. In other words, it was
conjectured [169,170] that all jammed states of equal volume have equal probabilities so
that the probability of finding a given configuration i may be written as Pi ∝ exp(S/λ),
where λ is the analog of the Boltzmann constant. Authors claimed that their entropy
S is extensive and the compactivity X is equivalent to the temperature in a thermal
system. This direction of researches is developed very rapidly [169,170,181-183] and many
complicated questions should be still answered. Among them one may select especially
the problem of temporal evolution of a system, which require a corresponding dynamics
that allowed the system to move directly between jammed states at fixed volume and,
as a result, an appropriate change of the generalized entropy.

5. – Irreversible processes and thermodynamic fluxes

One of the purposes of this paper is to analyze the relationship between the concepts of
entropy and entropy generation in the standard sense of statistical thermodynamics and
the entropy production in the approach of the method of the non-equilibrium statistical



TEMPORAL EVOLUTION, DIRECTIONALITY OF TIME AND IRREVERSIBILITY 535

operator [8]. Entropy production of steady-state irreversible processes can be expressed
as the product of thermodynamic fluxes and thermodynamic forces. Here we remind
very briefly the underlying macroscopic basis of the theory of irreversible processes [8,
13,52,53,184-186] to introduce the necessary macroscopic notions.

The irreversible process in thermodynamics is described by the Clausius inequal-
ity [184-186]

∮
dQ

T
≤ 0.(36)

Hence it is possible to say that entropy characterizes the degradation of energy as a result
of the dissipation [187, 188] of mechanical energy to thermal energy due to friction or
the degradation of thermal energy due to temperature homogenizing in a system. In an
irreversible transition change of entropy, dS of a closed system during the process is

dS ≥ dQ

T
.

The entropy generation Sg is defined as the entropy which appears during a process
(transition from A to B)

ΔS =
∫ B

A

δQ

T
+ Sg.(37)

Thus the entropy production has the property

Sg =

⎧⎪⎪⎨
⎪⎪⎩

> 0, irreversible,

= 0, reversible,

< 0, impossible.

(38)

In other words, for the system in equilibrium only a small number of variables such as tem-
perature, volume, pressure, composition, etc., are required to determine the properties of
the thermodynamic system [8, 13, 52]. The adequate description of the non-equilibrium
system and irreversible processes is a complicated task [189]. The important advance
was given by Onsager [190-193]. He elaborated a macroscopic approach to irreversible
thermodynamics, based on achievements of fluctuation theory and statistical mechan-
ics [194]. The theory of irreversible processes after the works of Onsager was developed
substantially in more general fashion and more firmly based on experiment. The main
ideas of these advances were related to the formulation of the theory of the production of
entropy in irreversible processes and its relation to known linear laws such as Fick law
and Ohm law and their generalizations [8, 13,52,195].

For describing the change of a system it is necessary to compute the rate at which
entropy is produced during an irreversible process [189]. The entropy production is
defined as the rate at which entropy is produced inside the system (it is important not
to mix the entropy produced inside the system with the entropy change of the system).
According to the second law of thermodynamics eq. (37) hold valid in any irreversible
process. The quantity δQ/T is the entropy added to the system by heat transport
across its boundaries. Since ΔS is the total entropy change of the system, the quantity
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ΔS −
∫

δQ/T = ΔSi must represent the entropy produced inside the system. Thus we
have

ΔS =
∫

δQ

T
+ ΔSi ; ΔSi =

∫
δQi

T
,(39)

where Qi is the Clausius uncompensated heat [15, 35, 36, 185, 186]. It is obvious that
ΔSi and Qi must always be positive in an irreversible process. Equation (39) is the
entropy balance equation. The entropy production for the electrical conduction and heat
conduction were analyzed in details in refs. [13,42,44,52,195-197].

Let us consider in the present context a typical pedagogical example [198] of heat
conduction. For simplicity it is of convenience to consider a sample (a bar) of uniform
cross section whose ends are at different temperatures, TL �= TR. The temperatures may
not be fixed; the sample is in a steady state. It may be assumed that the heat was
transmitted through the sample if the surface of the sample is well insulated. It was
supposed also that the system is in the local equilibrium state. Then, dS is given by

dS =
d(ΔQ)

T
.(40)

Here ΔQ is the quantity of heat which leaves the section of a sample at point x (which
is at a temperature T ) during the time dt. At x + dx an amount of entropy [ΔQ +
d(ΔQ)]/(T + dT ) enters, and at x an amount ΔQ/T leaves. Then dSi is found to be

dSi =
d(ΔQ)

T
− d

(ΔQ)
T

=
(ΔQ)dT

T 2
> 0.(41)

Hence the entropy production dS/dt will take the form

T Ṡ =
T

V

dSi

dt
=

1
C

ΔQ

dt

(
1
T

dT

dx

)
= JqXq.(42)

Here the heat flux Jq and force Xq may be written as follows:

Jq = −
(

1
C

)
ΔQ

dT
; Xq = −

(
1
T

)
dT

dx
.(43)

In three dimensions the entropy production would be written as

T Ṡ = −Q
grad T

T
.(44)

It is known that there exists a linear dependence of the flux of heat with the temperature
gradient. It is the Fourier law of heat conduction (see discussion in refs. [13, 42, 44, 195-
197])

(
1
C

)
ΔQ

dT
= −κ

dT

dx
,(45)
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where κ is the conductivity coefficient. With the aid of introducing the quantities Jq and
Xq, this equation can be rewritten as follows:

Jq = L̂qXq; Lq = −κT.(46)

Transport of mass, energy, momentum, volume and electric charges happens when driven
forces of various nature are applied [13,42,44,52,195,196]. These forces are the concen-
tration, temperature, velocity, pressure and voltage gradients. Thermodynamic systems
may be prevented from relaxing to equilibrium because of the application of a mechanical
field (e.g., electric or magnetic field), or because the boundaries of the system are in rela-
tive motion (shear) or maintained at different temperatures, and so on. Hence it may be
reasonable to consider (at least in the first approximation) two types of non-equilibrium
systems, namely, mechanical non-equilibrium systems and thermal non-equilibrium sys-
tems [8, 13,52,199].

The well-known example of a mechanical transport process is the electrical conduction
which is described by the Ohm law [13,52,195], which states that at least for sufficiently
small applied voltages, the current I is linearly proportional to the applied voltage V ,
I = σV . The coefficient of proportionality is the electrical conductivity which is the
reciprocal of the electrical resistance. As the applied voltage increases one may expect
to see deviations from linear behavior.

The known example of a thermal transport process is the Newton law of viscosity [200]
which states that the shear stress Pxy is linearly proportional to the strain rate. The
strain rate Γ is the rate of change streaming velocity in the x-direction, with respect to
the y-coordinate, Γ = ∂ux/∂y. The law of viscosity states

Pxy = ηΓ.(47)

As the strain rate increases, one may expect to see deviations from linear behavior

Pxy = η(Γ)Γ.

Another well-known thermal transport process is the Fourier law of heat conduction [196],
which states that the heat flux between two bodies maintained at different temperatures
is proportional to the temperature gradient (the temperature difference divided by the
spatial separation). Thus, regardless of whether transport processes are caused ther-
mally or mechanically, in the small field limit it is expected that a flux will be linearly
proportional to an applied field. In such a case the flux and the force are said to be
conjugate to each other. The relation between a thermodynamic force and its conjugate
thermodynamic flux is called a linear constitutive relation,

J = L̂(Xext = 0)Xext,(48)

where L̂(0) is called a linear transport coefficient.
Transport equations express the generalized forces required to maintain a small steady

flux of particles, charge, and heat, respectively. They may also be used to describe the
approach to equilibrium of a system initially in non-equilibrium due to the presence
of gradients in concentration n, electrostatic potential φ, or temperature T . The con-
stants of proportionality are termed linear transport coefficients: diffusion D, electrical
conductivity σ, thermal conductivity κ.
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It was mentioned above that a typical example [198] of heat current may be described
as follows. Let us consider a solid cylinder through which a stationary heat current JQ

flows. The current may be produced by coupling the cylinder at its right and left ends to
thermal reservoirs at temperatures TR and TL, respectively. It is known that the linear
relation between the quantity grad(1/T ) and the current JQ and the linear response
coefficient LQ = LQ(T ) may be used. Then heat current may be written as

JQ = LQ grad
1
T

= κ grad T.(49)

The mean entropy production S̃ in the material will take the form

S̃ = JQ grad
1
T

= κT 2

[
grad

1
T

]2

.(50)

In the case of weak deviation from equilibrium we can suppose that the entropy of the
material remains nearly constant (its macrostate is unchanged). Hence all the produced
entropy will be carried away by means of the entropy current JS and transmitted into the
reservoirs. The relation between entropy current and entropy production was formulated
in the thermodynamics of irreversible processes with the aid of the entropy balance
equations [50, 201, 202]. Indeed, after integration of the entropy production over the
material volume, it may be shown [198] that the entropy of the reservoirs is changed by

dS

dt
= JS

(
1

TR
− 1

TL

)
a.(51)

Here a is the cross-sectional area of the cylinder.
In this context it is worth mentioning that the second law of thermodynamics governs

the direction of heat transport, which provides the foundational definition of thermo-
dynamic Clausius entropy [203]. Shu-Nan Li and Bing-Yang Cao showed [203] that the
definitions of entropy can be further generalized for the phenomenological heat trans-
port models in the frameworks of classical irreversible thermodynamics and extended
irreversible thermodynamics. In their work [203], entropic functions from mathematics
were combined with phenomenological heat conduction models and connected to sev-
eral information-geometrical conceptions. It was shown that the long-time behaviors
of these mathematical entropies exhibit a wide diversity and physical pictures in the
phenomenological approach to heat conduction, including the tendency to thermal equi-
librium, and exponential decay of non-equilibrium and asymptotics, which may provide
a bridge between the macroscopic and microscopic modelings. In contrast with the ex-
tended irreversible thermodynamics entropies, the mathematical entropies expressed in
terms of the internal energy function can avoid singularity paired with non-positive local
absolute temperature caused by non-Fourier heat conduction models.

