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The approach to the theory of many-particle interacting systems from a unified stand-16

point, based on the variational principle for free energy is reviewed. A systematic discus-17

sion is given of the approximate free energies of complex statistical systems. The analysis18

is centered around the variational principle of Bogoliubov for free energy in the context19

of its applications to various problems of statistical mechanics. The review presents a20

terse discussion of selected works carried out over the past few decades on the theory21

of many-particle interacting systems in terms of the variational inequalities. It is the22

purpose of this paper to discuss some of the general principles which form the math-23

ematical background to this approach and to establish a connection of the variational24

technique with other methods, such as the method of the mean (or self-consistent) field25

in the many-body problem. The method is illustrated by applying it to various systems26

of many-particle interacting systems, such as Ising, Heisenberg and Hubbard models,27

superconducting (SC) and superfluid systems, etc. This work proposes a new, general28

and pedagogical presentation, intended both for those who are interested in basic aspects29

and for those who are interested in concrete applications.30

Keywords: Mathematical physics; statistical mechanics; variational methods; many-31

particle interacting systems; the variational principle of Bogoliubov; Bogoliubov32

inequality; generalized mean fields; model Hamiltonians of many-particle interacting33

systems.34

PACS numbers: 05.30-d, 05.30.Fk, 05.30.Jp, 05.70.-a, 05.70.Fh, 02.90.+p35

1. Introduction36

The fundamental works of Bogoliubov on many-body theory and quantum field37

theory,1–4 on the theory of phase transitions and on the general theory of38

interacting systems provided a new perspective in various fields of mathematics and39

physics. The variational principle of Bogoliubov1–5 is a useful working tool and has40
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been widely applied to many problems of physical interest. It has a well-established1

place in the many-body theory and condensed matter physics.6–14 The variational2

principle of Bogoliubov has led to a better understanding of various physical phe-3

nomena such as superfluidity,1–4 superconductivity,1–4,15 phase transitions1–4,15,164

and other cooperative phenomena,5,15,17,18 etc.5

Variational methods in physics and applied mathematics were formulated long6

ago.19–28 It was Maupertuis,25 who wrote in 1774 the celebrated statement:7

“Nature, in the production of its effects, does so always by simplest8

means.”9

Since that time variational methods have become an increasingly popular tool10

in mechanics, hydrodynamics, theory of elasticity, etc. Moreover, the variational11

methods are useful and workable tools for many areas of the quantum theory of12

atoms and molecules,21,29–32 statistical many-particle physics and condensed matter13

physics. The variational methods have been applied widely in quantum mechanical14

calculations,21,29–32 in theory of many-particle interacting systems6–14 and in theory15

of transport processes.33,34 As a result of these efforts, many important and effective16

methods were elaborated by various researchers.17

On the other hand, the study of the quasiparticle excitations in many-particle18

systems has been one of the most fascinating subjects for many years.5,15,17,1819

The quantum field theoretical techniques have been widely applied to the statis-20

tical treatment of a large number of interacting particles. Many-body calculations21

are often done for model systems of statistical mechanics using the perturbation22

expansion. The basic procedure in many-body theory is to find the relevant unper-23

turbed Hamiltonian and then take into account the small perturbation operator.24

This procedure, which works well for the weakly interacting systems, needs a suit-25

able reformulation for the many-body systems with complicated spectra and strong26

interaction.27

The considerable progress in studying the spectra of elementary excitations and28

thermodynamic properties of many-body systems has been for the most part due to29

the development of the temperature-dependent Green’s functions methods.5,15,17,1830

The very important concept of the whole method is the concept of the general-31

ized mean field.17,35–37 These generalized mean fields have a complicated struc-32

ture for the strongly correlated case and are not reduced to the functional of the33

mean densities of the electrons. The concept of the generalized mean fields and34

the relevant algebra of operators from which the corresponding Green’s functions35

are constructed are the central ones to our treatment of the strongly interacting36

many-body systems.37

It is the purpose of this paper to discuss some of the general principles which38

form the physical and mathematical background to the variational approach and39

to establish the connection of the variational technique with other methods in the40

theory of many-body problem.41

1530010-2



July 3, 2015 13:21 IJMPB S0217979215300108 page 3

2nd Reading

Variational principle of Bogoliubov

2. The Variational Principles of Quantum Theory1

It is well known that in quantum mechanics the eigenfunction ψi of the lowest state2

of any system has the property of making the integral3

∫

ψ∗
iHψid

3r (1)4

a minimum. The value of integral is the corresponding eigenvalue Ei of the Hamil-5

tonian H of a system. These circumstances lead to a specific approximate method6

(the variational method) of finding ψi and Ei by minimizing integral (1) among a7

restricted class of functions.8

The variational method21,29–32 enables one to make estimates of energy levels9

by using trial wavefunctions ψT10

ET =

∫

ψ∗
THψTd

3r
∫

ψ∗
TψTd

3r
. (2)11

The ground state E0 gives the lowest possible energy the system can have. Hence,12

for the approximation of the ground state energy one would like to minimize the13

expectation value of the energy with respect to a trial wavefunction.14

In other words, the variational principle states that the ground state energy15

of a quantum mechanical system is less than or equal to the expectation value of16

the Hamiltonian with an arbitrary wavefunction. Given a trial wavefunction with17

adjustable parameters, the best values of the parameters are those which mini-18

mize the expectation value of the Hamiltonian. The variational principle consists19

in adjusting the available parameters, so as to maximize this lower bound.20

An important method of finding approximate ground state energies and wave-21

functions is called as the Rayleigh–Ritz variational principle.21,29–31 The Rayleigh–22

Ritz variational principle for the ground state energy is the starting point of many23

computations and approximations in quantum mechanics and quantum chemistry24

of atoms and molecules. This principle states that the expectation value of H in25

any state |ψ〉 is always greater than or equal to the ground state energy, E0:26

〈ψ|H |ψ〉
〈ψ|ψ〉 ≥ E0 (3)27

or28

〈H〉 ≥ 〈ψ|H |ψ〉 ≥ E0 . (4)29

Here |ψ〉 ∈ G is arbitrary pure quantum state and H is a Hamiltonian acting on30

a Hilbert space G. This relation becomes equality only when ψ = ψ0. Thus, this31

principle gives the upper bound to the ground state energy.32

It will be instructive also to remind how the variational principle of quantum33

mechanics complements the perturbation theory.38,39 For this aim let us consider34
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the Rayleigh–Schrödinger perturbation expansion. The second-order level-shift E0
21

of the ground state of a system has the form:2

E0
2 =

∑

j 6=0

〈ψ0|V |ψj〉〈ψj |V |ψ0〉
(E0 − Ej)

=
∑

j 6=0

|V0j |2
(E0 − Ej)

, (5)3

where V0j = 〈ψ0|V0j |ψj〉 and |ψ0〉 is the unperturbed ground state. It is clear then4

that E0
2 is always negative.5

The variational principle of quantum mechanics states that the ground state6

energy E0 for the total Hamiltonian H is the minimum of the energy functional7

E{Ψ} = 〈Ψ|H |Ψ〉 , (6)8

where Ψ is a trial wavefunction. It should be noted that it is possible to establish9

that the sum of all the higher-order level shifts E0
n, starting with n = 2, will be10

negative, provided the relevant perturbation series will converge to E0.11

To confirm this statement let us consider again the Hamiltonian12

H = H0 + λV . (7)13

It is reasonable to suppose that the ground state energy E0 = E0(λ) and the14

ground state Ψ = Ψ(λ) of the Hamiltonian H are analytic functions (at least for15

small λ). Note that when one considers the many-body problem, the concept of16

relative boundedness is of use, where a perturbation λV is small compared to H017

in a sense that18

(H0)
2 ≥ (λ2V 2) .19

This means simply that the eigenvalues of the operator ((H0)
2 − (λ2V 2)) are non-20

negative. Then the corresponding perturbation expansion may be written in the21

form:22

E0 = E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + λ3E

(3)
0 + · · · , (8)23

where E0
0 = 〈ψ0|H |ψ0〉 and E1

0 = 〈ψ0|V |ψ0〉. The variational approach states that24

E0 = min(〈Ψ|H0 + λV |Ψ〉) . (9)25

Thus, we obtain26

λ2E
(2)
0 + λ3E

(3)
0 + · · · = E0 − (E

(0)
0 + λE

(1)
0 )27

= (min{〈Ψ|H0 + λV |Ψ〉} − 〈ψ0|H0 + λV |ψ0〉) . (10)28

In this expression, the second part must satisfy the condition29

(min{〈Ψ|H0 + λV |Ψ〉} − 〈ψ0|H0 + λV |ψ0〉) ≤ 0 . (11)30

In addition, in general case the relevant ground state Ψ which yields a minimum31

will not coincide with ψ0. Thus, we obtain32

λ2E
(2)
0 + λ3E

(3)
0 + · · · < 0 . (12)33
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The last inequality can be rewritten as1

E
(2)
0 < (λE

(3)
0 + λ2E

(4)
0 + · · · ) . (13)2

In the limit λ → 0, we have that E
(2)
0 < 0. Thus, the variational principle of3

quantum mechanics confirms the results of the perturbation theory.404

It is worth mentioning that the Rayleigh–Ritz variational method has a long5

and interesting history.41–43 Rayleigh’s classical book Theory of Sound was first6

published in 1877. In it are many examples of calculating fundamental natural fre-7

quencies of free vibration of continuum systems (strings, bars, beams, membranes,8

plates) by assuming the mode shape and setting the maximum values of poten-9

tial and kinetic energy in a cycle of motion equal to each other. This procedure is10

the well-known Rayleigh’s Method. In 1908, Ritz laid out his famous method for11

determining frequencies and mode shapes, choosing multiple admissible displace-12

ment functions and minimizing a functional involving both potential and kinetic13

energies. He then demonstrated it in detail in 1909 for the completely free square14

plate. In 1911, Rayleigh wrote a paper congratulating Ritz on his work, but stating15

that he himself had used Ritz’s method in many places in his book and in another16

publication.17

Subsequently, hundreds of research articles and many books have appeared18

which use the above method, some calling it the “Ritz method” and others as19

the “Rayleigh–Ritz method.” The article41 examined the method in detail, as Ritz20

presented it, and as Rayleigh claimed to have used it. Leissa41 concluded that,21

although Rayleigh did solve a few problems which involved minimization of a fre-22

quency, these solutions were not by the straightforward, direct method presented23

by Ritz and used subsequently by others. Therefore, Rayleigh’s name should not24

be attached to the method. Additional informative comments were carried out in25

Refs. 42 and 43.26

3. The Helmholtz Free Energy and Statistical Thermodynamics27

Variational methods in thermodynamics and statistical mechanics have been used28

widely since the groundbreaking works of Gibbs.26–28 According to Gibbs’ approach,29

a workable procedure for the development of the statistical mechanical ensemble30

theory is to introduce the Gibbs entropy postulate. Hence, as a result of the Gibbs31

ensemble method, the entropy S can be expressed in the form of an average for all32

the ensembles, namely,33

S(N, V,E) = −kB
∑

i

pi ln pi = −kBΩ
(

1

Ω
ln

1

Ω

)

= kB lnΩ(N, V,E) , (14)34

where the summation over i denotes a general summation over all states of the35

system and pi is the probability of observing state i in the given ensemble and kB36

is the Boltzmann constant. This relation links entropy S and probability pi.37
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It can be said that in this context the entropy is a state function, which according1

to the second law27,44 is defined by the relation2

dS = β(dE − dF ) . (15)3

The energy E and the Helmholtz free energy F are the state functions.27,44 The4

proportionality coefficient β was termed as the thermodynamic temperature (β =5

1/kBT ) of the surrounding with which the system exchanges by heat Q and work6

W .7

Thus, the postulate of equal probabilities in the microcanonical ensemble45 and8

the Gibbs entropy postulate can be considered as a convenient starting points for the9

development of the statistical mechanical ensemble theory in a standard approach.2710