Now let us consider briefly the notion of entropy current [189, 201, 202]. In thermo-
dynamics derivation of the linear and quasi-linear transport equations is based on the
entropy production, i.e. on the control of entropy balance in terms of classical continuum
physics

Stot ∼ Sin − Sout + Sprod.
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The first two terms in this equation on the right-hand side represent the entropy transfer
between the system and its surroundings. The third term represents the entropy produc-
tion in the system. Entropy can be transferred to or from a system in various ways but
mainly by two mechanisms, namely the heat transfer and mass flow. It must be empha-
sized that no entropy may be transferred by work. Heat transfer to a system increases
the entropy of the system, and heat transfer out of a system decreases the entropy of
the system. Hence for establishing the entropy balance the knowledge both the entropy
density (s) and entropy current density (Js) is necessary.

An important question in non-equilibrium thermodynamics is the appropriate defini-
tion of entropy current and what the entropy current density is related to. In general
case this is a rather non-trivial task [189, 201, 202, 204-206] as well as the definition of
entropy production for non-equilibrium steady states [50, 58]. The simplest way is to
consider first the local-equilibrium (quasi-equilibrium) state. In this case the entropy
current density is equal to the heat current density divided by the temperature

Js =
1
T

Jq.(52)

However, when diffusion is involved this definition should be modified as

Js =
1
T

Jq −
∑

i

μi

T
.(53)

Here the summation is extended over all chemical components. This expression can be
reformulated in a general form [201]. To this aim the specific entropy (entropy per unit
mass) should be considered as a function, which depends on the specific values of the
independent extensive quantities only.

Nyiri [202] showed that if the entropy current may depend only on the currents and
the equilibrium state variables, then only the formula corresponding to Gibbs relation
is acceptable. All other formulae of this type may lead to (physical) contradiction. If,
however, nothing is assumed about the coefficients of the extensive quantity currents in
the formula of the entropy current, then it is possible to get an extra set of constitu-
tive equations for these coefficient tensors. These second-order tensors play the role of
intensive quantities: their divergences are the thermodynamical forces conjugated to the
currents, while their deviation from the equilibrium intensive quantities is induced by
the current gradients. Thus, a non-equilibrium entropy current, converging to the clas-
sical equilibrium one as approaching equilibrium, was obtained. The Nyiri theory [202]
applied to conductive energy transport contains a second-order tensor playing a role sim-
ilar to reciprocal temperature. The heat transport equation obtained after eliminating
this tensor from the equations contains an extra term. This modified “heat conduction”
equation is identical to the classical one in stationary state, while its dynamic behavior
predicts a characteristic length and time, both vanishing with the coefficient of the extra
term. The theory permits coupling between viscous flow and conductive energy trans-
port even in linear order. Hence the notion of the entropy current is rather a non-trivial
concept [189,201,202,204-206].

In hydrodynamics the existence of an entropy current with non-negative divergence is
related to the existence of a time-independent solution in a static background. Recently
there has been a proposal for how to construct an entropy current from the equilibrium
partition function of the fluid system [207]. Bhattacharyya has applied that algorithm
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for the charged fluid at second order in derivative expansion. From the partition function
he first constructed one example of entropy current with non-negative divergence up to
the required order. Finally he extended it to its most general form, consistent with
the principle of local entropy production. In addition, author obtained the constraints
on the second-order transport coefficients for a parity even charged fluid, but in some
non-standard fluid frame.

6. – Temporal ordering and Clausius-Duhem inequality

Usually a foundation for the second law of thermodynamics is formulated in terms
of the entropy principle. According to Gibbs, entropy characterizes the concept of equi-
librium and its stability by means of variational principles. It is known that the notion
of the entropy for non-equilibrium states and its evolution for macroscopic systems may
led to controversial conclusions. The reason for it is the fact that the notions of non-
equilibrium state, non-equilibrium entropy and relevant observables cannot be defined
in complete generality [8, 14, 15, 37, 42, 44-47, 54, 55, 58]. This circumstance does not al-
low us to develop a fully consistent formalism. As was discussed above, the laws of
thermodynamics distinguish between the past and the future, i.e., include an arrow of
time [73, 74, 80, 83, 84, 87, 93, 97]. This directionality of time expresses itself primarily in
the second law, which states that, roughly speaking, entropy tends to increase toward the
future. Till now we do not know precisely what is the reason of this time-asymmetric law
and what is the most adequate form for its expression. Some aspects of these questions
were clarified within the axiomatic approach started by Caratheodory [75-78, 118, 119].
This approach was pursued further by Yngvason and Lieb [73] and others, but the
rigorous foundations of the thermodynamic directionality of time still are under de-
bates [73,74,80,83,84,87,93,97].

It is worth mentioning that in the Caratheodory axiomatic approach to the foundation
of thermodynamics [73, 75-78, 118, 119], the notion of the binary relation (preorder) be-
tween states associated with adiabatic accessibility has been used. Hence Caratheodory
axioms included a possibility to take into account irreversible processes in which entropy
may decrease or increase. From the other side there is the unresolved problem of incom-
patibility between thermodynamic irreversibility and time-reversal invariant dynamics.
It is known that for Hamiltonian systems the dynamics is time-reversal invariant. The
Liouville theorem states the conservation of probability under the Hamiltonian flow.
Conservative forces assumed usually are non-dissipative.

On the other hand, dissipative forces, such as those which are velocity dependent, put
an explicit time direction on the Hamiltonian. The important notion of time arrow is
connected intimately with the general principles of thermodynamics and especially with
the second law. In last decades the problem of an arrow of time has been placed in a new
context [80-82, 87]. Entropy increasing dictated by the Clausius theorem and more gen-
erally by the Clausius-Duhem inequality [35,36,208-214] and requirement causality were
interrelated by the prescription of thermodynamically admissible constitutive equations.

To simplify the problem, sometimes it is convenient to replace the thermodynamic
limit of statistical mechanics [4] by working directly with systems defined on classical
configuration spaces of infinite volume. In this case, one may expect that, since these
systems tend to show continuous spectra, the relevant functions become relatively well-
behaved functions. In a certain sense the thermodynamic limit is equivalent to a properly
defined continuum limit [215]. The essence of the continuum limit is that all microscopic
fluctuations are suppressed.



TEMPORAL EVOLUTION, DIRECTIONALITY OF TIME AND IRREVERSIBILITY 541

In this context it is of importance to consider briefly the Clausius-Duhem inequal-
ity [210,212-214], which appears in continuum mechanics when combining the momentum
balance law and the two laws of thermodynamics. The thermodynamics of irreversible
processes as a phenomenological theory describing processes in continua was initiated by
Eckart [209] in 1940. His seminal works were reviewed thoroughly by Müller [210].

The Clausius-Duhem inequality [208-214] gathers quantities which should be chosen to
build a predictive theory of some thermo-mechanical phenomena. It gives the quantities
which are of significance. Moreover it points out the ones which are to be related: e.g.,
the dissipative stress and the strain rate, or the heat flux and the gradient of temperature.
All the classical dissipative constitutive laws and the classical thermal Fourier law may
be formulated in this framework [216]. In terms of mathematics the various products are
duality products between linear spaces, namely products between quantities describing
the evolution, the thermal heterogeneity and quantities describing the interior forces and
the heat flux. Hence the Clausius-Duhem inequality is essentially a global statement of
the second law of continuum thermodynamics in the form

Ṡ(V̄t) ≥
∫

δVt

θ−1q da +
∫

Vt

θ−1h dm.(54)

Here S is the total entropy pertaining to the actual volume Vt occupied by a material
body at time t in physical Euclidean space R3, δVt being its boundary and V̄t its closure.
The scalar θ > 0 is the thermodynamic temperature, q is the heat flux per unit area, h is
the mass density, dm is the mass element. Note that Clausius original form of inequality
had zero for the right-hand side. The surface contribution was added by Duhem [208].
Later it was generalized by Truesdell [211] and others. The local form of the Clausius-
Duhem inequality has the form [208-214]

�η̇ + ∇S − θ−1�h ≥ 0.(55)

Here η(x, t) is the specific entropy such that S(Vt) =
∫

Vt
η dm, dm = �(x, t)dν and � is

the matter density of the actual placement x at absolute time t.
Various authors showed [34-36] that calculations and bounds on work production,

Carnot efficiency, heat exchange, and the Clausius inequality are at the core of thermo-
dynamics. Gaveau et al. [187] studied generalized Clausius relation and power dissipa-
tion in non-equilibrium stochastic systems. They extended the Clausius inequality to
non-isothermal systems in the transient regime. In addition, they considered power pro-
duction necessarily in a context involving time dependence and observed that maximal
efficiency and optimal power production are in conflict, since to achieve the best Carnot
efficiency the system must move infinitely slowly. Authors calculated spontaneous power
production in a stationary non-equilibrium state and provided an upper bound for it.
The time-dependent context necessarily goes beyond traditional thermodynamics. In the
framework of the stochastic dynamics of open Markov systems, they derived an exten-
sion of the Clausius inequality for transitions between states of the system. The relation
obtained [187] was an extension of the classical Clausius inequality, valid in the transient
situation, which was thus derived in the framework of stochastic dynamics. Authors
derived a formula for the power produced when the system is in its stationary state and
related it to the dissipation of energy needed to maintain the system out of equilibrium.
They deduced also that, near equilibrium, maximal power production requires an energy
dissipation of the same order of magnitude as the power production.
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Bertini et al. [217] carried out a quantitative analysis of the Clausius inequality. They
derived an expansion of the energy balance in the context of driven diffusive systems,
for thermodynamic transformations over a large but finite time window. In particular,
authors characterized the transformations which minimize the energy dissipation and
described the optimal correction to the quasi-static limit. In the case of transformations
between homogeneous equilibrium states of an ideal gas, the optimal transformation is a
sequence of inhomogeneous equilibrium states.

In regard to the temporal evolution, according to Maugin [212], “The arrow of time
dictated by the Clausius-Duhem inequality and causality, represented mathematically by
the hyperbolicity of the studied system of field equations, once closed by the prescription
of thermodynamically admissible constitutive equations, are thus interrelated”.

7. – Steady state, local state and local equilibrium

In giving the physical specification of a system at any instant the concept of local
state [218-220] has been used. The postulate that a local state exists is often taken as
being equivalent to assuming some form of local equilibrium. For a justification of this
postulate the notion of the relaxation time for fluctuations was used. The statement is
that at the atomic scale the relaxation time is shorter compared with the timescale of
the macroscopic processes under consideration. It is not a simple task to specify fully the
local state in terms of measurable macroscopic variables. It was often assumed that there
exist additional internal or relevant variables which complete the description of the local
state. Assumption of a local state permits one to use safely the notions of equilibrium
thermodynamics, such as the concepts of entropy and energy as scalar potentials as
well as the Gibbs-Duhem and the Gibbs relations [184-186, 218-220]. Since the second
law supposes the production of entropy for irreversible processes, it can be formulated
by using appropriate constraints on the laws governing these processes, especially in
relation to their stability. It should be stressed that the applications have been confined
usually to processes in systems not very far from equilibrium, i.e. in terms of the linear
thermodynamics of irreversible processes [37-39,42,53,184-186,218-220].

To clarify these statements we recall very tersely the description of continuous sys-
tems [218-220]. When a continuous system undergoes a process, the process is described
as a reversible one if the process undergone by every subsystem, however small, is re-
versible, otherwise it is irreversible. The state of continuous system is described by a
number of continuous functions of position (x, y, z) (at any given instant) or by a number
of fields [184-186, 218-220], for example θ = θ(x, y, z) and P = P (x, y, z) and so on, at
instant t. When time is in the fields as a variable θ = θ(x, y, z, t) and P = P (x, y, z, t),
a process undergone by the continuous system is described. It is worth noting that
the expressions spontaneous change and spontaneous process should not be used inter-
changeably. Process means the method of carrying out a given change. Hence a given
spontaneous change, in principle, can be carried out by a reversible process or by an
irreversible process.

When a system is in equilibrium at every step during the process, the rate of change
of energy, ε̇, is a constant of the system and the same applies to the density �. Hence

∫
V

�ε̇ dV = �ε̇V = mε̇,(56)
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since �V = m. Thus we have

Q̇ − Ẇ = m
d
dt

ε; dE =
{

d
dt

∫
V

�εdV

}
dt,(57)

which is identical with

dQ − dW = dE(58)

for every homogeneous part. Here W is the work and Q is the heat; dW may be replaced
by the appropriate expression for reversible work in terms of the properties of the system.

Steady state is an extension of the concept of equilibrium [184-186, 218]. Denbigh
noted in his book [184] that “. . . there has been an important development, which has
become known as the ‘thermodynamics of irreversible processes’. A more appropriate
name would be the ‘thermodynamics of the steady state’ !”

Eckmann, Pillet and Rey-Bellet analyzed the entropy production in nonlinear, ther-
mally driven Hamiltonian systems [221]. They considered a finite chain of nonlinear
oscillators coupled at its ends to two infinite heat baths which are at different tempera-
tures. Using their earlier results about the existence of a stationary state, authors showed
rigorously that for arbitrary temperature differences and arbitrary couplings, such a sys-
tem has a unique stationary state. In all these cases, any initial state will converge
(at an unknown rate) to the stationary state. It was shown that this stationary state
continually produces entropy. The rate of entropy production is strictly negative when
the temperatures are unequal and is proportional to the mean energy flux through the
system.

The processes that are sudied in continuous systems usually are such processes during
which the local state at every point throughout the system is independent of time. A
system of this kind, regardless of whether it is open or closed, is said to be in steady
state. In steady-state systems, the local rate of change of specific energy is zero, so that

d
dt

∫
V

�εdV =
∫

V

�ε̇ dV = 0.(59)

Hence, in steady state Q̇ − Ẇ = 0. In order to maintain a steady state it is, therefore,
necessary to balance the rate of heat flow with the aid of the performance of work. More
specifically, if work is done on the system (Ẇ < 0), its equivalent must be extracted in
the form of heat by cooling (Q̇ < 0). Hence, a system in steady state transforms heat
into work or vice versa in the same way as a cycle. Note that in steady state the volume
of a closed system should be constant. Thus, a closed system in steady state cannot
perform work by deforming its boundary. Then a question arises how to describe system
as being in a steady state when all its properties are invariant with respect to time. In
such cases, a system will be classified as being in steady state when all local properties
are time independent, that is, when all the fields depend on the coordinates (x, y, z) only
but not on time, in complete analogy with a closed continual system.

There are numerous works on the thermodynamics of the steady state. A kinetic-
molecular theory which connects dissipation and fluctuations was used to examine the
second law of thermodynamics by Keizer [222]. Considerations were restricted to systems
with stable equilibrium states and were based on a conservation condition satisfied by
transport processes which obey microscopic reversibility. The conservation condition
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leads to a statement about the accessibility of equilibrium states which is comparable
to the Caratheodory statement of the second law. Insofar as the transport of heat into
a system is the only process which violates microscopic reversibility, this statement is
equivalent to the second law. The treatment also gives a simple kinetic proof of the
Clausius inequalities TRdS/dt > dQ/dt and dS/dt > 0 for the entropy. Using the
statistical aspects of the fluctuation-dissipation postulates, a class of state functions
related to the equilibrium statistical distribution was defined, and it was verified that
the entropy is one of these functions. A discussion was given of how to extend these
results to systems with multiple phases or at non-equilibrium steady states.

In ref. [223] Keizer considered the fluctuation-dissipation postulates, which describe
the kinetic effects of molecular processes, and used to characterize non-equilibrium steady
states. Attention was restricted to stable, non-critical states which developed in systems
with inputs that are time independent. For these systems it was shown that the steady-
state distribution is Gaussian, which provides a generalization of the well-known Einstein
formula for equilibrium states. For certain systems it was shown that the time depen-
dence of the covariance matrix of the extensive variables gives a necessary and sufficient
condition for the stability of a non-critical state. These considerations were illustrated
for the steady states accompanying diffusion, heat transport, chemical reactions with lin-
ear coupling, and certain nonlinear chemical reactions. These examples showed that the
covariance matrix is not necessarily related to the local-equilibrium entropy. When the
covariance matrix is invertible, it can be used to construct generalized state functions
which reduce to familiar thermodynamic functions at equilibrium. The generalization
of the entropy, called the σ function, was related to stability, the probability density,
and generalized “thermodynamic forces” in precisely the same way as the entropy is at
equilibrium.

In a following paper [224], a discussion of how to extend equilibrium thermodynamics
to non-equilibrium steady states was continued. The extension was based on molecular
fluctuations of the extensive variables and gives rise to a state function, called the σ
function. The σ function reduces to the entropy at equilibrium and can be constructed
from a knowledge of the local-equilibrium entropy and the molecular fluctuations. The σ
function depends on all the variables characterizing a steady state, including fluxes of the
extensive variables and reservoir parameters. The theoretical analysis of non-equilibrium
fluctuations predicts that the σ function is related to stability and the kinetics around
a steady state just like the entropy is at equilibrium. Calculations of the σ function
were outlined for several multicomponent systems of experimental interest. Using the
fluctuation-dissipation theory, a generalization of the Clausius inequality was obtained.
This leads to a class of extremum principles at steady state for Legendre transformations
of the σ function.

Benofy and Quay [225] have developed a rigorous thermodynamic theory of steady-
state systems by generalizing the methods which were used by Clausius and Kelvin in
the development of classical thermodynamics (thermostatics) [35, 36]. The zeroth law
was extended to non-equilibrium situations and the concept of temperature generalized
accordingly. The law of homogeneous circuits, shown to be complementary to Kelvin’s
principle, can be combined with it to give a generalized second principle. The thermo-
dynamic principles were applied to those conversions of heat to work that result from
transitions between two or more steady states or from the activity of systems that remain
in a single steady state. It was proved that these latter systems must be multiply con-
nected if conversion is to be continuous. Authors proved the existence of both scalar and
vector functions of state for all steady-state systems. Steady-state conversion coefficients
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can be defined as derivatives of the vector functions of state, and useful relations among
these coefficients were derived. These include not only generalized forms of Kelvin’s re-
lations for the thermocouple [35, 36] but similar relations for an analogous fluid system
and, indeed, for any system in which potentials can be defined governing the flow of
conserved quantities.

In ref. [226] Keizer investigated the properties of matter at non-equilibrium steady
states using a thermodynamic formalism derived from molecular fluctuations. Based on
the generalized Clausius inequality, Keizer extended the definition of “reversible” process
to include transformations between steady states and related reversible work and heat
to changes in state functions. The variable which is thermodynamically conjugate to
the internal energy, that is, the inverse of the generalized thermodynamic temperature,
is an integrating factor for the reversible heat. Keizer discussed the relationship of
the generalized temperature to the Kelvin temperature, how the generalized intensive
variables can be measured, defined generalized heat capacities, and obtained the Gibbs-
Duhem relationship satisfied by the intensive variables. These ideas were illustrated for
two simple steady-state systems, a fluid under homogeneous shear and a two-level gas
which is pumped by radiation. Finally the author analyzed under appropriate conditions
the electromotive force of a chemical reaction system held at a non-equilibrium state.
Corrections were predicted to the Nernst equation which depend on how far the chemical
reactions were removed from equilibrium.

Oono and Paniconi [227] constructed a phenomenological framework corresponding to
equilibrium thermodynamics for steady states. All the key concepts, including entropy,
were operationally defined. They showed that if a system is strictly linear, the resultant
Gibbs relation justifies the postulated form in the extended irreversible thermodynamics.
The resultant Maxwell’s relations and stability criteria gave various le-Chatelier-Braun–
type qualitative predictions. A phenomenological fluctuation theory around steady states
was also formulated.