After postulating the entropy by means of Eq. (14), the thermodynamic equilibrium11

ensembles are determined by the following criterion for equilibrium:12

(δS)E,V,N = 0 . (16)13

This variational scheme is used for each ensemble (microcanonical, canonical and14

grand canonical) with different constraints for each ensemble. In addition, this15

procedure introduces Lagrange multipliers which, in turn, must be identified with16

thermodynamic intensive variables (T, P ). On the other hand, the procedure of17

introducing Lagrange multipliers and the task of identifying them with the thermo-18

dynamic intensive properties can be clarified by invoking a more general criterion19

for thermodynamic equilibrium.20

From the Gibbs entropy postulate, Eq. (14), and the definitions of average and21

the normalization constraint
∑

i pi = 1, one obtains22

δS = −kB
∑

i

(1 + ln pi)δpi , (17)23

δE =
∑

i

Eiδpi , (18)24

δV =
∑

i

Viδpi , (19)25

∑

i

δpi = 0 . (20)26

Using a Lagrange multiplier λ together with the variational condition, we obtain27

∑

i

(Ei + PVi + λ+ kBT + kBT ln pi)δpi ≥ 0 . (21)28

Here, all δpi are considered as the independent variables. Thus, we deduce that29

pi = exp(−βλ− 1− β(PVi + Ei)), β = (kBT )
−1 . (22)30

The Lagrange multiplier λ can be determined directly from the definition of entropy31

(14).32

S = −kB
∑

i

pi

(

Ei + PVi + λ+ kBT

kBT

)

=
(E + PV + λ+ kBT )

T
. (23)33
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Thus, we arrive at1

λ+ kBT = TS − E − PV = −G , (24)2

pi = expβ(G− PVi − Ei) . (25)3

Here, G is the Gibbs energy (or Gibbs free energy). It may also be defined with4

the aid of the Helmholtz free energy G = H − TS. Here, H(S, P,N) is the5

enthalpy.44 The usefulness of the thermodynamic potentials G and F may be clar-6

ified within the statistical thermodynamics.27 For the microcanonical ensemble one7

should substitute Ei = E and Vi = V , which are fixed for every system, and since8

G− PV − E = S Eq. (25) becomes9

pi = e−S/kB . (26)10

For the canonical ensemble one should substitute Vi = V , which is given for each11

system, and in this case Eq. (25) can be written as12

pi = eβ(F−Ei) . (27)13

Here, F = G − PV denotes the Helmholtz free energy. Thus, the free energy F is14

defined by15

F = E − TS . (28)16

The Helmholtz free energy describes an energy which is available in the form of17

useful work.18

The second law of thermodynamics asserts that in every neighborhood of any19

state A in an adiabatically isolated system there exist other states that are in-20

accessible from A. This statement in terms of the entropy S and heat Q can be21

formulated as22

dS = dQ/T + dσ . (29)23

Thus, the only states available in an adiabatic process (dQ = 0 or dS = dσ) are24

those which lead to an increase of the entropy S. Here, dσ ≥ 0 defines the entropy25

production σ due to the irreversibility of the transformation.26

It is of use to analyze the expression27

dF = dE − TdS − SdT = −SdT − Tdσ − PdV +
∑

µiNi . (30)28

Free energy change ∆F of the system during the transformation of the system29

describes the balance of the work exchanged with the surroundings. If ∆F > 0, ∆F30

represents the minimum work that must be incurred for the system to carry out31

the transformation. In case ∆F < 0, |∆F | represents the maximum work that can32

be obtained from a system during the transformation. It is obvious that33

dF = dE − Tdσ − SdT . (31)34
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In a closed system without chemical reaction and in the absence of any other energy1

exchange, the variation ∆F = −SdT − TdS − PdV +
∑

µiNi can be rewritten in2

the form:3

dF = −Tdσ ≤ 0. (32)4

It means that function F decreases and tends towards a minimum corresponding5

to equilibrium. Thus, the Helmholtz free energy is the thermodynamic potential of6

a system subjected to the constant constraints T, V,Ni.7

The Gibbs free energy (free enthalpy) is defined by8

G = H − TS = F + PV . (33)9

The physical meaning of the Gibbs free energy is clarified when considering the10

evolution of a system from a certain initial state to a final state. The Gibbs free11

energy change ∆G then represents the work exchanged by the system with its en-12

vironment and the work of the pressure forces, during a reversible transformation13

of the system. Here, H = E + V P = TS + V P +
∑

µiNi is the thermodynamic14

potential of a system termed by enthalpy.44 The Gibbs’ free energy is the thermo-15

dynamic potential of a system subjected to the constant constraints T, P,Ni. In16

this case,17

dG = −Tdσ ≤ 0 . (34)18

Thus, in a closed system without chemical reaction and in the absence of any other19

energy exchange at constant temperature, pressure and amount of substance, the20

function G can only decrease and reach a minimum at equilibrium.21

It will be of use to mention another class of thermodynamic potentials, termed22

by the Massieu–Planck functions. These objects may be deduced from the funda-23

mental relations in the entropy representations, S = S(E, V,N). The corresponding24

differential form may be written as25

dS =
1

T
dE +

P

T
dV − µ

T
dN . (35)26

Thus, the suitable variables for a Legendre transform will be 1/T , P/T and µ/T .27

In some cases working with these variables is more convenient.28

It is worth noting that in terms of the Gibbs ensemble method the free energy29

is the thermodynamic potential of a system subjected to the constant constraints30

T, V,Ni. Moreover, the thermodynamic potentials should be defined properly in31

the thermodynamic limit. The problem of the thermodynamic limit in statistical32

physics was discussed in detail by Kuzemsky.45 To clarify this notion, let us consider33

the logarithm of the partition function Q(θ, V,N):34

F (θ, V,N) = −θ lnQ(θ, V,N) . (36)35

This expression determines the free energy F of the system on the basis of canonical36

distribution. The standard way of reasoning in the equilibrium statistical mechanics37

1530010-8
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does not require the knowledge of the exact value of the function F (θ, V,N). For real1

system it is sufficient to know the thermodynamic (infinite volume) limit15,27,45,46:2

lim
N→∞

F (θ, V,N)

N
|V/N=const. = f(θ, V/N) . (37)3

Here, f(θ, V/N) is the free energy per particle. It is clear that this function deter-4

mines all the thermodynamic properties of the system.5

Let us summarize the criteria for equilibrium briefly. In a system of constant V6

and S, the internal energy has its minimum value, whereas in a system of constant7

E and V , the entropy has its maximum value.8

It should be noted that the pair of independent variables (V, S) is not the9

suitable one because the entropy is not convenient to measure or control. Hence, it10

would be of use to have fundamental equations with independent variables that is11

easier to control. Two convenient choices are possible. First, we take the P and T12

pair. From the practical point of view, this is a convenient pair of variables which13

are easy to control (measure). For systems with constant pressure, the best suited14

state function is the Gibbs free energy (also called free enthalpy),15

G = H − TS . (38)16

Second, the relevant pair is V and T . For systems with constant volume (and17

variable pressure), the best suited state function is the Helmholtz free energy,18

F = E − TS . (39)19

Any state function can be used to describe any system (at equilibrium, of course),20

but for a given system some are more convenient than the others. The change of21

the Helmholtz free energy can be written as22

dF = dE − TdS − SdT . (40)23

Combining this equation with dU = TdS−PdV , we obtain the relation of the form:24

dF = −PdV − SdT . (41)25

In terms of variables (T, V ) we find26

dF =

(

∂F

∂T

)∣

∣

∣

∣

V

dT +

(

∂F

∂V

)∣

∣

∣

∣

T

dV . (42)27

Comparing the equations, one can see that28

S = −
(

∂F

∂T

)∣

∣

∣

∣

V

, P =

(

∂F

∂V

)∣

∣

∣

∣

T

. (43)29

At constant T and V , the equilibrium states correspond to the minimum of30

Helmholtz free energy (dF = 0). From F = E − TS, we may suppose that low31

values of F are obtained with low values of E and high values of S.32
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In terms of a general statistical mechanical formalism,3,4,15 a many-particle1

system with Hamiltonian H in contact with a heat bath at temperature T in a2

state described by the statistical operator ρ has a free energy3

F = Tr(ρH) + kBT Tr(ρ ln ρ) . (44)4

The free energy takes its minimum value5

Feq = −kBT lnZ (45)6

in the equilibrium state characterized by the canonical distribution7

ρeq = Z−1 exp(−Hβ), Z = Tr exp(−Hβ) . (46)8

Before turning to the next topic, an important remark about the free energy will9

not be out of place here. Novak47 attempted to give a microscopic description of10

Le Chatelier’s principle48 in statistical systems. Novak has carried out interesting11

analysis based on microscopic descriptors (energy levels and their populations) that12

provides visualization of free energies and conceptual rationalization of Le Chate-13

lier’s principle. The misconception “nature favors equilibrium” was highlighted. This14

problem is a delicate one and requires a careful discussion.49 Dasmeh et al. showed4915

that Le Chatelier’s principle states that when a system is disturbed, it will shift16

its equilibrium to counteract the disturbance. However, for a chemical reaction in17

a small, confined system, the probability of observing it proceed in the opposite18

direction to that predicted by Le Chatelier’s principle, can be significant. Their19

study provided a molecular level proof of Le Chatelier’s principle for the case of a20

temperature change. Moreover, a new, exact mathematical expression was derived21

that is valid for arbitrary system sizes and gives the relative probability that a sin-22

gle experiment will proceed in the endothermic or exothermic direction, in terms23

of a microscopic phase function. They showed that the average of the time integral24

of this function is the maximum possible value of the purely irreversible entropy25

production for the thermal relaxation process. The results obtained were tested26

against computer simulations of the unfolding of a polypeptide. It was proven that27

any equilibrium reaction mixture on an average responds to a temperature increase28

by shifting its point of equilibrium in the endothermic direction.29

4. Approximate Calculations of Helmholtz Free Energy30

Statistical mechanics provides effective and workable tools for describing the31

behavior of the systems of many interacting particles. One of such approaches for32

describing systems in equilibrium consists in evaluating the partition function Z33

and then the free energy.34

Now we must take note of the different methods for obtaining the approximate35

Helmholtz free energy in the theory of many-particle systems. Roughly speaking,36

there are two approaches, namely the perturbation method and the variational37

method.38
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Thermodynamic perturbation theory50–53 may be applied to systems that un-1

dergo a phase transition. It was shown54 that certain conditions are necessary in or-2

der that the application of the perturbation does not change the qualitative features3

of the phase transition. Usually, the shift in the critical temperature is determined4

to two orders in the perturbation parameter. Let us consider here the perturbation5

method54 very briefly.6

In the Ref. 54, authors considered a system with Hamiltonian H0 that undergoes7

a phase transition at critical temperature T 0
C . The task was to determine for what8

class of perturbing potentials V will the system with Hamiltonian H0 + V have a9

phase transition with qualitatively the same features as the unperturbed system. In10

their paper, the authors54 had studied that question using thermodynamic pertur-11

bation theory.50–52 They found that an expansion for the perturbed thermodynamic12

functions can be term-by-term divergent at the critical temperature T 0
C for a class13

of potentials V . Under certain conditions the series can be resummed, in which case14

the phase transition remains qualitatively the same as in the unperturbed system15

but the location of the critical temperature is shifted.16

The starting point was the partition function Z0 for a system whose Hamiltonian17

is H0,18

Z0 = Tr exp(−H0β) . (47)19

For a system with Hamiltonian H0 + λV , the partition function Z is given by20

Z = Tr exp[−(H0 + λV )β] . (48)21

It is possible to obtain formally an expansion for Z in terms of the properties of22

the unperturbed system by expanding that part of the exponential containing the23

perturbation in the following way54 when V and H0 commute:24

Z = Tr

(

exp(−H0β)

∞
∑

n

1

n!
[−λβ]nV n

)

= Z0

∞
∑

n

1

n!
[−λβ]n〈V n〉0 , (49)25

where26

Z0〈V n〉0 = Tr(exp[−H0β]V
n) . (50)27

Then the expression for Z can be written as28

Z

Z0
= exp

(

ln

[

1 +

∞
∑

n

1

n!
(−λβ)n〈V n〉0

])

. (51)29

The free energy per particle f is given by30

βfp = βf0 −
1

N
ln

(

1 +

∞
∑

n

1

n!
(−λβ)n〈V n〉0

)

, (52)31

where fp and f0 are the perturbed and unperturbed free energy per particle, respec-32

tively, and N is the number of particles in the system. The standard way to proceed33
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consists of in expanding the logarithm in powers of λ. As a result one obtains541

βfp = βf0 +
λβ

N
〈V 〉0 −

λ2β2

2!