Let us consider briefly the complementary concept of local (or quasi-equilibrium)
state [8, 13, 52]. A physical system is in an equilibrium state if all currents, of heat,
momentum, etc., vanish, and the system is uniquely described by a set of state variables,
which do not change with time. From the other side, it is possible to speak about
irreversible processes by considering the energy increase ΔE and the entropy increase
ΔS; a process will be irreversible if

ΔS >

∫
δQ

T
,(60)

where Q is the heat absorbed by the system during the particular process of interest
and T is the temperature at which the heat crosses the boundary of the system. The
workable method for systems which are in steady states is the division of the system
into small regions [219,220,228,229]. In this approach the value of an intensive variable
changes in total sample but the value remains constant in time in each small region.
Then extensive quantities are found for the whole system by summing over all regions.
For the treatment of non-steady states in systems with gradients, the system is divided
up into small (infinitesimal) regions each of which can be described by a small number
of variables. In addition, as the local values of the variables change in the region during
the course of the process, it is assumed that they define at each moment a local quasi-
equilibrium state. A combined approach which has been most used to treat steady states
can be formulated in the following way [184-186]. Consider a system in a steady state,



546 A. L. KUZEMSKY

i.e., the variables of state have time-independent values at every point. It is reasonable
to expect that if at the steady state one or more of the total number of processes have
come to an end, virtual displacements in these processes cause no change in entropy of
the system and its environment. This statement is a workable conjecture which deserved,
in principle, an additional firm theoretical and experimental basis [8, 13,52].

Hence, in equilibrium the temperature T and chemical potential μ must be uniform
throughout the system. If the variation of the driving forces is slow in space and time,
then one may imagine that the system acquires a local equilibrium [8,13,52], which may
be characterized by a local T and μ which are slowly varying functions of space and time

T = T (r, t), μ = μ(r, t).

In contrast to a closed system, an open system exists in a state away from equilibrium
even when it reaches its steady state. Zhang et al. [230] re-considered the concepts
of equilibrium and non-equilibrium steady states as mathematical concepts associated
with stationary Markov processes. For both discrete stochastic systems with master
equations and continuous diffusion processes with Fokker-Planck equations, the non-
equilibrium steady states were characterized in terms of several key notions which are
originated from non-equilibrium physics: time irreversibility, breakdown of detailed bal-
ance, free energy dissipation, and positive entropy production rate. After presenting this
non-equilibrium steady-state theory in suitable mathematical terms, the latter was ap-
plied to two widely studied problems: the stochastic resonance (also known as coherent
resonance) and molecular motors (also known as Brownian ratchet). Although both ar-
eas have advanced rapidly on their own with a vast amount of literature, the theory of
non-equilibrium steady states provides them with a unifying mathematical foundation.

To summarize, in the classical case a distribution function can be obtained which
reflects knowledge of the initial spatial dependence of temperature, local velocity, and
chemical potential. In all other respects it reflects local equilibrium or quasi-equilibrium.
This distribution cannot be justified in the full measure for most non-equilibrium situ-
ations. Its use is only partial when the system is not in equilibrium, locally or other-
wise [8, 13, 52, 218-220]. Characterization of close-to-equilibrium stationary states, both
for macroscopic systems and for stochastic models may be provided by the minimum
entropy production principle, which is a kind of an approximative variational method
useful for the case.

8. – Extremal principles and entropy production

In the present section we will discuss very tersely some foundational statements con-
cerning the entropy production concept and about its relevance for non-equilibrium sta-
tistical thermodynamics.

The principles of extremum of the entropy and entropy production (including infor-
mation entropy) play a fundamental role in equilibrium and non-equilibrium statistical
physics [8, 13, 231]. The information theoretic entropy is a probabilistic concept [12],
contrary to the thermodynamic entropy [13, 52, 232]. Information entropy in problems
of classical and quantum statistical mechanics was considered and analyzed in numerous
articles and books [5, 9-13,17,18,52,144-147].

The maximum entropy approach to statistical thermodynamics was initiated by
Jaynes [5, 9-11, 17, 18]. In this approach statistical mechanics [8, 13] was considered as
general problem requiring prediction from incomplete or insufficient data. In this sense
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equilibrium thermodynamics is a specific application of inference techniques rooted in
information theory [12,13,21-23]. Such an approach is general to all problems requiring
prediction from incomplete or insufficient data. According to Jaynes, statistical mechan-
ics can be interpreted as a special type of statistical inference based on the principle of
maximum entropy. The result of such an inference depends on the available information
about a given physical system, but the principle itself does not decide what kind of infor-
mation is essential and what is not. The Gibbs canonical state results from the principle
when the statistical mean value of energy was supposed to be known [8, 13]. For other
distributions an entropic measure, which was optimized by a given arbitrary distribution
with the finite linear expectation value of a physical random quantity of interest, should
be constructed. This offers a unified basis for a great variety of distributions observed
in nature. The maximum entropy formalism has been applied to numerous practical
problems and its operation ability was demonstrated. Hence the maximum entropy prin-
ciple is a technique for evaluating probability distributions consistent with constraints.
Or, in other words, the principle of maximum entropy is a method for analyzing the
available information in order to determine a unique epistemic probability distribution.
All these results lends support to Jaynes formalism as a common predictive framework
for equilibrium and non-equilibrium statistical mechanics [5, 9-11,17,18,39].

Information theory [12, 13], in conjunction with the techniques developed by Jaynes
was used in various problems of statistical mechanics. The Gibbs distributions have a
non-trivial common property: subject to certain constraints they maximize a functional
known in statistical mechanics as entropy, and in information theory, probability theory
and mathematical statistics as information. The approach based on the information
theory in the spirit of the principle of maximum entropy has been used in numerous works
on statistical mechanics [8,12,13,33,39] to derive the fundamental statistical mechanical
distributions.

Maximum entropy formalism [5, 9-13, 17, 18, 146, 147] is a specific method which pro-
vides a way of finding probability distributions with the largest uncertainty on the basis
of the available information. An inference from this way of reasoning is founded on our
state of knowledge about the system only. The extremum entropy production principle
has been stated in various ways and was confirmed as a workable tool. A common wisdom
states that a system tends to be in an extremum entropy generation state allowed by
corresponding constraints (steady-state or approaching one). In refs. [12, 13,52,233] the
basic issues of maximum entropy formalism along with their consequences and various
applications were considered in detail.

Entropy production and its role in thermodynamics of non-equilibrium processes
in the physical, chemical and biological sciences was studied intensely during last
decades [50, 64-67, 79, 124, 221, 234, 235], because of its crucial role for the second law
of thermodynamics. However, there are some points at issue and also other features of
the entropy production concept which are not fully clear [235].

Extremal principles [62, 70, 236] for entropy production, namely maximum entropy
production principle due to Ziegler [64, 216] and minimum entropy production princi-
ple due to Prigogine [237], deserve a careful consideration. Ziegler principle [64, 216]
states that the rate of entropy production under the influence of given forces should be
maximum.

The minimum entropy production principle is an approximate variational charac-
terization of steady states for thermodynamically open systems which are in an out-
of-equilibrium state. Initially this statement was formulated by Prigogine [237] within
the framework of linear irreversible thermodynamics [185, 186]. Later it was extended
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to stochastic kinetics, e.g., for systems not too far from equilibrium [238] described
by a master equation. Usually the temporal evolution of non-equilibrium open quan-
tum systems was investigated within the density-matrix techniques. The corresponding
equations of evolution for density matrix lead to various forms of generalized master
equations [13, 52, 239-249]. These master equations show that for weak coupling and in
the thermodynamic limit [4] a perturbed system will approach equilibrium.

Klein and Meijer [238] used the principle of minimum entropy production which says
that the steady state of an irreversible process, i.e., the state in which the thermody-
namic variables are independent of the time, is characterized by a minimum value of the
rate of entropy production. This theorem, due to Prigogine [237], was proved by the
methods of statistical mechanics for a particular process —the flow of matter and energy
through a narrow tube connecting two containers of an ideal gas. The two containers
were maintained at slightly different temperatures. Authors concluded that the resul-
tant form for the entropy production in the steady state, and the method used in the
proof, gave additional insight into the significance of the principle of minimum entropy
production.

However, Callen [250] found that the calculations on particular models by Klein and
Meijer have weak points. An analysis of magnetic resonance by Wangsness suggested
certain modifications necessary in the case of a non-zero, non-stationary, magnetic field.
In fact, Prigogine showed that in the steady state in which certain macroscopic affinities
F1, F2, . . . Fk were fixed and other macroscopic affinities Fk+1, Fk+2, . . . Fr were uncon-
strained, the values assumed by the unconstrained affinities were such as to minimize
the rate of production of entropy. Callen [250] has shown that the complete microscopic
density matrix of the system is that which minimizes the rate of entropy production
subject to the imposed constraints. All magnetic fields were assumed to be zero. It
was shown that the kinetic coefficients connecting Casimir’s α-type and β-type variables
always vanish. The validity of the minimum entropy production theorem in the absence
of a magnetic field depends on this fact. The limitations on the validity of the minimum
entropy production theorem in the presence of a magnetic field were established.

In other words, Prigogine showed that a system close to equilibrium and in a suffi-
ciently stable environment evolves toward a steady state that minimizes the dissipation of
energy. For open systems close to equilibrium the Prigogine principle permits a broader
treatment of the law of irreversible increase of entropy in isolated systems. Roughly
speaking, open systems should uphold their stationary (or quasi-equilibrium) state per-
manently. Minimum entropy production promotes the minimum dissipation of energy.
Later on Glansdorff and Prigogine [251] formulated the stability criterion for the case
of dynamical systems which may be, in principle, far from equilibrium, e.g., the self-
organization processes in a low-temperature, non-isotherm plasma, etc. Hence, an initial
steady state may be triggered suddenly to other states through bifurcations. In this
case, the thermodynamic behavior could be quite different, in fact, even opposite to that
indicated by the theorem of minimum entropy production [251].

Glansdorff-Prigogine stability criterion raised controversial discussions in the litera-
ture [252-257]. In particular, the problem of applicable range and practical value of the
Glansdorff-Prigogine criterion and of the theorem of minimum entropy production was
discussed critically. It was pointed out that the Glansdorff-Prigogine criterion as a ther-
modynamic theory is consistent, but in the practical problem of many variables, it has
applicable value to a less degree. Moreover, it was claimed that the applicable range of
the theorem of minimum entropy production is smaller than that of other theorems in the
linear non-equilibrium thermodynamics, therefore, to use it as a principle is less reliable.
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Keizer and Fox [252] raised doubts concerning the range of validity of a stability
criterion for non-equilibrium states which has been proposed by Glansdorff and Prigogine.
They claimed that in the case of a particular autocatalytic reaction, the stability analysis
presented by Glansdorff and Prigogine, and by Eigen and by Katchalsky in their reviews
of this problem, does not agree with their analysis, which was based upon exact solution
of the relevant rate equations. Keizer and Fox [252] also found disagreement between
the analysis based upon the Glansdorif-Prigogine criterion and their analysis of a second
example which involves non-equilibrium steady states. In their opinion, the situation is
quite delicate because seemingly innocent approximations may lead to the impression
that the scope of validity of the criterion is wider than it actually is. By considering the
stability of the equilibrium state, Keizer and Fox concluded that the second differential
of the entropy, which is at the heart of the Glansdorff-Prigogine criterion, is likely to be
relevant for stability questions close to equilibrium only.

Prigogine and co-authors [253] in their reply have shown that the objections of Keizer
and Fox [252] were based on a misunderstanding of the work of the Brussels group [258].
They summarized the formulation of the stability criterion in accordance with their
published works. The differences with the presentation by Keizer and Fox were pointed
out and it was shown that, when correctly applied, their approach does not lead to any
contradiction with other methods available for studying stability.

The starting point of Keizer and Fox seems to be the belief that Glansdorff and
Prigogine have claimed or implied that the threshold for instability coincides with the
manifold of the parameter space where a certain quadratic form, namely the excess
entropy production, ceases to be positive definite. In order to support their point Keizer
and Fox analyzed two specific examples. They found contradictions between the exact
treatment based on the solution of the rate equations, and the predictions they believe
that the Glansdorff-Prigogine criterion would provide. In fact, the presentation of the
stability criterion and its applications attributed to Glansdorff-Prigogine by Keizer and
Fox arises from a misunderstanding of the whole subject. It was concluded [253] that,
being a Lyapounov-type theory, the thermodynamic stability criterion provides sufficient
stability conditions, along the appropriate manifold of solutions of the kinetic equations.

Nicolis and co-authors [254] made the next step. They developed a stochastic formu-
lation of the stability of non-equilibrium states. Entropy balance equations, including
the effect of both the macroscopic evolution and of the fluctuations, were discussed. In
the linear region of thermodynamics Prigogine minimum entropy production theorem
was extended to include the effect of fluctuations. The latter were shown to reinforce the
return of the system to its steady-state distribution.

Di Vita [255] derived ten necessary criteria for stability of various dissipative fluids and
plasmas from the first and the second principle of thermodynamics applied to a generic
small mass element of the system, under the assumption that local thermodynamic equilib-
rium holds everywhere at all times. He investigated the stability of steady states of a mix-
ture of different chemical species at the same temperature against volume-preserving per-
turbations. The author neglected both electric and magnetic polarization, and assumed
negligible net mass sources and particle diffusion. He assumed also that both conduction-
and radiation-induced heat losses increase with increasing temperature. Di Vita invoked
no Onsager symmetry, no detailed model of heat transport and production, no “Extended
Thermodynamics,” no “Maxent” method, and no “new” universal criterion of stability
for steady states of systems with dissipation. Each criterion takes the form of —or is a
consequence of a variational principle. He retrieved maximization of entropy for isolated
systems at thermodynamic equilibrium, as expected. If the boundary conditions keep
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the relaxed state far from thermodynamic equilibrium, the stability criterion retrieved
depends also on the detailed balance of momentum of a small-mass element. This balance
may include the ∇p-related force, the Lorenz force of electromagnetism and the forces
which are gradients of potentials. In order to be stable, the solution of the steady-state
equations of motion for a given problem should satisfy the relevant stability criterion.
Retrieved criteria included (among others) Taylor’s minimization of magnetic energy
with the constraint of given magnetic helicity in relaxed, turbulent plasmas, Rayleigh’s
criterion of stability in thermoacoustics, Paltridge’s maximum entropy production prin-
ciple for Earth’s atmosphere, Chandrasekhar’s minimization of the adverse temperature
gradient in Benard’s convective cells, and Malkus’ maximization of viscous power with
the constraint of given mean velocity for turbulent shear flow in channels. It turns out
that characterization of systems far from equilibrium, e.g., by maximum entropy produc-
tion, is not a general property but, just like minimum entropy production, is reserved to
special systems. A taxonomy of stability criteria was derived, which clarifies what is to
be minimized, what is to be maximized and with which constraint for each problem.

The paper of Di Vita [255] was commented by Sonnino, Tlidi and Evslin [256]. In
their opinion, the author [255] attempted to derive ten necessary conditions for the
stability of dissipative fluids and plasmas. Assuming the validity of the local-equilibrium
principle, these criteria have been obtained solely from the first and second laws of
thermodynamics. The Onsager reciprocity relations have not been invoked, and the
author’s results were supposed to be valid independent of the choice of the boundary
conditions. In their comment Sonnino et al. [256] expressed agreement with the general
theory established by Glansdorff and Prigogine in 1954 and 1970. They also showed that
there is no variational principle expressing the necessary conditions for the stability of
dissipative systems involving convective effects when the system is out of the Onsager
region. In particular, Sonnino et al. [256] proved that the basic equations constituting
the starting point of the analysis of Di Vita [255], attempting to derive ten necessary
conditions for the stability involving magnetohydrodynamical effects, were incorrect and
in contradiction with the laws of the thermodynamics of irreversible processes.

Maes and Netocny [257] re-considered the Glansdorff-Prigogine criterion for stability
within irreversible thermodynamics on a new ground. Glansdorff and Prigogine proposed
a decomposition of the entropy production rate, which now is known for Markov processes
as the Hatano-Sasa approach. Their context was irreversible thermodynamics which,
while ignoring fluctuations, still allows a somewhat broader treatment than the one
based on the master or Fokker-Planck equation. Glansdorff and Prigogine were the first to
introduce a notion of excess entropy production rate δ2EP and they suggested as sufficient
stability criterion for a non-equilibrium macroscopic condition that δ2EP be positive.
Authors found for nonlinear diffusions that their excess entropy production rate is itself
the time-derivative of a local free energy which is the close-to-equilibrium functional
governing macroscopic fluctuations. The positivity of the excess δ2EP, for which a simple
sufficient condition was proposed, is therefore equivalent with the monotonicity in time of
that functional in the relaxation to steady non-equilibrium. There also appears a relation
with recent extensions of the Clausius heat theorem close to equilibrium. The positivity of
δ2EP immediately implies a Clausius (in)equality for the excess heat. A final and related
question concerns the operational meaning of fluctuation functionals, non-equilibrium
free energies, and how they make their access in irreversible thermodynamics.

The inter-relation of Ziegler maximum entropy production principle and Prigogine
minimum entropy production principle was analyzed by various authors [39, 42-44, 48,
50, 51, 54, 57, 59, 69, 71]. The consistency of both the principles is not evident. However,
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it was clarified that both linear and nonlinear thermodynamics may be deduced using
Ziegler principle. Moreover, this principle yields, as a particular case, Onsager variational
principle [42, 64, 216], which is valid for linear non-equilibrium thermodynamics only.
Whereas the Prigogine minimum entropy production principle follows in fact from the
Onsager-Gyarmati principle [42, 185, 186, 237] as a special case. That principle is valid
for stationary processes in the presence of free forces. Hence, Prigogine principle is less
general and has a more restricted domain of applicability than Ziegler principle.

Gyarmati carried out a careful analysis of the theory of linear and nonlinear
irreversible processes [259]. As a result he clarified and extended Onsager principle of
least dissipation of energy, by formulating a more symmetric form known as Gyarmati
principle.

Detail considerations showed that the minimum entropy production principle is con-
sistent with but different from other non-equilibrium variational principles like the max-
imum entropy production principle [260-262] or the least dissipation principle due to
Onsager and Machlup [192-194].

It was claimed by some authors [263] that Onsager principle of the least dissipation
of energy may be considered as an equivalent to the maximum entropy production prin-
ciple. For example, solutions of the linearized Boltzmann equation make an extremum of
entropy production. Authors [263] argued that, in the case of stationary processes, this
extremum is a maximum rather than a minimum. Paltridge [260-262] has formulated his
maximum entropy production principle (which may be applied to nonlinear process) in
the context of geophysical studies of the Earth climate. Paltridge has supposed that the
steady state of the atmosphere is the state of maximum entropy production due to the
specificity of heat transport.

In short, the principle of minimum entropy production is a workable scheme for lin-
ear non-equilibrium thermodynamics. It states that the steady state of an irreversible
process, i.e., the state in which the thermodynamic variables are independent of the
time, is characterized by a minimum value of the rate of entropy production. A typical
example of its effective applicability was considered by Zivi [264], who performed estima-
tion of steady-state steam-void fraction by means of the principle of minimum entropy
production. Zivi [264] carried out an analysis of steam-void fraction in a two-phase flow,
utilizing the principle that in a steady-state thermodynamic process the rate of entropy
production is minimum. The two-phase flow was idealized in the analysis to be a truly
steady-state process. The effects of liquid entrainment and wall friction on the void
fraction and slip ratio were evaluated. It was found that the slip ratio in an idealized
two-phase flow with zero wall friction and zero entrainment equals (�f/�g)1/3. Data
from a number of experiments were found to be bracketed between this result and the
result obtained by assuming complete entrainment (slip ratio = 1). It should be noted,
however, that the Prigogine principle has some limitations. It can be applied to systems
so close to equilibrium that there is only one steady state accessible.

Ziman formulated the variational principle of transport theory [265] as a general
principle of the thermodynamics of irreversible processes. He proposed to consider all
distributions of currents such that the intrinsic entropy production equals the extrinsic
entropy production for the given set of forces. Then, of all current distributions satisfying
this condition, the steady-state distribution makes the entropy production a maximum.
He noted the difference between this principle and Prigogine minimum entropy produc-
tion principle, which states that, if not all the forces acting on a system were fixed the
free forces will take such values as to make the entropy production a minimum.