1

N
(〈V 2〉0 − 〈V 〉20)2

+
λ3β3

3!

1

N
(〈V 3〉0 − 3〈V 2〉0〈V 〉0 + 〈V 〉30) + · · · . (53)3

To proceed, it is supposed usually that the thermodynamics of the unperturbed4

system is known and the perturbation series (if they converge) may provide us with5

suitable corrections. If the terms in the expansion diverge, they may, in principle,6

be regularized under some conditions. For example, perturbation expansions for7

the equation-of-state of a fluid whose intermolecular potential can be regarded8

as consisting of the sum of a strong and weak parts give reasonable qualitative9

results.55,5610

In the paper by Fernandes,53 he investigated the application of perturbation11

theory to the canonical partition function of statistical mechanics. The Schwinger12

and Rayleigh–Schrödinger perturbation theory were outlined and plausible argu-13

ments were formulated that both should give the same result. It was shown that14

by introducing adjustable parameters in the unperturbed or reference Hamiltonian15

operator, one can improve the rate of convergence of Schwinger perturbation the-16

ory. The same parameters are also suitable for Rayleigh–Schrödinger perturbation17

theory. The author discussed also a possibility of variational improvements of per-18

turbation theory and gave a simpler proof of a previously derived result about the19

choice of the energy shift parameter. It was also shown that some variational pa-20

rameters correct the anomalous behavior of the partition function at high tempera-21

tures in both Schwinger and Rayleigh–Schrödinger perturbation theories. It should22

be stressed, however, that the perturbation method is valid for small perturbations23

only. The variational method is more flexible tool38,39,57–62 and in many cases is24

more appropriate in spite of the obvious shortcomings. But both the methods are25

interrelated deeply39 and enrich each other.26

Peierls51,52,63 pointed at the circumstance that for a many-particle system in27

thermal equilibrium there is a minimum property of the free energy which may be28

considered as a generalization of the variational principle for the lowest eigenvalue29

in quantum mechanics. Peierls attracted attention to the fact that the free energy30

has a specific property which can be formulated in the following way. Let us consider31

an arbitrary set of orthogonal and normalized functions {ϕ1, ϕ2, . . . , ϕn, . . .}. The32

expectation value of the Hamiltonian H for nth term of them will be written as33

Hnn =

∫

ϕ∗
nHϕndr . (54)34

The statement is that for any temperature T the function35

F̃ = −kBT log Z̃ = −kBT log
∑

n

exp[−Hnnβ] , (55)36
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which would represent the free energy if Hnn were the true eigenvalues, is higher1

than the true free energy2

F0 = −kBT logZ0 = −kBT log
∑

n

exp[−Enβ] (56)3

or4

F̃ ≥ F0 . (57)5

This is equivalent to saying that the partition function, as formed by means of the6

expectation values Hnn,7

Z̃ =
∑

n

exp[−Hnnβ] (58)8

is less than the true partition function9

Z0 =
∑

n

exp[−Enβ] (59)10

or11

Z0 =
∑

n

exp[−Enβ] ≥ Z̃ =
∑

n

exp[−Hnnβ] . (60)12

Peierls63 formulated the more general statement, namely, that if f(E) is a func-13

tion with the properties14

df

dE
< 0,

d2f

dE2
> 0 , (61)15

the expression16

f =
∑

n

f(Hnn) (62)17

is less than18

f0 =
∑

n

f(En) . (63)19

To summarize, Peierls has proved a kind of theorem a special case of which gives a20

lower bound to the partition sum and hence an upper bound to the free energy of21

a quantum mechanical system22

∑

k

exp[−Ekβ] ≥
∑

n

exp[−Hnnβ] . (64)23

When β → ∞ the theorem is obvious, reducing to the fundamental inequality24

Ek ≤ Hnn for all n. However, for finite β it is not so obvious since higher eigenvalues25

of H do not necessarily lie lower than corresponding diagonal matrix elements Hnn.26

Schultz64 skillfully remarked that, in fact, the Peierls inequality does not depend27

on the fact that exp[−Eβ] is a monotonically decreasing function of E, as might be28

concluded from the original proof. It depends only on the fact that the exponential29

function is concave upward. Schultz64 proposed a simple proof of the theorem under30

this somewhat general condition.31
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Let ϕn be a complete orthonormal set of state vectors and let A be an Hermitian1

operator which for convenience is assumed to have a pure point spectrum with2

eigenvalues ak and eigenstates ψk. Let f(x) be a real-valued function such that3

d2f

dx2
> 0 (65)4

in an interval including the whole spectrum of ak. Then, if Trf(A) exists it can be5

proven that the following statement holds6

Trf(A) ≥
∑

n

f(ann) , (66)7

where ann = 〈n|A|n〉. The equality holds if ϕn are the eigenstates of A.8

Since9

Trf(A) =
∑

n

〈n|f(A)|n〉 , (67)10

it is sufficient for the proof to point out that the relation (66) follows from11

〈n|f(A)|n〉 ≥ f(ann) , (68)12

which is valid for all n. The inequalities (68) were derived from13

f(ak) ≥ f(ann) + (ak − ann)f
′(ann) , (69)14

which is a consequence of Eq. (65), the right-hand side for fixed n being the line15

tangent to f(ak) at ann. Multiplying (69) by |〈n|k〉|2 and summing on k one obtains16

(68). Schultz64 observed further that the equality in (68) holds if, |〈n|k〉|2 = 0 unless17

ak = ann, i.e., if ϕn is an eigenstate of A.18

If f(A) is positive definite, then the set ϕn need not be complete, since the19

theorem is true even more strongly if positive terms are omitted from the sum20
∑

n f(ann). With the choice f(A) = exp(−A) and A = Hβ, the original theorem21

of Peierls giving an upper bound to the free energy is reproduced. With A =22

(H − µN)β we have an analogous theorem for the grand potential. The theorem23

proved by Schultz64 is a generalization in which it no longer requires f(x) to be24

monotonic; it requires only that Trf(A) be finite which can occur even if f(x) is25

not monotonic provided A is bounded.26

Peierls variational theorem was discussed and applied in a number of papers27

(see, for e.g., Refs. 64–67). It has much more generality than, say, the Lidiard6828

consideration on a minimum property of the free energy. Lidiard68 derived the29

approximate free energy expression in a way which shows a strong analogy with the30

approximate Hartree method of quantum mechanics. By his derivation, he refined31

the earlier calculations made by Koppe and Wohlfarth in the context of description32

of the influence of the exchange energy on the thermal properties of free electrons33

in metals.34
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5. The Mean Field Concept1

In general, a many-particle system with interactions is very difficult to solve exactly,2

except for special simple cases. Theory of molecular (or mean) field permits one to3

obtain an approximate solution to the problem. In condensed matter physics, mean4

field theory (or self-consistent field theory) studies the behavior of large many-5

particle systems by studying the simpler models. The effect of all the other particles6

on any given particle is approximated by a single averaged effect, thus reducing a7

many-body problem to a single-body problem.8

It is well known that molecular fields in various variants appear in the sim-9

plified analysis of many different kinds of many-particle interacting systems. The10

mean field concept was originally formulated for many-particle systems (in an im-11

plicit form) in the Van der Waals69,70 dissertation “On the Continuity of Gaseous12

and Liquid States”. Van der Waals conjectured that the volume correction to the13

equation-of-state would lead only to a trivial reduction of the available space for14

the molecular motion by an amount b equal to the overall volume of the molecules.15

In reality, the measurements led him to a much more complicated dependence.16

He found that both the corrections should be taken into account. Those were the17

volume correction b and the pressure correction a/V 2, which led him to the Van18

der Waals equation.70 Thus, Van der Waals came to conclusion that “the range of19

attractive forces contains many neighboring molecules”. The equation derived by20

Van der Waals was similar to the ideal gas equation except that the pressure is21

increased and the volume decreased from the ideal gas values. Hence, the many-22

particle behavior was reduced to effective (or renormalized) behavior of a single23

particle in a medium (or a field). The later development of this line of reasoning24

led to the fruitful concept, that it may be reasonable to describe approximately25

the complex many-particle behavior of gases, liquids and solids in terms of a single26

particle moving in an average (or effective) field created by all the other particles,27

considered as some homogeneous (or inhomogeneous) environment.28

Later, these ideas were extended to the physics of magnetic phenomena,5,17,71,7229

where magnetic substances were considered as some kind of a specific liquid. This30

approach was elaborated in the physics of magnetism by Curie and Weiss. The31

mean field (molecular field) replaces the interaction of all the other particles to an32

arbitrary particle.73 In the mean field approximation, the energy of a system is re-33

placed by the sum of identical single-particle energies that describe the interactions34

of each particle with an effective mean field.35

Beginning from 1907 the Weiss molecular field approximation became wide-36

spread in the theory of magnetic phenomena,5,17,71,72 and even at the present37

time it is still being used efficiently. Nevertheless, back in 1965 it was noticed38

that74:39

“The Weiss molecular field theory plays an enigmatic role in the statistical40

mechanics of magnetism.”41
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In order to explain the concept of the molecular field on the example of the Heisen-1

berg ferromagnet one has to transform the original many-particle Hamiltonian2

H = −
∑

ij

J(i − j)SiSj − gµBH
∑

i

Szi , (70)3

into the following reduced one-particle Hamiltonian4

H = −2µ0µBS · h(mf) .5

The coupling coefficient J(i−j) is the measure of the exchange interaction between6

spins at the lattice sites i and j and is defined usually to have the property J(i−j =7

0) = 0. This transformation was achieved with the help of the identity5,17,71,728

S · S′ = S · 〈S′〉+ 〈S〉 · S′ − 〈S〉 · 〈S′〉+ C .9

Here, the constant C = (S − 〈S〉) · (S′ − 〈S′〉) describes the spin correlations. The10

usual molecular field approximation is equivalent to discarding the third term in11

the right-hand side of the above equation, and using the approximation C ∼ 〈C〉 =12

〈S · S′〉 − 〈S〉 · 〈S′〉 for the constant C.13

There is large diversity of the mean field theories adapted to various concrete14

applications.5,17,71,7215

Mean field theory has been applied to a number of models of physical systems16

so as to study the phenomena such as phase transitions.75,76 One of the first ap-17

plications was Ising model.5,17,71,72 Consider the Ising model on an N -dimensional18

cubic lattice. The Hamiltonian is given by19

H = −J
∑

〈i,j〉

SiSj − h
∑

i

Si , (71)20

where the
∑

〈i,j〉 indicates summation over the pair of nearest neighbors 〈i, j〉 and21

Si = ±1 and Sj are neighboring Ising spins. Bunde
77 has shown that in the correctly22

performed molecular field approximation for ferromagnet and antiferromagnet, the23

correlation function 〈S(q)S(−q)〉 should fulfill the sum rule24

N−1
∑

q

〈S(q)S(−q)〉 = 1 . (72)25

The Ising model of the ferromagnet was considered77 and the correlation function26

〈S(q)S(−q)〉 was calculated as27

〈S(q)S(−q)〉 =
[

N−1
∑

q

1

1− βJ(q)

]−1
1

1− βJ(q)
, (73)28

which obviously fulfills the above sum rule. The Ising model and the Heisenberg29

model were the two most explored models for the applications of the mean field30

theory.31

It is of instruction to mention that the earlier molecular field concepts described32

the mean field in terms of some functional of the average density of particles 〈n〉33

(or, using the magnetic terminology, the average magnetization 〈M〉), that is, as34
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F [〈n〉, 〈M〉]. Using the modern language, one can say that the interaction between1

the atomic spins Si and their neighbors can be equivalently described by effective2

(or mean) field h(mf). As a result one can write down3

Mi = χ0[h
(ext)
i + h

(mf)
i ] . (74)4

The mean field h(mf) can be represented in the form (in the case T > TC):5

h(mf) =
∑

i

J(Rji)〈Si〉 . (75)6

Here, hext is the external magnetic field, χ0 is the system’s response function and7