Jones [266] discussed the principle of minimum entropy production in microscopic
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terms in the context of transport theory and showed that it may be considered as a
full generalization of Kohler’s principle for the solution of the semiclassical Boltzmann
equation. The principle is thus in fact a general variational principle for the expressions
of Kubo type [8] for the transport coefficients of a linear system. It was also shown
that the usual principle of minimum entropy production in macroscopic terms due to
Prigogine [237] follows from the general principle. When a magnetic field is present there
is a sense in which the principle is still valid, but one must discuss together the original
system and one identical to it except that the magnetic field is reversed.

From the other side, Niven [267] formulated a theory to predict the steady-state
position of a dissipative flow-controlled system, as defined by a control volume. His
approach was developed on the basis of the maximum entropy principle of Jaynes [5,9-11],
involving minimization of a generalized free-energy-like potential. The analysis provided
a theoretical justification of a local, conditional form of the maximum entropy production
principle, which successfully predicts the observable properties of many such systems.
The analysis revealed a very different manifestation of the second law of thermodynamics
in steady-state flow systems, which provided a driving force for the formation of complex
systems, including life.

There has been permanent interest in finding a general (universal) variational principle
of statistical mechanics [233, 267-273]. The development of the dynamical fluctuation
theories provided a framework for formulation, unification and systematic improvement of
various variational principles, namely energy dissipation and entropy production extremal
principles (see table II).

Jaynes proposed [268,269] the so-called the maximum caliber principle. Maximum cal-
iber is a general variational principle for non-equilibrium statistical mechanics [270,271].
Jaynes [268,269] gave evidence that the maximum caliber principle is indeed such a prin-
ciple. His aim was to formulate the principles for prediction of macroscopic phenomena
in general, and establish its relation to microscopic phenomena. In spite of the common
wisdom that we have understood the laws of microphysics quite well, macroscopic phe-
nomena were observed to have a rich variety that is difficult to understand. In Jaynes’
words [269]: “We see not only lifeless thermal equilibrium and irreversible approaches
to it, but lively behavior such as that of cyclic chemical reactions, lasers, self-organizing
systems, biological systems.”

In refs. [270,271] it was argued additionally that the maximum caliber principle may be
considered as a such a principle. The maximum caliber principle, a variant of maximum
entropy principle, predicts dynamical distribution functions by maximizing a path en-
tropy subject to dynamical constraints, such as average fluxes. It was shown [270, 271]
that the maximum caliber principle leads to standard results for systems close to equi-
librium, including the Green-Kubo relations, Onsager reciprocal relations of coupled
flows, and Prigogine principle of minimum entropy production as particular cases. It
was emphasized that the maximum caliber principle does not require any notion of “local
equilibrium”, or any notion of entropy dissipation, or even any restriction to material
physics. In this sense, it is more general than many traditional approaches. Authors de-
veloped some generalizations of the Onsager and Prigogine results that can be applicable
arbitrarily far from equilibrium.

Maes [273] carried out a systematic derivation of positive lower bounds for the ex-
pected entropy production rate in classical statistical mechanical systems obeying a dy-
namical large deviation principle. The logic was the same for the return to thermody-
namic equilibrium as it was for steady non-equilibria working under the condition of
local detailed balance. This approach permits to recover the recently studied “uncer-
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Table II. – Variational principles.

Principle Author(s) Year Refs.

Variational principle Onsager 1931 [190,191]

Minimum entropy production Prigogine 1947 [237]
principle

Principle of the least dissipation Onsager, Machlup 1953 [192,193]
of energy

Variational principle of transport Ziman 1956 [265]
theory

Maximum entropy principle Jaynes 1957 [9, 11]

Onsager-Gyarmati principle Gyarmati 1967/70 [259]

Glansdorff-Prigogine stability Glansdorff-Prigogine 1970 [251]
criterion

Maximum entropy production Paltridge 1979 [260,261]
principle

Maximum rate of entropy Ziegler 1987 [64,216]
production principle

Maximum caliber principle Jaynes 1980 [268,269]

Principle of minimum “integrated” Suzuki 2013 [274]
entropy production

tainty” relations for the entropy production, appearing in studies about the effectiveness
of mesoscopic machines. In general, Maes refinement of the positivity of the expected
entropy production rate was obtained in terms of a positive and even function of the ex-
pected current(s) which measures the dynamical activity in the system, a time-symmetric
estimate of the changes in the system’s configuration. Also underdamped diffusions may
be included in the analysis. Many additional complementary studies of the entropy
production of the steady non-equilibrium states were carried out in refs. [275-282]

9. – Linear response formalism and entropy production

Under the influence of the external driving forces F1(t), . . . , Fn(t), the energy and
entropy of a system can increase. It is of importance to consider first [8] the change of the
energy of a system with Hamiltonian H under the influence of the external perturbation
Hext(t) = −

∑
i Fi(t)ai. Here Fi(t) ∼ exp(εt); t → −∞. The quantities ai are dynamical

variables, and Fi(t) is a kind of force with which the external field acts on the variable
ai. Then the perturbation can be represented as Hext(t) = −(F(t)a). It should be
stressed that taking the perturbation in the above form, we assume that Fi(t = 0) = 0
(or 〈ai〉0 = 0) for a state of statistical equilibrium [8].

The Hamiltonian of the total system is of the form

H = H + Hext.(61)
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The statistical operator ρ satisfies the quantum Liouville equation [8, 13]

ih̄
∂

∂t
ρ = [H + Hext(t), ρ].(62)

The change of energy of the system under the influence of the perturbation Hext(t) is
described by the dynamical variable

dH

dt
=

1
ih̄

[H,H + Hext(t)] =
1
ih̄

[H,Hext(t)],(63)

since H does not depend explicitly on time. Then we can write the average change of
energy in the form

〈
dH

dt

〉
= Tr

(
ρ
dH

dt

)
=

d
dt

〈H〉 =
1
ih̄

〈[H,Hext(t)]〉 = −〈Ḣext〉.(64)

The operator Ḣext(t) has the meaning of the derivative of the operator with respect only
to the time variable appearing in the Heisenberg picture. It is possible to rewrite the
average change of energy in the form [8]

d
dt

〈H〉 =
∫ β

0

∫ t

−∞
〈Ḣext(t′ − ih̄λ)Ḣext(t)〉dλ dt′ = β

∫ t

−∞

(
Ḣext(t′)Ḣext(t)

)
dt′.(65)

Thus, the rate of change of the energy of the system is determined by quantum time
correlation function coupling the operators Hext(t) at different time.

The starting point for the linear thermodynamics of irreversible processes is the second
law and the concept of entropy production in an irreversible process. In any irreversible
change in a system, the rate of change in entropy consists of a part due to entropy
flow from the surroundings and a part due to changes within the system. This second
part is called the rate of entropy production, or simply the entropy production Ṡ, and is
denoted by s per unit volume. It was shown above that, according to the second law,
s must be positive. In the energy representation of the evolution of the system, the
corresponding quantity is called a dissipation function or potential, since it represents
the rate at which irrecoverable energy or work must be supplied or done to maintain the
process [37-39,42,53,184-186,218-220].

The entropy production Ṡ(t) factor appears in various problems of non-equilibrium
statistical physics. It can be calculated approximately in a semi-phenomenological ap-
proach or with the help of various advanced methods of statistical mechanics. For ex-
ample, as it was shown in paper [283], when we consider the scattering of neutrons on
the non-equilibrium statistical medium, the generalized Van Hove scattering function
S(�κ, ω, t) will contain an essential additional factor, connected with the entropy produc-
tion Ṡ(t).

There were numerous attempts to resolve the problem of entropy production within
the Kubo linear response theory [195, 199]. However, until recently, the consistent con-
sideration and derivation of entropy production within the linear response formalism was
not fully clear. We have considered above the effect of mechanical perturbation on the
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change of energy of a system. Let us summarize the influence of mechanical pertur-
bations on the change of entropy. To proceed, it is necessary to define entropy for a
non-equilibrium state [8]. In the equilibrium case it has the form

〈η〉 = −〈ln ρ〉 = −Tr(ρ ln ρ),(66)

where ρ is the statistical operator. However, 〈η〉 cannot describe the entropy of a non-
equilibrium state. Indeed, η = − ln ρ, as ρ satisfies the Liouville equation [8]

ih̄
∂η

∂t
= [H + Hext(t), η].(67)

Consequently η is an integral of motion, i.e. d/dt〈η〉 = 0, and cannot possess the prop-
erties of the entropy of a non-equilibrium state. To proceed in the framework of linear
response formalism [8] it should be assumed that the state of the system remains spa-
tially uniform and stationary in time, i.e., the energy evolved is drawn off. Then it is
natural to define the entropy by analogy with the equilibrium state by the thermodynamic
relation [8, 13]

S =
〈H〉 − μ〈N〉 − Ω

θ
,(68)

but assuming that the averaging is performed over the non-equilibrium state. Then the
entropy will be equal to minus the average of the logarithm of the equilibrium distribution

S = −〈ln ρ0〉 = −Tr(ρ ln ρ0),(69)

where ρ0 = exp((Ω−H +μN)θ−1). The rate of change of the entropy with time is equal
to

∂S

∂t
=

1
θ

d〈H〉
dt

.(70)

The effect of mechanical perturbation on the change of entropy of a system takes the
form [8]

∂S

∂t
=

1
θ

∑
i,k

∫ t

−∞
Fi(t)Lik(t − t′)Fk(t′)dt′.(71)

Here Lik = β(α̇k(t′), α̇i(t)) are the kinetic coefficients and 〈α̇i〉 =
∑

k LikFk are the linear
relations between the fluxes and the forces [8]. For a special form of external forces (e.g.,
periodically varying with time) the average rate of change of entropy may lead to the
generation of the entropy (or entropy production) in the system.