J(Rji) is the interaction between the spins. In other words, in the mean field ap-8

proximation a many-particle system is reduced to the situation, where the magnetic9

moment at any site aligns either parallel or antiparallel to the overall magnetic field,10

which is the sum of the applied external field and the molecular field.11

Note that only the “averaged ” interaction with i neighboring sites was taken12

into account, while the fluctuation effects were ignored. We see that the mean field13

approximation provides only a rough description of the real situation and overes-14

timates the interaction between particles. Attempts to improve the homogeneous15

mean field approximation were undertaken along different directions.5,17,35–37,71,7216

An extremely successful and quite nontrivial approach was developed by17

Neel,5,17,71,72 who essentially formulated the concept of local mean fields (1932).18

Neel assumed that the sign of the mean field could be both positive and negative.19

Moreover, he showed that below some critical temperature (the Neel temperature)20

the energetically most favorable arrangement of atomic magnetic moments is such21

that there is an equal number of magnetic moments aligned against each other.22

This novel magnetic structure became known as the antiferromagnetism.5,1723

It was established that the antiferromagnetic (AFM) interaction tends to align24

neighboring spins against each other. In the one-dimensional case this corresponds25

to an alternating structure, where an “up” spin is followed by a “down” spin and26

vice versa. Later, it was conjectured that the state made up from two sublattices27

inserted into each other is the ground state of the system (in the classical sense28

of this term). Moreover, there the mean field sign alternates in the “chessboard”29

(staggered) order.30

The question of the true AFM ground state is not completely clarified up to the31

present time.5,17,35–37,71,72 This is related to the fact that in contrast to ferromag-32

nets, which have a unique ground state, antiferromagnets can have several different33

optimal states with the lowest energy. The Neel ground state is understood as a pos-34

sible form of the system’s wavefunction, describing the AFM ordering of all spins.35

Strictly speaking, the ground state is the thermodynamically equilibrium state of36

the system at zero temperature. Whether the Neel state is the ground state in this37

strict sense or not, is still unknown. It is clear though, that in the general case, the38

Neel state is not an eigenstate of the Heisenberg antiferromagnet’s Hamiltonian.39

On the contrary, similar to any other possible quantum state, it is only some linear40
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combination of the Hamiltonian eigenstates. Therefore, the main problem requiring1

a rigorous investigation is the question of Neel state stability.17 In some sense, only2

for infinitely large lattices, the Neel state becomes the eigenstate of the Hamilto-3

nian and the ground state of the system. Nevertheless, the sublattice structure is4

observed in experiments on neutron scattering17 and, despite certain worries, the5

actual existence of sublattices is beyond doubt.6

Once Neel’s investigations were published, the effective mean field concept began7

to develop at a much faster pace. An important generalization and development of8

this concept was proposed in 1936 by Onsager78 in the context of the polar liquid9

theory. This approach is now called the Onsager reaction field approximation. It10

became widely known, in particular, in the physics of magnetic phenomena.79–8111

In 1954, Kinoshita and Nambu82 developed a systematic method for description of12

many-particle systems in the framework of an approach which corresponds to the13

generalized mean field concept. Mermin83 has analyzed the thermal Hartree–14

Fock approximation84 of Green’s function theory giving the free energy of a system15

not at zero temperature.16

Kubo and Suzuki85 studied the applicability of the mean field approximation17

and showed that the ordinary mean field theory is restricted only to the region18

kBT ≥ zJ , where J denotes the strength of typical interactions of the relevant19

system and z the number of nearest neighbors. Suzuki86 has proposed a new type20

of fluctuating mean field theory. In that approach the true critical point T̃C differs21

from the mean field value and the singularities of response functions are, in general,22

different from those of the Weiss mean field theory.17,7123

Zhou and Tao87 developed a complete Hartree–Fock mean field method to study24

ferromagnetic (FM) systems at finite temperatures. With the help of the complete25

Bose transformation, they renormalized all the high-order interactions including26

both the dynamic and the kinetic ones based on an independent Bose representa-27

tion, and obtained a set of compact self-consistent equations. Using their method,28

the spontaneous magnetization of an Ising model on a square lattice was investi-29

gated. The result is reasonably close to the exact one. Finally, they discussed the30

temperature dependences of the coercivities for magnetic systems and showed the31

hysteresis loops at different temperatures.32

Later, various schemes of “effective mean field theory taking into account corre-33

lations” were proposed (see Refs. 17 and 37). We will see below that various mean34

field approximations can be in principle described in the framework of the variation35

principle in terms of the Bogoliubov inequality1,3,5,10,15:36

F = −β−1 ln(Tr e−βH)37

≤ − β−1 ln(Tr e−βHmod) +
Tre−βHmod(H −Hmod)

Tr e−βHmod

. (76)38

Here, F is the free energy of the system under consideration, whose calculation is39

extremely involved in the general case. The quantityHmod is some trial Hamiltonian40

describing the effective field approximation. The inequality (76) yields an upper41

bound for the free energy of a many-particle system.42

1530010-18



July 3, 2015 13:21 IJMPB S0217979215300108 page 19

2nd Reading

Variational principle of Bogoliubov

It is well known that the study of Hamiltonians describing strongly correlated1

systems is an exceptionally difficult many-particle problem, which requires appli-2

cations of various mathematical methods.17,88–91 In fact, with the exception of a3

few particular cases, even the ground state of the Hubbard model is still unknown.4

Calculation of the corresponding quasiparticle spectra in the case of strong inter-5

electron correlations and correct definition of the mean fields also turned out to be6

quite a complicated problem.7

The Hamiltonian of the Hubbard model17 is given by8

H =
∑

ijσ

tija
†
iσajσ + U/2

∑

iσ

niσni−σ . (77)9

The above Hamiltonian includes the repulsion of the single-site intra-atomic10

Coulomb U , and tij , the one-electron hopping energy describing jumps from a j site11

to an i site. As a consequence of correlations, electrons tend to “avoid one another”.12

Their states are best modeled by atom-like Wannier wavefunctions [φ(r−Rj)]. The13

Hubbard model’s Hamiltonian can be characterized by two main parameters: U and14

the effective bandwidth of tightly bound electrons15

∆ =

(

N−1
∑

ij

|tij |2
)1/2

.16

The band energy of Bloch electrons ǫ(k) is given by17

ǫ(k) = N−1
∑

k

tij exp[−ik(Ri −Rj] ,18

where N is the total number of lattice sites. Variations of the parameter γ = ∆/U19

allow one to study two interesting limiting cases, the band regime (γ ≫ 1) and the20

atomic regime (γ → 0).21

There are many different approaches to construction of generalized mean field22

approximations; however, all of them have a special case character. The method23

of irreducible Green’s functions17,35–37 allows one to tackle this problem in a more24

systematic fashion.25

The efficiency of the method of the irreducible Green’s functions for description26

of normal and superconducting (SC) properties of systems with a strong interac-27

tion and complicated character of the electron spectrum was demonstrated in the28

literatures.17,35–37 Let us consider the Hubbard model (77). The properties of this29

Hamiltonian are determined by the relationship between the two parameters: The30

effective bandwidth ∆ and the electron’s repulsion energy U . Drastic transforma-31

tions of the metal–dielectric phase transition’s type take place in the system as the32

ratio of these parameters changes. Note that, simultaneously, the character of the33

system description must change as well, that is, we always have to describe our sys-34

tem by the set of relevant variables. In the case of weak correlation,17,35–37 the cor-35

responding set of relevant variables contains the ordinary second-quantized Fermi36

operators and a†iσ aiσ, as well as the number of particles operator niσ = a†iσaiσ. In37

the case of strong correlation17,35–37 the problem is highly complicated.38
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The Green’s function in the generalized mean field approximation has the fol-1

lowing very complicated functional structure17,35–37:2

GMF
kσ (ω) =

ω − (n+
−σE− + n−

−σE+)− λ(k)

(ω − E+ − n−
−σλ1(k))(ω − E− − n+

−σλ2(k))− n−
−σn

+
−σλ3(k)λ4(k)

.3

(78)4

Here, the quantities λi(k) are the components of the generalized mean field, which5

cannot be reduced to the functional of the mean particle’s densities. The expres-6

sion for Green’s function (78) can be written down in the form of the following7

generalized two-pole solution:8

GMF
kσ (ω) =

n+
−σ(1 + cb−1)

a− db−1c
+
n−
−σ(1 + da−1)

b− ca−1d
9

≈ n−
−σ

ω − E− − n+
−σW

−
k−σ

+
n+
−σ

ω − E+ − n−
−σW

†
k−σ

, (79)10

where11

n+
−σn

−
−σW

±
k−σ = N−1

∑

ij

tij exp[−ik(Ri − Rj)]12

× ((〈a†i−σn±
iσaj−σ〉+ 〈ai−σn∓

iσa
†
j−σ〉)13

+(〈n±
j−σn

±
i−σ〉+ 〈aiσa†i−σaj−σa†jσ〉 − 〈aiσai−σa†j−σa†jσ〉)) .14

(80)15

Green’s function (79) is the most general solution of the Hubbard model within16

the generalized mean field approximation. Equation (80) is nothing else but the17

explicit expression for the generalized mean field. As we see, this mean field is not18

a functional of the mean particle’s densities. The solution (79) is more general than19

the solution “Hubbard III ”17 and other two-pole solutions. Hence, it was shown20

in the papers17,35–37 that the solution “Hubbard I ”17 is a particular case of the21

solution (79), which corresponds to the additional approximation22

n+
−σn

−
−σW

±(k) ≈ N−1
∑

ij

tijexp[−ik(Ri −Rj)]〈n±
j−σn

±
i−σ〉. (81)23

Assuming 〈nj−σni−σ〉 ≈ n2
−σ, we obtain the approximation “Hubbard I ”17,35–37.24

Thus, we have shown that in the cases of systems of strongly correlated particles25

with a complicated character of quasiparticle spectrums the generalized mean fields26

can have quite a nontrivial structure, which is difficult to establish by using any27

kind of independent considerations. The method of irreducible Green’s functions28

allows one to obtain this structure in the most general form.29

One should note that the Bardeen–Cooper–Sehrieffer (BCS)–Bogoliubov su-30

perconductivity theory1,3,5,10,15 is formulated in terms of a trial (approximating)31

Hamiltonian Hmod, which is a quadratic form with respect to the second-quantized32
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creation and annihilation operators, including the terms responsible for anoma-1

lous (or nondiagonal) averages. For the single-band Hubbard model, the BCS–2

Bogoliubov functional of generalized mean fields can be written in the following3

form92–95:4

Σcσ = U

(

〈a†i−σai−σ〉 −〈aiσai−σ〉
−〈a†i−σa†iσ〉 −〈a†iσaiσ〉

)

. (82)5

The anomalous (or nondiagonal) mean values in this expression fix the vacuum6

state of the system exactly in the BCS–Bogoliubov form.7

It is worth mentioning that the modern microscopic theory of superconductivity8

was given a rigorous mathematical formulation in the classic works of Bogoliubov9

and co-workers1,3,5,10,15 simultaneously with the BCS theory. It was shown that10

the equations of superconductivity can be derived from the fundamental electron–11

ion and electron–electron interactions. The set of equations obtained is known as12

the Eliashberg equations. They enable us to investigate the electronic and lattice13

properties of a metal in both the normal and SC states. Moreover, the Eliashberg14

equations are appropriate to the description of strong coupling superconductors, in15

contrast to the equations which are valid in the weak coupling regime, and describe16

the electron subsystem in the SC state only.17

In Ref. 92, on the basis of the BCS–Bogoliubov functional of generalized mean18

fields a system of equations of superconductivity for the tight-binding electrons19

in the transition metal described by the Hubbard Hamiltonian was derived. The20

electron–phonon interaction was written down for the “rigid ion model”. Neglecting21

the vertex corrections in the self-energy operator the closed system of equations was22

obtained.23

In Ref. 93, this approach was extended for the Barisic–Labbe–Friedel model of a24

transition metal. The renormalized electron and phonon spectra of the model were25

derived using the method of irreducible Green’s functions17,35–37 in a self-consistent26

way. For the band and atomic limits of the Hubbard model the explicit solutions27

for the electron and phonon energies were obtained. The energy gap, appearing28

between electron bands in the strong correlation limit, persists in that calculations.29