Suzuki [274, 284-288] re-analyzed the problem of irreversibility and entropy produc-
tion in transport phenomena in details. He proposed a consistent derivation [284,285] of
entropy production which is directly based on the first principles by using the projected
density matrix approach. His derivation clarified conceptually the physics of irreversibil-
ity in transport phenomena, using the symmetry of non-equilibrium states. This showed
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also the duality of current and entropy production. Suzuki showed also that the linear re-
sponse scheme is not closedwithin the first order of an external force, in order to manifest
the irreversibility of transport phenomena. New schemes of steady states were presented
by introducing relaxation-type (symmetry-separated) von Neumann equations. The con-
cept of stationary temperature Tst was introduced, which is a function of the relaxation
time τr characterizing the rate of extracting heat outside the system. The entropy pro-
duction in this steady state depends on the relaxation time. A dynamical-derivative
representation method to reveal the irreversibility of steady states was also proposed.
This derivation of entropy production was directly based on the first principles of us-
ing the projected density matrix ρ2(t) or more generally the symmetric density matrix
ρsym(t), while the previous standard argument was due to the thermodynamic energy
balance. The derivation proposed by Suzuki clarified conceptually the physics of irre-
versibility in transport phenomena, using the symmetry of non-equilibrium states, and
this showed clearly the duality of current and entropy production.

In the next paper [286] Suzuki formulated a statistical-mechanical theory on steady
states including thermal disturbance and energy supply. Some general aspects of
nonlinear transport phenomena were discussed on the basis of two kinds of formulations
obtained by extending Kubo perturbational scheme of the density matrix and Zubarev
non-equilibrium statistical operator formulation [8]. Both formulations were extended up
to infinite order of an external force in compact forms and their relationship was clarified
through a direct transformation.

In order to make it possible to apply these formulations straightforwardly to thermal
disturbance, its mechanical formulation was given by introducing the concept of a ther-
mal field ET which corresponds to the temperature gradient and by defining its conjugate
heat operator AH for a local internal energy hj of the thermal particle j. This yields a
transparent derivation of the thermal conductivity κ of the Kubo form and the entropy
production (dS/dt)irr. To describe the steady state of the system, a statistical-mechanical
formulation was proposed with a special approach which includes energy supply to the
system from outside by extending the symmetry-separated von Neumann equation given
in the previous paper [284]. This yields a general theory based on the density-matrix
formulation on a steady state with energy supply inside and heat extraction outside. Fur-
thermore, this steady state gives a positive entropy production. The general formulation
of the current yields a compact expression of the time derivative of entropy production,
which yields the plausible justification of the principle of minimum entropy production
in the steady state even for nonlinear responses.

A new variational principle of steady states was formulated by Suzuki [274] with
the help of introducing an integrated type of energy dissipation (or entropy production)
instead of instantaneous energy dissipation. This new principle is valid both in linear
and nonlinear transport phenomena. Suzuki [274] called this new general principle of
minimum “integrated” entropy production (or energy dissipation) by realization of the
“Prigogine dream”. He claimed also that the new principle does not contradict the
Onsager-Prigogine principle of minimum instantaneous entropy production in the lin-
ear regime, but it is conceptually different from the latter which does not hold in the
nonlinear regime. Applications of this theory to electric conduction, heat conduction,
particle diffusion and chemical reactions were considered. The irreversibility (or positive
entropy production) and long time tail problem in Kubo formula were also discussed in
this context. This constitutes the complementary explanation of the theory of entropy
production given in the previous papers [284-286].

The mechanism of entropy production in transport phenomena was discussed by
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Suzuki [288] again by emphasizing the role of symmetry of non-equilibrium states and also
by reformulating Einstein theory of Brownian motion to derive entropy production from
it. Separated variational principles of steady states for multi external fields {Xi} and
induced currents {Ji} were proposed by extending the principle of minimum integrated
entropy production found earlier for a single external field. The basic strategy of this
theory on steady states was to take in all the intermediate processes from the equilibrium
state to the final possible steady states in order to study the irreversible physics even in
the steady states. As an application of this principle, Glansdorff-Prigogine evolution cri-
terion inequality (or stability condition) was derived in the stronger form for individual
force {Xi} and current {Ji} even in nonlinear responses which depend on all the external
forces {Xk} nonlinearly. This was called “separated evolution criterion”. Some explicit
demonstrations of the general theory to simple electric circuits with multi external fields
were given in order to clarify the physical essence of the theory and to realize the condi-
tion of its validity concerning the existence of the solutions of the simultaneous equations
obtained by the separated variational principles.

To summarize, in the approach of Suzuki [274, 284-288], a workable invention has
been used, namely the steady state of the system within the formalism of linear response
theory. To describe the steady state of the system, a statistical-mechanical formulation
was proposed with a special approach which includes energy supply to the system from
outside.

It is worth noting that there exists a substantial distinction of the standard linear
response theory and of the Zubarev’s method of the non-equilibrium statistical oper-
ator [8, 13, 52]. In essence, the linear response theory is an expansion from the global
equilibrium state whereas the non-equilibrium statistical operator approach uses the ex-
pansion from the local (quasi-equilibrium) state. Hence it may provide a more consistent
description of various non-equilibrium nonlinear processes.

10. – NSO method, extremal principles and entropy production

In the present section we discuss tersely the Zubarev method [8] of non-equilibrium
statistical operator (NSO) viewed in the context of entropy production.

In equilibrium statistical mechanics the distribution function is chosen so that averages
over the ensemble are in exact agreement with the incomplete (macroscopic) knowledge
of the state of the system at some specified time. Then the expected development of
the system at subsequent times is modelled via the average behavior of members of the
representative ensemble.

In the NSO approach [8], the non-equilibrium statistical operator may be deduced
from the extremum condition on the information entropy for fixed values of the ther-
modynamic coordinates at any past time. Note that it can be obtained also on the
basis of other considerations. It was discussed above that the theorem of Prigogine on
the minimum entropy production [237] and its generalization, namely the Glansdorff-
Prigogine theorem [251], can be related to the condition of maximum entropy for a
local-equilibrium (or quasi-equilibrium) distribution. For a precise definition of a local-
equilibrium ensemble, it is necessary to define the distribution function for the statistical
operator corresponding to it. We gave already convincing arguments that in a system
situated in stationary external conditions, a certain stationary distribution is established,
which we called a stationary local-equilibrium distribution. If the external conditions de-
pend on time, the local-equilibrium distribution will be non-stationary. The assumption
of local equilibrium is a basic and necessary assumption in linear irreversible thermody-
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namics [8,13]. It enables us to apply the equations of equilibrium thermodynamics, such
as the Gibbs equation, to local volume elements in a system. The entropy and other
thermodynamic properties of the system can then be defined in terms of local, intensive
state variables. The assumption leads to the concept of an entropy production in a system
subject to irreversible processes [57,284-286].

The simplest method of constructing the local-equilibrium statistical operator (or
distribution function) is based on information theory as was discussed in detail in refs. [8,
13]. The statistical operator is determined from the maximum of the information entropy,
which is equal to [8]

Sinf = −〈ln ρ〉 = −Tr(ρ ln ρ), (Tr ρ = 1).(72)

For the construction of a non-equilibrium statistical operator [8, 13] the basic hypothe-
sis is that after a small time interval τ the non-equilibrium distribution is established.
Moreover, it is supposed that it is weakly time dependent by means of its parameters
only. Then the statistical operator ρ for t ≥ τ can be considered as an integral of motion
of the quantum Liouville equation

∂ρ

∂t
+

1
ih̄

[ρ,H] = 0.(73)

Here ∂ρ/∂t denotes time differentiation with respect to the time variable on which the
relevant parameters Fm depend. It is important to note once again that ρ depends on
t by means of Fm(t) only. These parameters are given through the external conditions
for our system and, therefore, the term ∂ρ/∂t is the result of the external influence upon
the system; this influence causes the system to be non-stationary. In other words we
may consider that the system is in thermal, material, and mechanical contact with a
combination of thermal baths and reservoirs maintaining the given distribution of the
parameters Fm. For example, it can be the densities of energy, momentum, and particle
number for the system which is macroscopically defined by given fields of temperature,
chemical potential and velocity. It is assumed that the chosen set of parameters is
sufficient to characterize macroscopically the state of the system. Thus the choice of the
set of the relevant parameters is dictated by the external conditions for the system under
consideration.

Hence, it was assumed that a non-equilibrium statistical ensemble can be character-
ized by a small set of relevant operators Pm(t) (quasi-integrals of motion) and that the
NSO is a functional of these operators,

ρ(t) = ρ{. . . Pm(t) . . .}.(74)

For the description of the hydrodynamic stage of the irreversible process the energy,
momentum and number of particles densities, H(x), p(x), ni(x) should be chosen as
the operators Pm(t). For the description of the kinetic stage the occupation numbers of
one-particle states can be chosen [52, 289]. It is necessary to take into account that ρ(t)
satisfies the Liouville equation.

Hence the quasi-equilibrium (local-equilibrium) Gibbs-type distribution will have the
form

ρq = Q−1
q exp

(
−
∑
m

Fm(t)Pm

)
,(75)
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where the parameters Fm(t) have the meaning of time-dependent thermodynamic pa-
rameters, e.g., of temperature, chemical potential, and velocity (for the hydrodynamic
stage), or the occupation numbers of one-particle states (for the kinetic stage). The
statistical functional Qq is defined by demanding that the operator ρq be normalized and
equal to

Qq = Tr exp

(
−
∑
m

Fm(t)Pm

)
.(76)

In addition, it was shown that there exists a general method for choosing a suitable quasi-
equilibrium distribution [8]. For the state with the extremal value of the informational
entropy [8, 13]

S = −Tr(ρ ln ρ),(77)

provided that

Tr(ρPm) = 〈Pm〉q; Tr ρ = 1,(78)

it is possible to construct a suitable quasi-equilibrium ensemble [8]. Here the notation
used is 〈. . .〉q = Tr(ρq . . .). Then the corresponding quasi-equilibrium (or local equilib-
rium) distribution has the form [8]

ρq = exp

(
Ω −

∑
m

Fm(t)Pm

)
≡ exp(−S(t, 0)),(79)

Ω = ln Tr exp

(
−
∑
m

Fm(t)Pm

)
,

where S(t, 0) can be called the entropy operator. Indeed, the conditional extremum [8]
of the functional (77) corresponds to the extremum of

Φ(ρ) = −Tr(ρ ln ρ) −
∑
m

Fm Tr(ρPm) + λ Tr ρ,(80)

where Fm(t) and λ denote Lagrange multipliers. From the condition

δΦ(ρ) = 0,(81)

we find the expression for ρq.
The quasi-equilibrium statistical operator preserves the thermodynamic formulae for

the parameters Fm(t)

δΦ
δFm

= −〈Pm〉q,(82)

but the Liouville equation is not satisfied.
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In other words, the form of the quasi-equilibrium statistical operator was constructed
in such a way that to ensure that the thermodynamic equalities for the relevant param-
eters Fm(t)

δ ln Qq

δFm(t)
=

δΩ
δFm(t)

= −〈Pm〉q ;
δS

δ〈Pm〉q
= Fm(t)(83)

are satisfied. It is clear that the variables Fm(t) and 〈Pm〉q are thermodynamically
conjugate. Since the operator ρq itself does not satisfy the Liouville equation, it should
be modified [8] in such a way that the resulting statistical operator satisfies the Liouville
equation. This is the most delicate and subtle point of the whole method [8, 13, 289].
In the standard procedure [8] the suitable variables (relevant operators), which are time
dependent by means of Fm(t), should be constructed by means of taking the invariant
part of the operators incoming into the logarithm of the statistical operator with respect
to the motion with Hamiltonian H. Thus, by definition, a special set of operators should
be constructed which depends on the time through the parameters Fm(t) by taking
the invariant part of the operators Fm(t)Pm occurring in the logarithm of the quasi-
equilibrium distribution, i.e.,

Bm(t) = Fm(t)Pm = ε

∫ 0

−∞
eεt1Fm(t + t1)Pm(t1)dt1(84)

= Fm(t)Pm −
∫ 0

−∞
dt1e

εt1
(
Fm(t + t1)Ṗm(t1) + Ḟm(t + t1)Pm(t1)

)
,

where (ε → 0) and

Ṗm =
1
ih̄

[Pm,H]; Ḟm(t) =
dFm(t)

dt
.

The parameter ε > 0 will be set equal to zero, but only after the thermodynamic limit [4]
has been taken. Thus, the invariant part is taken with respect to the motion with
Hamiltonian H. The operators Bm(t) satisfy the Liouville equation in the limit (ε → 0)

∂Bm

∂t
− 1

ih̄
[Bm,H] = ε

∫ 0

−∞
dt1e

εt1
(
Fm(t + t1)Ṗm(t1) + Ḟm(t + t1)Pm(t1)

)
.(85)

The operation of taking the invariant part, or smoothing the oscillating terms, is used
in the formal theory of scattering to set the boundary conditions which exclude the
advanced solutions of the Schrödinger equation [8, 13]. It is most clearly seen when the
parameters Fm(t) are independent of time. Differentiating Pm with respect to time gives

∂Pm(t)
∂t

= ε

∫ 0

−∞
eεt1 Ṗm(t + t1)dt1.(86)

Pm(t) can be called the integrals (or quasi-integrals) of motion, although they are con-
served only in the limit (ε → 0). It is clear that for the Schrödinger equation such
a procedure excludes the advanced solutions by choosing the initial conditions. In the
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present context this procedure leads to a selection of the retarded solutions of the Liou-
ville equation.

Then the non-equilibrium statistical operator ρ can be written as

ρ = exp(ln ρq) = exp
(

ε

∫ 0

−∞
dt1e

εt1 exp
(

iHt1
h̄

)
ln ρq(t + t1) exp

(
−iHt1

h̄

))
(87)

= exp
(
−S(t, 0)

)
= exp

(
−ε

∫ 0

−∞
dt1e

εt1S(t + t1, t1)
)

= exp
(
−S(t, 0) +

∫ 0

−∞
dt1e

εt1 Ṡ(t + t1, t1)
)

.

Here

Ṡ(t, 0) =
∂S(t, 0)

∂t
+

1
ih̄

[S(t, 0),H];(88)

Ṡ(t, t1) = exp
(

iHt1
h̄

)
Ṡ(t, 0) exp

(
−iHt1

h̄

)
.

It is required [8] that the normalization of the statistical operator ρq is preserved as well as
the statistical operator ρ, and the constraint 〈Pm〉t = 〈Pm〉tq is fulfilled. For the particular
choice of Fm which corresponds to the statistical equilibrium we obtain ρ = ρq = ρ0.
It determines the parameters Fm(t) such that Pm and Fm(t) are thermodynamically
conjugate, i.e.

δλ

δFm
= −〈Pm〉q = −〈Pm〉.(89)

The method of the non-equilibrium statistical operator is a very useful tool to ana-
lyze and derive generalized transport and kinetic equations [8, 13, 52, 195, 239, 289]. In
refs. [13,52,239,289] the generalized kinetic equations for the system weakly coupled to a
thermal bath have been derived. The aim was to describe the relaxation processes in two
weakly interacting subsystems, one of which is in non-equilibrium state and the other is
considered as a thermal bath. We took the quasi-equilibrium statistical operator ρq in
the form

ρq(t) = exp(−S(t, 0)), S(t, 0) = Ω(t) +
∑
αβ

PαβFαβ(t) + βH2.(90)

Here Fαβ(t) are the thermodynamic parameters conjugated with Pαβ , and β is the re-
ciprocal temperature of the thermal bath; Ω = ln Tr exp(−

∑
αβ PαβFαβ(t)− βH2). The

non-equilibrium statistical operator in this case has the form

ρ(t) = exp(−S(t, 0));(91)

S(t, 0) = ε

∫ 0

−∞
dt1e

εt1

⎛
⎝Ω(t + t1) +

∑
αβ

PαβFαβ(t) + βH2

⎞
⎠ .

The parameters Fαβ(t) are determined from the condition 〈Pαβ〉 = 〈Pαβ〉q.
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In the derivation of the kinetic equations we used the perturbation theory in
a weakness of interaction. The kinetic equations for 〈Pαβ〉 were derived in the
form [13,52,239,289]

d〈Pαβ〉
dt

=
1
ih̄

(Eβ − Eα)〈Pαβ〉 −
1
h̄2

∫ 0

−∞
dt1e

εt1〈[[Pαβ , V ], V (t1)]〉q.(92)

The last term on the right-hand side of eq. (92) can be called the generalized collision
integral. Thus, we can see that the collision term for the system weakly coupled to
the thermal bath has the convenient form of a double commutator. It should be em-
phasized that the assumption about the model form of the Hamiltonian of a system
(H1) interacting with thermal bath (H2) H = H1 + H2 + V is non-essential for the
derivation [13, 52, 239, 289]. Equation (92) will be fulfilled for the general form of the
Hamiltonian of a small system weakly coupled to a thermal bath.

The change of the entropy during the evolution of the small subsystem to equilibrium
has the form

S = −〈ln ρq〉 = β〈H2 − μ2N2〉 +
∑
αβ

Fαβ(t)〈Pαβ〉 − ln Qq.(93)

After differentiation on time t we obtain

dS

dt
= β〈J2〉 +

∑
αβ

Fαβ(t)
d〈Pαβ〉

dt
.(94)

Now we substitute in this equation the expression

J2 =
1
ih̄

[(H2 + V ),H].(95)

Then we obtain

dS

dt
=
∑
αβ

Xαβ(t)
d〈Pαβ〉

dt
,(96)

which is the standard expression for the entropy production of the thermodynamics
of irreversible processes [8, 185, 186]. Here the Xαβ is the generalized “thermodynamic
force”.

11. – Conclusions

We carried out in the present review a comparative study of the various approaches
to the concepts of entropy and entropy production and analyzed tersely the extremal
principles of statistical thermodynamics. The paper aims to clarify the notion of en-
tropy, entropy production and its generalizations. We also touched briefly the intriguing
problem of the directionality of time and causality. A discussion of those features was
concentrated on the foundational issues of non-equilibrium statistical thermodynamics
and the related conceptual problems of irreversibility.
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We show that there exists a substantial distinction of the standard linear response
theory and of Zubarev’s method of non-equilibrium statistical operator [8, 13, 52]. This
distinction is connected with the procedure of averaging in both methods. The lin-
ear response theory is an expansion from the global equilibrium state whereas the
non-equilibrium statistical operator approach uses the expansion from the local (quasi-
equilibrium) state. Hence it may provide a more consistent description of various non-
equilibrium nonlinear processes.

We analyzed and compared the extremal principles of thermodynamics and demon-
strated their interrelation and use. We concluded that information theory [12, 13], in
conjunction with the techniques developed by Jaynes [11, 17, 18] is a useful tool in vari-
ous problems of statistical thermodynamics. The Gibbs distributions have a non-trivial
common property: subject to certain constraints they maximize a functional known in
statistical mechanics as entropy, and in information theory, probability theory and math-
ematical statistics as information [146]. The approach based on the information theory
in the spirit of the principle of maximum entropy has been used in numerous works on
statistical mechanics [8, 12, 13, 33, 39] to derive the fundamental statistical mechanical
distributions.

We show also that the effective approach to the construction of Gibbs-type ensembles
for non-equilibrium systems is the method of non-equilibrium statistical operator devel-
oped by Zubarev [8]. In that method it was assumed that the chosen set of parameters
{Pm} is sufficient to characterize macroscopically the state of the system. The choice of
the set of the relevant parameters is dictated by the external conditions for the system
under consideration. It was argued that there exists a general method for choosing a
suitable quasi-equilibrium distribution [8, 13] by considering the state with the extremal
value of the informational entropy. The quasi-equilibrium distribution is not necessarily
close to the stationary stable state. The form of the quasi-equilibrium statistical operator
was constructed so to ensure that the thermodynamic equalities for the relevant parame-
ters Fm(t) are satisfied. Then it is possible to obtain the statistical operator in the form
which corresponds to the extremum of the information entropy for given averages 〈Pm〉t
in an arbitrary moment of the past.

Our comparative study shows that the non-equilibrium statistical operator method
may offers several advantages over the standard technique for the description of non-
equilibrium phenomena and for the description of time evolution.
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