The Eliashberg-type equations of superconductivity were also obtained.30

The equations of strong coupling superconductivity in disordered transition31

metal alloys have been derived in paper94 by means of irreducible Green’s functions32

method and on the basis of the alloy version of the Barisic–Labbe–Friedel model33

for electron–ion interaction. The configurational averaging has been performed by34

means of the coherent potential approximation. Making some approximations, the35

formulas for the SC transition temperature TC and the electron–phonon coupling36

constant have been obtained. These depend on the alloy component and total den-37

sities of states, the phonon Green’s function and the parameters of the model.38

To summarize, various schemes of “effective mean field theory” taking into ac-39

count the correlations were proposed.35–37,96–106 The main efforts were directed to40

the aim to describe suitably the collective behavior of particles in terms of effective41
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field distribution which satisfies a self-consistent condition. However, although the1

self-consistent field approximation often is a reasonable approximation away from2

the critical point, it usually breaks down in its immediate neighborhood.3

It is of importance to stress again that from our point of view, in real mean4

field theory, the mean field appearing in the single-site problem should be a scalar5

or vectorial time-independent quantity.6

6. Symmetry Broken Solutions7

The formalism of the previous sections may be extended to incorporate the bro-8

ken symmetry solutions17,18,107 of the interacting many-particle systems, e.g., the9

pairing effects present in superconductors,3,4,15 etc. Our purpose in this section10

is to attract the attention to subtle points which are essential for establishing a11

connection of the generalized mean field approximation and the broken symmetry12

solutions.17,18,10713

It is well known that a symmetry can be exact or approximate. Symmetries14

inherent in the physical laws may be dynamically and spontaneously broken, i.e.,15

they may not manifest themselves in the actual phenomena. It can be as well broken16

by certain reasons.108,10917

Within the literature, the term broken symmetry is used both very often and18

with different meanings. There are two terms, the spontaneous breakdown of sym-19

metries and dynamical symmetry breaking, which sometimes have been used as20

opposed but such a distinction is irrelevant. However, the two terms may be used21

interchangeably. It should be stressed that a symmetry implies degeneracy. In gen-22

eral, there are a multiplets of equivalent states related to each other by congruence23

operations. They can be distinguished only relative to a weakly coupled external en-24

vironment which breaks the symmetry. Local gauged symmetries, however, cannot25

be broken this way because such an extended environment is not allowed (a super-26

selection rule), so all states are singlets, i.e., the multiplicities are not observable27

except possibly for their global part.28

It is known that when the Hamiltonian of a system is invariant under a sym-29

metry operation, but the ground state is not, the symmetry of the system can be30

spontaneously broken. Symmetry breaking is termed spontaneous when there is no31

explicit term in a Lagrangian which manifestly breaks the symmetry.32

Peierls110,111 gave a general definition of the notion of the spontaneous break-33

down of symmetries which is suited equally well for the physics of particles and34

condensed matter physics. According to Peierls,110,111 the term broken symmetries35

relates to situations in which symmetries which we expect to hold are valid only36

approximately or fail completely in certain situations.37

The intriguing mechanism of spontaneous symmetry breaking is a unifying38

concept that lie at the basis of most of the recent developments in theoretical39

physics, from statistical mechanics to many-body theory and to elementary particles40

theory.108,109 The existence of degeneracy in the energy states of a quantal system41
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is related to the invariance or symmetry properties of the system. By applying the1

symmetry operation to the ground state, one can transform it to a different but2

equivalent ground state. Thus. the ground state is degenerate, and in the case of a3

continuous symmetry, infinitely degenerate. The real, or relevant, ground state of4

the system can only be one of these degenerate states. A system may exhibit the5

full symmetry of its Lagrangian, but it is characteristic of infinitely large systems6

that they also may condense into states of lower symmetry.7

It should be pointed out that Bogoliubov’s method of quasiaverages3,4,15 gives8

the deep foundation and clarification of the concept of broken symmetry. It makes9

the emphasis on the notion of degeneracy and plays an important role in equilibrium10

statistical mechanics of many-particle systems. According to that concept, infinitely11

small perturbations can trigger macroscopic responses in the system if they break12

some symmetry and remove the related degeneracy (or quasidegeneracy) of the13

equilibrium state. As a result, they can produce macroscopic effects even when the14

perturbation magnitude tends to zero, provided that happens after passing to the15

thermodynamic limit.45 This approach has penetrated, directly or indirectly, many16

areas of the contemporary physics.17

The article18 examines the Bogoliubov’s notion of quasiaverages, from the18

original papers,4 through to modern theoretical concepts and ideas of how to de-19

scribe both the degeneracy, broken symmetry and the diversity of the energy scales20

in the many-particle interacting systems. Current trends for extending and using21

Bogoliubov’s ideas to quantum field theory and condensed matter physics problems22

were discussed, including microscopic theory of superfluidity and superconductiv-23

ity, quantum theory of magnetism of complex materials, Bose–Einstein condensa-24

tion, chirality of molecules, etc. Practical techniques covered include quasiaverages,25

Bogoliubov theorem on the singularity of 1/q2, Bogoliubov’s inequality and its26

applications to condensed matter physics.27

It was demonstrated there that the profound and innovative idea of quasiav-28

erages formulated by Bogoliubov, gives the so-called macro-objectivation of the29

degeneracy in the domain of quantum statistical mechanics, quantum field theory30

and in the quantum physics in general.31

The quasiaverages may be obtained from the ordinary averages by using the32

cluster property which was formulated by Bogoliubov.3,4,15 This was first done33

when deriving the Boltzmann equations from the chain of equations for distribu-34

tion functions and in the investigation of the model Hamiltonian in the theory of35

superconductivity.3,4,15 To demonstrate this let us consider averages (quasiaverages)36

of the form:37

F (t1, x1, . . . tn, xn) = 〈. . .Ψ†(t1, x1) . . .Ψ(tj , xj) . . .〉 , (83)38

where the number of creation operators Ψ† may be not equal to the number of39

annihilation operators Ψ. We fix times and split the arguments (t1, x1, . . . , tn, xn)40

into several clusters (. . . , tα, xα, . . .), . . . , (. . . , tβ , xβ , . . .). Then, it is reasonable to41

assume that the distances between all clusters |xα − xβ | tend to infinity. Then,42
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according to the cluster property, the average value (83) tends to the product1

of averages of collections of operators with the arguments (. . . , tα, xα, . . .), . . . ,2

(. . . , tβ , xβ , . . .)3

lim
|xα−xβ |→∞

F (t1, x1, . . . , tn, xn) = F (. . . , tα, xα, . . .) . . . F (. . . , tβ , xβ , . . .) . (84)4

For equilibrium states with small densities and short-range potential, the va-5

lidity of this property can be proved.3,4,15 For the general case, the validity of6

the cluster property has not yet been proved. Bogoliubov formulated it not only7

for ordinary averages but also for quasiaverages, i.e., for anomalous averages, too.8

It works for many important models, including the models of superfluidity and9

superconductivity.3,4,1510

In his work The Theory of Superfluidity,112 Bogoliubov gave a microscopic ex-11

planation of the phenomenon of superfluidity.2,113 Before his works, there were12

phenomenological theories which were based on an assumption about the form of13

the spectrum of elementary excitations. Bogoliubov has started from the general14

Hamiltonian for Bose systems and assumed that a macroscopic number of par-15

ticles are found in the ground state with zero momentum, and therefore the cre-16

ation and annihilation operators of particles with zero momentum are c-numbers.11417

As a result a definite approximating Hamiltonian was obtained, consisting from a18

quadratic form of the creation and annihilation operators. The usual perturbation19

theory proved to be inapplicable to it because of the strong interaction of parti-20

cles with opposite momenta. Therefore, the Hamiltonian was diagonalized with the21

help of the canonical transformations (the Bogoliubov u− v transformations). This22

permitted one to calculate the spectrum of elementary perturbations outside the23

framework of perturbation theory. Decomposing the field operators into c-numerical24

and operator parts, Bogoliubov in fact introduced into quantum theory the method25

of spontaneous symmetry breakdown for systems with degenerate ground state. This26

method was rediscovered in quantum field theory a decade later.1827

To illustrate these statements consider Bogoliubov’s theory of a Bose system28

with separated condensate, which is given by the Hamiltonian3,4,1529

HΛ =

∫

Λ

Ψ†(x)

(

− ∆

2m

)

Ψ(x)dx − µ

∫

Λ

Ψ†(x)Ψ(x)dx30

+
1

2

∫

Λ2

Ψ†(x1)Ψ
†(x2)Φ(x1 − x2)Ψ(x2)Ψ(x1)dx1dx2 . (85)31

This Hamiltonian can be also written in the following form:32

HΛ = H0 +H1 =

∫

Λ

Ψ†(q)

(

− ∆

2m

)

Ψ(q)dq33

+
1

2

∫

Λ2

Ψ†(q)Ψ†(q′)Φ(q − q′)Ψ(q′)Ψ(q)dqdq′. (86)34
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Here, Ψ(q) and Ψ†(q) are the operators of annihilation and creation of bosons. They1

satisfy the canonical commutation relations:2

[Ψ(q),Ψ†(q′)] = δ(q − q′), [Ψ(q),Ψ(q′)] = [Ψ†(q),Ψ†(q′)] = 0 . (87)3

The system of bosons is contained in the cube A with the edge L and volume V .4

It was assumed that it satisfies the periodic boundary conditions and the potential5

Φ(q) is spherically symmetric and proportional to the small parameter. It was6

also assumed that, at temperature zero, a certain macroscopic number of particles7

having a nonzero density is situated in the state with momentum zero.8

The operators Ψ(q) and Ψ†(q) are represented in the form:9

Ψ(q) = a0/
√
V ; Ψ†(q) = a†0/

√
V , (88)10

where a0 and a†0 are the operators of annihilation and creation of particles with11

momentum zero.12

To explain the phenomenon of superfluidity,4,112 one should calculate the spec-13

trum of the Hamiltonian, which is quite a difficult problem. Bogoliubov suggested14

the idea of approximate calculation of the spectrum of the ground state and its15

elementary excitations based on the physical nature of superfluidity. His idea con-16

sists of a few assumptions. The main assumption is that at temperature zero17

the macroscopic number of particles (with nonzero density) has the momentum18

zero. Therefore, in the thermodynamic limit,45 the operators a0/
√
V and a†0/

√
V19

commute,20

lim
V→∞

[a0/
√
V , a†0/

√
V ] =

1

V
→ 0 , (89)21

and are c-numbers. Hence, the operator of the number of particles N0 = a†0a0 is a22

c-number too.23

Petrina115 shed an additional light on the problem of an approximation of gen-24

eral Hamiltonians by Hamiltonians of the theories of superconductivity and su-25

perfluidity. In his highly interesting paper,115 Petrina pointed out that the model26

Hamiltonian of the theory of superconductivity3,15 can be obtained from the general27

Hamiltonian for Fermi systems if the Kronecker symbol, which expresses the law28

of conservation of momentum in the interaction Hamiltonian, is replaced by two29

Kronecker symbols so that only particles with opposite momenta interact. The30

model Hamiltonian of the theory of superfluidity can be obtained from the general31

Hamiltonian for Bose systems if we replace the Kronecker symbol, which expresses32

the law of conservation of momentum, by several Kronecker symbols, preserving33

only the terms that contain at least two operators with momenta zero in the inter-34

action Hamiltonian. This list of model systems can be continued.11635

The concept of quasiaverages was introduced by Bogoliubov on the basis of an36

analysis of many-particle systems with a degenerate statistical equilibrium state.37

Such states are inherent to various physical many-particle systems. Those are38
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liquid helium in the superfluid phase, metals in the SC state, magnets in the fer-1

romagnetically ordered state, liquid crystal states, the states of superfluid nuclear2

matter, etc.3

In many-body interacting systems, the symmetry is important in classify-4

ing different phases and in understanding the phase transitions between them.5

According to Bogoliubov’s ideas3,4,15,107,112 in each condensed phase, in addition6

to the normal process, there is an anomalous process (or processes) which can take7

place because of the long-range internal field, with a corresponding propagator.8

Additionally, the Goldstone theorem18 states that, in a system in which a continu-9

ous symmetry is broken (i.e., a system such that the ground state is not invariant10

under the operations of a continuous unitary group whose generators commute with11

the Hamiltonian), there exists a collective mode with frequency vanishing, as the12

momentum goes to zero. For many-particle systems on a lattice, this statement13

needs a proper adaptation. In the above form, the Goldstone theorem is true only14

if the condensed and normal phases have the same translational properties. When15

translational symmetry is also broken, the Goldstone mode appears at a zero fre-16

quency but at nonzero momentum, e.g., a crystal and a helical spin-density-wave17

ordering (see for discussion Refs. 17 and 117).18

The AFM state is characterized by a spatially changing component of magneti-19

zation which varies in such a way that the net magnetization of the system is zero.20

The concept of antiferromagnetism of localized spins which is based on the Heisen-21

berg model and the two-sublattice Neel ground state is relatively well-founded22

contrary to the antiferromagnetism of delocalized or itinerant electrons. The23

itinerant-electron picture is the alternative conceptual picture for magnetism.11824

In the AFM many-body problem, there is an additional “symmetry broken”25

aspect.17,117 For an antiferromagnet, contrary to ferromagnet, the one-electron26

Hartree–Fock potential can violate the translational crystal symmetry. The pe-27

riod of the AFM spin structure L is greater than the lattice constant a. The28

Hartree–Fock is the simplest approximation but neglects the important dynamical29

part. To include the dynamics one should take into consideration the correlation30

effects.31

The anomalous propagators for an interacting many-fermion system correspond-32

ing to FM, AFM and SC long-range ordering are given by33

FM: Gfm ∼ 〈〈akσ ; a†k−σ〉〉 ,

AFM: Gafm ∼ 〈〈ak+Qσ ; a†k+Q′σ′〉〉 ,

SC: Gsc ∼ 〈〈akσ ; a−k−σ〉〉 .

(90)34

In the spin-density-wave case, a particle picks up a momentum Q−Q′ from scatter-35

ing against the periodic structure of the spiral (nonuniform) internal field, and has36

its spin changed from σ to σ′ by the spin-aligning character of the internal field.37
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The long-range-order (LRO) parameters are1

FM: m = 1/N
∑

kσ

〈a†kσak−σ〉 ,

AFM: MQ =
∑

kσ

〈a†kσak+Q−σ〉 ,

SC: ∆ =
∑

k

〈a†−k↓a
†
k↑〉 .

(91)2

It is of importance to note that the LRO parameters are functions of the internal3

field, which is itself a function of the order parameter. There is a more mathematical4

way of formulating this assertion. As it was stressed earlier,18 the notion symmetry5

breaking means that the state fails to have the symmetry that the Hamiltonian has.6

In terms of the theory of quasiaverages, a true breaking of symmetry can arise7

only if there are infinitesimal “source fields”. Indeed, for the rotationally and trans-8

lationally invariant Hamiltonian, suitable source terms should be added:9

FM: εµBHx

∑

kσ

a†kσak−σ ,

AFM: εµBH
∑

kQ

a†kσak+Q−σ ,

SC: εv
∑

k

(a†−k↓a
†
k↑ + ak↑a−k↓) ,

(92)10

where ε→ 0 is to be taken at the end of calculations.11

For example, broken symmetry solutions of the spin-density-wave type imply12

that the vector Q is a measure of the inhomogeneity or breaking of translational13

symmetry.14

In this context, the Hubbard model is a very interesting tool for analyzing15

the broken symmetry concept.35–37 It is possible to show that AFM state and16

more complicated states (e.g., ferrimagnetic) can be made eigenfunctions of the17

self-consistent field equations within an “extended” (or generalized) mean field ap-18

proach, assuming that the anomalous averages 〈a†iσai−σ〉 determine the behavior of19

the system on the same footing as the “normal” density of quasiparticles 〈a†iσaiσ〉.20

It is clear, however, that these “spin-flip” terms break the rotational symmetry of21

the Hubbard Hamiltonian. For the single-band Hubbard Hamiltonian, the averages22

〈a†i−σai,σ〉 = 0 because of the rotational symmetry of the Hubbard model. The23

inclusion of anomalous averages leads to the following approximation:24

ni−σaiσ ≈ 〈ni−σ〉aiσ − 〈a†i−σaiσ〉ai−σ . (93)25

Thus, in addition to the standard Hartree–Fock term, the new so-called “spin-flip”26

terms are retained.117 This example clearly shows that the structure of mean field27

follows from the specificity of the problem and should be defined in a proper way.28
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So, one needs a properly defined effective Hamiltonian Heff . In Ref. 117, we thor-1

oughly analyzed the proper definition of the irreducible Green’s functions which2

includes the “spin-flip” terms for the case of itinerant antiferromagnetism of corre-3

lated lattice fermions. For the single-orbital Hubbard model,35–37,117 the definition4

of the “irreducible” part should be modified in the following way:5

(ir)〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω = 〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω6

− δp,0〈nq−σ〉Gkσ − 〈ak+pσa†p+q−σ〉〈〈aq−σ|a†kσ〉〉ω .7

(94)8

From this definition it follows that this way of introduction of the irreducible Green’s9

functions broadens the initial algebra of operators and the initial set of the Green’s10

functions. This means that the “actual” algebra of operators must include the spin-11

flip terms from the beginning, namely: (aiσ, a
†
iσ, niσ, a

†
iσai−σ). The corresponding12

initial Green’s function will be of the form:13

(

〈〈aiσ|a†jσ〉〉 〈〈aiσ |a†j−σ〉〉
〈〈ai−σ|a†jσ〉〉 〈〈ai−σ |a†j−σ〉〉

)

. (95)14

With this definition, one introduces the so-called anomalous (off-diagonal) Green’s15

functions which fix the relevant vacuum and select the proper symmetry broken so-16

lutions. In fact, this approximation was investigated earlier by Kishore and Joshi.11917

They clearly pointed out that they assumed a system to be magnetized in the18

x-direction instead of the conventional z-axis.19

The problem of finding the SC, FM and AFM “symmetry broken” solutions of20

the correlated lattice fermion models within irreducible Green’s functions method21

was investigated in Refs. 17, 35–37 and 117. A unified scheme for the construction of22

generalized mean fields (elastic scattering corrections) and self-energy (inelastic23

scattering) in terms of the Dyson equation was generalized in order to include the24

“source fields”. The “symmetry broken” dynamic solutions of the Hubbard model25

which correspond to various types of itinerant antiferromagnetism were discussed26

as well.17,35–37,117 This approach complements the previous studies of microscopic27

theory of the Heisenberg antiferromagnet120 and clarifies the concepts of Neel sub-28

lattices for localized and itinerant antiferromagnetism and “spin-aligning fields” of29

correlated lattice fermions.30

We shall see shortly that in order to discuss the mean field theory (and general-31

ized mean fields) on the firm ground the Bogoliubov inequality provides the formal32

basis and effective general approach.33

7. The Mathematical Tools34

Before entering fully into our subject, we must recall some basic statements. This35

will be necessary for the following discussion.36

The number of inequalities in mathematical physics is extraordinarily plentiful37

and the literature on inequalities is vast.121–133 The physicists are interested mostly38
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in intuitive, physical forms of inequalities rather than in their most general versions.1

Often it is easier to catch the beauty and importance of original versions rather than2

decoding their later, abstract forms.3

Many inequalities are of a great use and directly related with the notion of4

entropy, especially with quantum entropy.124,134 The von Neumann entropy of5

ρ ∈ Sn, S(ρ), is defined by6

S(ρ) = −Tr(ρ log ρ) . (96)7

The operator ρ log ρ is defined using the spectral theorem.124 Here, Sn denotes8

the set of density matrices ρ on Cn. In fact, S(ρ) depends on ρ only through its9

eigenvalues.10

S(ρ) = −
n
∑

j=1

λj logλj . (97)11

Otherwise put, the von Neumann entropy is unitarily invariant; that is12

S(UρU∗) = S(ρ) . (98)13

The convexity condition leads to12414

− S(ρ) = − log(n) . (99)15

This equality is valid if each λj = 1/n. Thus, one may arrive at12416

0 ≤ S(ρ) ≤ logn (100)17

for all ρ ∈ Sn, and there is equality on the left if ρ is a pure state, and there is18

equality on the right if ρ = (1/n)I. Actually, S(ρ) is not only a strictly concave19

function of the eigenvalues of ρ, it is strictly concave function of ρ itself.20

The notions of convexity and concavity of trace functions124 are of great impor-21

tance in mathematical physics.135,136 Inequalities for quantum mechanical entropies22

and related concave trace functions play a fundamental role in quantum information23

theory as well.124,13424

A function f is convex in a given interval if its second derivative is always of25

the same sign in that interval. The sign of the second derivative can be chosen26

as positive (by multiplying by (−1) if necessary). Indeed, the notion of convexity27

means that if d2f/dx2 > 0 in a given interval, xj are a set of points in that interval,28

pj are a set of weights such that pj ≥ 0, which have the property
∑

j pj = 1, then29

∑

j

pjf(xj) ≥ f





∑

j

pjxj



 . (101)30

The equality will be valid only if xj = 〈x〉 =
∑

j pjxj . In other words, a real-31

valued function f(x) defined on an interval is called convex (or convex downward32

or concave upward) if the line segment between any two points on the graph of the33

function lies above the graph, in a Euclidean space (or more generally a vector34
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space) of at least two dimensions. Equivalently, a function is convex if its epigraph1

(the set of points on or above the graph of the function) is a convex set.2

A real-valued function f on an interval (or, more generally, a convex set in3

vector space) is said to be concave if, for any x1 and x2 in the interval and for any4

α in [0, 1],5

f((1− α)x1 + (α)x2) ≥ (1− α)f(x1) + (α)f(x2) . (102)6

A function f(x) is concave over a convex set if the function −f(x) is a convex7

function over the set.8

As an example, we mentioned above briefly a reason why this concavity matters,9

pointing to the inequality (100) that was deduced from the concavity of the entropy10

as a function of the eigenvalues of ρ.11

It is of importance to stress that in quantum statistical mechanics, equilibrium12

states are determined by maximum entropy principles,124 and the fact that13

supS(ρ)
∣

∣

ρ∈Sn

= logn , (103)14

reflects the famous Boltzmann formula15

S = kB logW . (104)16

It follows from Boltzmann definition that the entropy is larger if ρ is smeared17

out, where ρ is the probability density on phase space. The microscopic defini-18

tion of entropy given by Boltzmann does not, by itself, explain the second law of19

thermodynamics, even in classical physics. The task to formulate these questions in20

a quantum framework was addressed by Klein in his seminal paper137 of 1931. He21

found a fundamentally new way for information to be lost hence entropy to increase,22

special to quantum mechanics. This result was called Klein’s lemma.136–13823

Ruskai138 has reviewed many fundamental properties of the quantum entropy13424

including one important class of inequalities which relates the entropy of subsystems25

to that of a composite system. That article presented self-contained proofs of the26

strong subadditivity inequality for von Neumann quantum entropy, S(ρ), and some27

related inequalities for the quantum relative entropy, most notably its convexity28

and its monotonicity under stochastic maps. The approach to subadditivity and29

relative entropy presented was used to obtain conditions for equality in properties30

of relative entropy, including its joint convexity and monotonicity. In addition, the31

Klein inequality was presented there in detail.32

Indeed, the fact that the relative entropy is positive,138 i.e., H(ρ1, ρ2) ≥ 033

when Trρ1 = Trρ2, is an immediate consequence of the following fundamental34

convexity result due to Klein.137,139,140 The corresponding theorem138 states that35

for A, B > 036

TrA(log A− log B) ≥ Tr(A−B) , (105)37

with equality iff (A = B).38
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In more general form,124 the Klein inequality may be formulated in the following1

way. For all A,B ∈ Hn, and all differentiable convex functions f : R → R, or for all2

A,B ∈ H†
n and all differentiable convex functions f : (0,∞) → R,3

Tr(f(A)− f(B)− (A−B)f ′(B)) ≥ 0 . (106)4

In either case, if f is strictly convex, there is equality if A = B.5

A few more words about Oskar Klein and his inequality will not be out of place6

here. Oskar Klein (1894–1977) was the famous Swedish theoretical physicist who7

worked on a wide variety of subjects.141 For example, the Klein–Gordon equation8

was the first relativistic wave equation. Oskar Klein was also a collaborator of Niels9

Bohr in Copenhagen. It is interesting to note that Oskar Klein defended his thesis10

and was awarded his doctoral degree in 1921 for his work in physical chemistry about11

strong electrolytes. In 1931 Oskar Klein,137,139–141 using his experience in both12

quantum and statistical mechanics, succeeded in solving the problem of whether13

the quantum statistics on molecular level can explain how the entropy increases14

with time in accordance with the second law of thermodynamics. The problem in15

classical statistical mechanics had been already noticed by Gibbs earlier. Klein’s16

proof,137,139,140 which used the statement that only the diagonal elements in the17

density matrix for the phase space of the particles are relevant for the entropy,18

has led him to the Klein’s lemma. With Klein’s lemma, the entropy can increase19

according to the formula of Boltzmann’s microscopic definition, where it is described20

with the number of states in the phase space. A useful and informative discussion21

of the Klein’s paper and Klein’s lemma was carried out in the book of Jancel.14222

According to Ruskai,138 the closely related Peierls–Bogoliubov inequality is23

sometimes used instead of Klein’s inequality. Golden–Thompson and Peierls–24

Bogoliubov inequalities were extended to von Neumann algebras, which have traces,25

by Ruskai128 (see also Ref. 143). Araki129 extended them to a general von Neumann26

algebra. This kind of investigations is particularly valuable since the Bogoliubov in-27

equality is remarkable because of its significant applications in statistical quantum28

mechanics.3,10–12,144,145 It provides insight into a number of other interesting ques-29

tions as well.30

It will be of use to write down the mathematical formulation of Peierls–31

Bogoliubov inequalities which was provided by Carlen.124 Let us consider A ∈ Hn,32

and let f be any convex function on R. Let {u1, . . . , un} be any orthonormal base33

of Cn. Then34

n
∑

j=1

(〈uj , Auj〉) ≤ Tr[f(A)] . (107)35

There is equality if each uj is an eigenvector of A, and if f is strictly convex, only36

in this case.37

Now consider the formulation of the generalized Peierls–Bogoliubov inequal-38

ity.124 For every natural number n, the map A 7→ log(Tr[exp(A)]) is convex on Hn.39
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As a consequence one may deduce124 that1

log

(

Tr[exp(A+B)]

Tr[exp(A)]

)

≥ Tr[B exp(A)]

Tr[exp(A)]
. (108)2

Frequently this relation, which has many uses, is referred to as the Peierls–3

Bogoliubov inequality.4

It is worth noting that according to tradition the term Gibbs–Bogoliubov in-5

equality8 is used for a classical statistical mechanical systems and term Peierls–6

Bogoliubov inequality124 for quantum statistical mechanical systems. At the very7

least, it must have been meant to indicate that Peierls inequality does not have a8

classical analog, whereas Bogoliubov inequality has.9

8. Variational Principle of Bogoliubov10

It is known that there are several variational principles which provide upper bounds11

for the Helmholtz free energy function. With these instruments, it is possible to12

construct various approximations to the statistical thermodynamic behavior of sys-13

tems. For any variational formulation, its effectiveness as a minimal principle will14

be enhanced considerably if there is a workable tool for determining lower bounds15

to the Helmholtz free energy function. Bogoliubov inequality for the free energy16

functional is an inequality that gives rise to a variational principle of statistical me-17

chanics. It is used1–5 to obtain the exact thermodynamic limit18 solutions of model18

problems in statistical physics, in studies using the method of molecular fields, in19

proving the existence of the thermodynamic limit,45 and also in order to obtain20

physically important estimates for the free energies of various many-particle inter-21

acting systems. A clear formulation of the variational principle of Bogoliubov and22

Bogoliubov inequality for the free energy functional was carried out by Tyablikov.523

We shall follow close to that formulation. Tyablikov5 used the theorems relating to24

the minimum values of the free energy. As a result, it was possible to formulate a25

principle which then was used to deduce the molecular field equations.26

Principle of the free energy minimum is based on the following arguments. Let27

us consider an arbitrary complete system of orthonormalized functions {ϕn}, which28

are not the eigenfunctions of the Hamiltonian H of a system. Then it is possible to29

write down the inequality30

F (H) ≤ Fmod(H) . (109)31

Here, F (H) is the intrinsic free energy of the system:32

F (H) = −θ lnZ, Z =
∑

ν

exp(−Eν/θ) , (110)33

θ = kBT , Eν are the eigenfunctions of the Hamiltonian H, Fmod(H) is the model34

free energy, which gives approximately the upper limit of the intrinsic free energy:35

Fmod(H) = −θ lnZmod, Zmod =
∑

n

exp(−Hnn/θ), Hnn = (ϕ∗
n,Hϕn) . (111)36
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The inequality (109) may be also written in the following way:1

Z ≥ Zmod . (112)2

The relationships represented by the equality sign in Eqs. (109) and (112) applies3

if ϕn are eigenfunctions of the Hamiltonian of the system. It should be noted that4

for finite values of the number of partial sums Z(N), the quantity F
(N)
mod does not5

reach its maximum for any system of functions ϕ1, . . . , ϕN . In fact, the inequality6

will be satisfied really5,45 in the limit N → ∞.7

Using these results, it is possible to formulate a variational principle for the8

approximate determination of the free energy of a system.5 To proceed, let us9

suppose that the functions {ϕn} depend on some arbitrary parameter λ. It was10

established above that11

F (H) ≤ Fmod(H) = −θ ln
∑

n

exp(−Hnn(λ)/θ) . (113)12

It is clear that the best approximation for the upper limit of the free energy F is13

obtained by selecting the values of the parameter λ in accordance with the condition14

for the minimum of the model free energy Fmod. Indeed, let the Hamiltonian of the15

system, H, be written in the form:16

H = H0(λ) + ∆H(λ) ≡ H0(λ) + (H−H0(λ)) , (114)17

where H0(λ) is some operator depending on the parameter λ. The concrete form of18

the operator H0(λ) should be selected on the basis of convenience in calculations.19

We shall use notation E0
n and ϕn for the eigenvalues and the eigenfunctions of the20

operator H0. To denote the diagonal matrix elements of the operator ∆H in terms21

of the functions ϕn we shall use the notation ∆Hnn.22

For a generality, we shall assume that ϕn are not the eigenfunctions of the total23

Hamiltonian H. Clearly, E0
n and ∆Hnn are also some functions of the parameter λ.24

In this sense, the system of functions {ϕn} plays a role of a trial system of functions.25

Then, we may write that26

Hnn = E0
n +∆Hnn ≡ E0

n + (Hnn − E0
n) . (115)27

As a consequence, the free energy will satisfy the inequality28

F (H) ≤ −θ ln
∑

n

exp−(E0
n +∆Hnn)

1

θ
. (116)29

Now let us suppose that the operator ∆H can be considered as a small perturbation30

compared with the operator H. We obtain then,5 to within quantities of the first-31

order of smallness with respect to ∆H,32

F (H) ≤ F (H0) +
Tr(∆H exp(−H0/θ))

Tr(exp(−H0/θ))
. (117)33

Note that in this case, the best approximation to the upper limit of the free energy34

is obtained by selecting the value of the parameter λ from the condition for the35
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minimum of the right-hand side of Eq. (117). The formulation of the variational1

principle of Eq. (117) is more restricted than the initial formulation of Eq. (109).2

The variational principle in the form of Eq. (117) can be strengthened, following3

the Bogoliubov suggestion,5 by removing the limitation of the smallness of the4

operator ∆H. As a result we obtain5

F (H) ≤ Fmod(H) . (118)6

Here,7

Fmod(H) = F (H0) +
Tr(∆H exp(−H0/θ))

Tr(exp(−H0/θ))
, (119)8

F (H0) = −θ lnTr exp(−H0/θ) . (120)9

Hence, one may write down also that for a system with the Hamiltonian10

H = H0 +∆H , (121)11

the free energy has a certain upper bound. Bogoliubov inequality states that:12

F ≤ F0 + 〈H −H0〉0 (122)13

or14

F ≤ F0〈H〉0 − TS0 , (123)15

where S0 is the entropy and the average is taken over the equilibrium ensemble of the16

reference system with Hamiltonian H0. Usually H0 contains one or more variational17

parameters which are chosen such as to minimize the right-hand side of Eq. (122).18

In the special case that the reference Hamiltonian is that of a noninteracting system19

and can thus be written as a sum of single-particle Hamiltonians5:20

H0 =

N
∑

i=1

hi . (124)21

Then it is possible to improve the upper bound by minimizing the right-hand side22

of the inequality (122). The minimizing reference system is then the trial approxi-23

mation to the true system using noncorrelated degrees of freedom, and is known as24

the mean field approximation.25

Starting with the one-particle model Hamiltonian that can be exactly solved in26

the Bogoliubov variational method, one may get a self-consistent result such as the27

molecular field theory in the ferromagnet and the Hartree–Fock approximation in28

many-particle problems. Since the variational method yields a result which is always29

greater than the correct answer, the mathematical meaning for improving upon the30

approximation in the variational method is strictly defined by lowering the upper31

bound of the free energy. But these variational methods, the molecular field theory32

and the Hartree–Fock approximation, have such a feature that the correlation effects33

cannot be taken into account correctly. In general case,5 the Hamiltonian of a34

1530010-34



July 3, 2015 13:21 IJMPB S0217979215300108 page 35

2nd Reading

Variational principle of Bogoliubov

system contains interparticle interactions. Thus, Bogoliubov variational principle1

can be considered as the mathematical foundation of the mean field approximation2

in the theory of many-particle interacting systems.3

Using the Klein inequality (106) it is possible to write down a general form of4

the Bogoliubov inequality for the free energy functional. The following inequality5

is valid for any Hermitian operators H1 and H2:6

N−1〈H1 −H2〉H1
≤ (f(H1)− f(H2)) ≤ N−1〈H1 −H2〉H2

, (125)7

where8

f(H) = −θN−1 lnTr exp(−H/θ) . (126)9

This expression has the meaning of the free energy density for a system with Hamil-10

tonian H and the extensive parameter N may be treated as the number of particles11

or the volume, depending on the system.12

Derrick146 established a simple variational bound to the entropy S(E) of a13

system with energy E,14

S(E) ≥ −kB ln(TrU2) , (127)15

for all Hermitian matrices U (with no negative eigenvalues) for which TrU = 116

and Tr(HU) = E, where H is the Hamiltonian. This principle has the advantage17

that U2 is in general much easier to evaluate than U lnU which appears in the18

conventional bound given by von Neumann,19

S(E) ≥ −kB(TrU lnU) . (128)20

There are numerous methods for proving the Bogoliubov inequal-21

ity.5,10–12,39,48,147,148 Oguchi149 proposed an approach for determination of an up-22

per bound and a lower bound of the Helmholtz free energy in the statistical physics.23

He used the Klein’s lemma as a basic tool.124,137,138 He obtained a new approxi-24

mate expression of the free energy. This approximate value of the free energy was25

conjectured to be greater than the lower bound and less than the upper bound.26

An approach which can be extended to improve the approximation was formulated.27

The upper bound and the lower bound of the approximate free energy converge to28

the true free energy as the successive approximation proceeds. The method was first29

applied to the Ising ferromagnet and then applied to the Heisenberg ferromagnet.30

In the simplest approximation, the results agree with the Bethe–Peierls approxima-31

tion for the Ising model and the constant-coupling approximation for the Heisenberg32

model. In his subsequent paper, Oguchi150 formulated a new variational method for33

the free energy in statistical physics. According to his calculations, the value of the34

free obtained by using this new variational method was lower than that of the Bo-35

goliubov variational method. Author concluded that the new variational free energy36

satisfies the thermodynamic stability criterion.37

However, Stolze151 by careful examination of the papers,149,150 has shown that38

the calculation in Ref. 150 contains a mistake which invalidates the result. He39
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also pointed out several errors seriously affecting the results of an earlier paper.1491

Oguchi assumed that the Hamiltonian H0 contains a variational parameter “a”2

distributed according to a probability density P (a). Stolze derived a corrected in-3

equality which clearly states that the new upper bound on the free energy suggested4

by Oguchi149,150 cannot be better (i.e., lower) than the Peierls–Bogoliubov bound,5

no matter how cleverly P (a) was chosen. This shows clearly that no advantage over6

the Peierls–Bogoliubov bound was obtained.7

The standard proof was given in Callen’s second edition book on thermodynam-8

ics48 for the case when the unperturbed Hamiltonian and the perturbation com-9

mute. Another proof (for the general case), was carried out in Feynman book on sta-10

tistical mechanics.147 Feynman used Baker–Campbell–Hausdorff expansion123,12411

for the exponential of a sum of two noncommuting operators. Prato and Barraco14812

presented a proof of the Bogoliubov inequality that does not require the Baker–13

Campbell–Hausdorff expansion.14

Several variational approaches for the free energy have been proposed152,153 as15

attempts to improve the results obtained through the well-established Bogoliubov16

principle. This principle requires the use of a trial Hamiltonian depending on one17

or more variational parameters. The only way to improve the Bogoliubov principle18

by itself is to choose a more complete trial Hamiltonian, closing it to the exact one,19

but in almost all cases the possibilities are soon exhausted. The usual mean field20

approximation may be obtained using the above principle utilizing a sum of single21

spins in an effective field (the variational parameter) as the trial Hamiltonian.22

Lowdin154 and Lowdin and Nagel155 studied a generalization of the Gibbs–23

Bogoliubov inequality F ≤ F0 + 〈H − H0〉0 for the free energy F which leads24

to a variation principle for this quantity that may be of importance in certain25

computational applications to quantum systems. This approach is coupled with a26

study of the perturbation expansion of the free energy for a canonical ensemble with27

H = H0 +λV in the general case when H0 and V do not commute. A simple proof28

was given for the thermodynamic inequality F − F0 − 〈H − H0〉0 < 0 in the case29

when the two Hamiltonian H0 and V do not commute. The second- and high-order30

derivatives of the free energy with respect to the perturbation parameter λ were31

calculated. From the second-order term a second-order correction to the previous32

variational minimum was finally obtained for the free energy.33

Decoster39 established a sequence of inequalities which generalize the Gibbs–34

Bogoliubov inequality in classical statistical mechanics and the Peierls and Bogoli-35

ubov inequalities in quantum mechanics; they can be presented as rearrangements36

of perturbation expansions, which provide exact bounds which are used in varia-37

tional calculations.38

Kramarczyk156 argued that the Bogoliubov variational principle may be shown39

to be equivalent to the minimizing of the information gained while replacing the ex-40

act state by an approximate one. Consequently, the quasiparticles introduced in the41

thermal Hartree–Fock approximation may be redefined information theoretically.42
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9. Applications of the Bogoliubov Variational Principle1

Bogoliubov variational principle has been successfully applied to a wide range of2

problems in the theory of many-particle systems. The first application of Bogoli-3

ubov inequality to concrete many-particle problem was carried out in the work by4

Kvasnikov157 on the application of a variational principle to the Ising model of5

ferromagnetism.6

Ising model17,158 is defined by the following Hamiltonian H (i.e., energy func-7

tional of variables; in this case the “spins” Si = ±1 on the N sites of a regular8

lattice in a space of dimension d)9

H = −1

2

N
∑

i<j=1

JijSiSj − µBH

N
∑

i=1

Si . (129)10

Here, Jij play the role of “exchange constants”, H is a (normalized) magnetic field,11

involving an interpretation of the model to describe magnetic ordering in solids12

(M =
∑N

i=1 Si is “magnetization”; µBHM is the Zeeman energy, i.e., is the energy13

gained due to application of the field). The main task is to calculate statistical sum14

Z as15

Z =
∑

Si

exp−(H/θ) . (130)16

Kvasnikov157 considered the approximation of nearest neighbors, i.e., Jij = J for17

nearest neighbors 〈i, j〉.18

According to Bogoliubov variational principle, one can write19

F ≤ F0 + 〈H −H0〉0 . (131)20

The upper bound for the free energy Fsup is given by21

Fsup = −θ lnZinf , (132)22

where23

Zinf = Z0 exp−(S/θ), Z0 = Tr exp−(H0/θ) ; (133)24

S = (Z0)
−1Tr(∆H exp−[H0/θ]) . (134)25

The parameters of partition, which were introduced into H0 and ∆H, and, hence,26

into Z0 and S, should be determined from the condition of the minimum of Fsup.27

Thus, we obtain28

−H0

θ
= µB(B − χ)

N
∑

i=1

Si , (135)29

−∆H
θ

= µBχ

N
∑

i=1

Si +
1

2

N
∑

i6=j

KijSiSj , (136)30
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where B = H/θ, K = J/θ, χ is some parameter. Then, according to relation (132),1

one finds2

(Zinf(χ))
−1

3

= 2 cothµB(B − χ) exp







µBχ tanhµB(B − χ) +
1

2N

N
∑

i6=j

Kij tanh
2 µB(B − χ)







.4

(137)5

Parameter χ is determined by the equations6

tanhµB(χ−B) =
N

∑

Kij
µBχ, 1− 1

N

∑

Kij +
N

∑

Kij
(µBχ)

2 > 0 . (138)7

When the approximation of nearest neighbors is considered in the above equations8

the following substitution should be done:9

N
∑

i6=j

Kij = zKN , (139)10

where z is the number of nearest neighbors. Hence Fsup is an approximate expression11

for the free energy and Zinf is the approximate statistical sum of the model. It will12

be of instruction to compare these values with those which were calculated by other13

methods. To proceed, let us consider the regions of low and high temperatures. In14

the first case, we will have that θ ≪ zJ . The low-temperature approximation is15

expressed as a series expansion in terms of the small parameter exp(−K). The16

iterative solution of Eq. (138) will have the form:17

µBχ = −zK(1− 2 exp 2(−Kz − µBB)− 8zK exp 4(−Kz − µBB) + · · · ) . (140)18

It is sufficient to confine oneself to the values of the order exp(−2Kz). The result19

is20

(Zinf)
−1 = exp(Kz/2 + µBB)(1 + exp2(−Kz −B) + · · · ) . (141)21

This result is in accordance with the other low-temperature expansions5,15822

Z = exp 2(Kz/2 + µBB)N23

×
(

1 +N exp 2(−Kz − µBB) +
Nz

2
exp 4[−K(z − 1)− µBB]24

+

{

N(N − 1)

2
− Nz

2

}

exp 4(−Kz − µBB) + . . .

)

. (142)25

In the case of the high temperature, when θ ≥ zJ , the approximate solution of the26

Eq. (138) will have the form:27

µBχ ≃ −zK tanhµBB

1− [zK/ cosh2 µBB]
. (143)28
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Then after some transformations one can arrive to the expression (up to the terms1

K3):2

Zinf ≃ [2 coshµBB]N
(

1 +
1

2
Kz tanh2 µBB3

+
1

8
K2zN [4z tanh2 µBB + (Nz + 4z) tanh4 µBB]

)

. (144)4

This expression is also in accordance with the known high-temperature expan-5

sions5,158 for N ≫ z. Let us consider now the expression for magnetization159 (the6

averaged magnetic moment)7

M =
1

N

∂ lnZinf

∂B
. (145)8

Using Eq. (138), we obtain9

m

µBp
= tanhµB

(

H

θ
+ n

m

θ

)

, (146)10

where p is the number of lattice sites per unit volume,m =Mp is the magnetization11

per unit volume. This result coincides with the result of the phenomenological12

theory.5 The corresponding basic values of the Weiss theory, the Curie point θ013

and Weiss parameter w have the form:14

θ0 =
1

N

N
∑

i6=j

Jij ; w =
N−1

∑

Jij
µ2
Bp

=
θ0
µ2
Bp

. (147)15

Hence, with the help of the Bogoliubov variational scheme it was possible to cal-16

culate the reasonable approximate expression for the statistical sum of the Ising17

model and describe the macroscopic properties of FM systems in the wide interval18

of temperatures. It is thus seen that one may derive directly a consistent mean19

field-type theory from a variational principle.20

Clearly Bogoliubov variational principle had a deep impact on the field of statis-21

tical mechanics of classical and quantum many-particle systems by making possible22

the analysis of complex statistical systems. Many interesting developments can23

be viewed from the point of a central theme, namely the Bogoliubov inequality,24

in particular in quantum theory of magnetism5,159–163 and interacting many-body25

systems.91,164–17126

Radcliffe160 carried out a systematic investigation of the approximate free en-27

ergies and Curie temperatures that can be obtained by using trial density matrices28

(which describe various possible decompositions of the ferromagnet into clusters) in29

a variational calculation of the free energy. Single-spin clusters lead to the molecular30

field model (as is well known) and two-spin clusters yield the Oguchi pair model.7131

The relation of the constant-coupling method to these approximations was clarified.32

A rigorous calculations using three-spin clusters were carried out.33

1530010-39



July 3, 2015 13:21 IJMPB S0217979215300108 page 40

2nd Reading

A. L. Kuzemsky

Rudoi161 investigated the link between Bogoliubov statistical variational prin-1

ciple for free energy, the method of partial diagram summation of the perturba-2

tion theory and the Luttinger–Ward theorem. On the basis of Matsubara’s Green’s3

function method he solved the nonlinear integral Dyson equation by approximating4

the effective potential. As a result, a new implicit equation of magnetic state was5

obtained for the Ising model.6

Soldatov172 generalized the Peierls–Bogoliubov inequality. A set of inequalities7

was derived instead, so that every subsequent inequality in this set approximates the8

quantity in question with better precision than the preceding one. These inequalities9

lead to a sequence of improving upper bounds to the free energy of a quantum10

system if this system allows representation in terms of coherent states. It follows11

from the results obtained that nearly any upper bound to the ground state energy12

obtained by the conventional variational principle can be improved by means of the13

proposed method.14

Abubrig173 studied the mixed spin-3/2 and spin-2 Ising ferrimagnetic system15

with different single-ion anisotropies in the absence of an external magnetic field16

within the mean field theory based on Bogoliubov inequality for the Gibbs free en-17

ergy. Second-order critical lines were obtained in the temperature anisotropy plane.18

Tricritical line separating second-order and first-order lines was found. Finally, the19

existence and dependence of a compensation points on single-ion anisotropies was20

also investigated for the system. It was shown that this mixed-spin model ex-21

hibits one, two or three compensation temperature depending on the values of22

the anisotropies.23

10. The Variational Schemes and Bounds on Free Energy24

During last few decades, numerous variational schemes have become an increas-25

ingly popular workable tool in quantum mechanical many-particle theory.5,10,11,1426

Bounds of free energy and canonical ensemble averages were of considerable inter-27

est as well. For many complex systems, such as Ising and Heisenberg ferromag-28

nets or composite materials, methods of obtaining bounds are the practical useful29

tools which are both tractable and informative. A few illustrative topics will be of30

instruction to discuss in this context.31

MacDonald and Richardson174 used the density matrix of von Neumann to for-32

mulate an exact variational principle for quantum statistics which embodies the33

principle of maximization of entropy. In terms of the formalism of second quan-34

tization, the authors wrote this variational principle for fermions or bosons and35

then derived from it an approximate variational procedure which yields the particle36

states of a system of interacting bosons or fermions as well as the distribution of37

particles in these states. These equations, in authors opinion, yield the generaliza-38

tion of the Hartree–Fock equations for nonzero temperature and the corresponding39

extension to bosons.40
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Schattke175 found an upper bound for the free energy for SC system in magnetic1

field. Starting from the BCS theory, the free energy was obtained by a combination2

of a variational method and perturbation theory. The variational equations obtained3

were nonlocal. The parameters of the perturbation calculation were the vector po-4

tential and the spatial variations of the order parameter, which have to be small.5

Boundary conditions were set for the case of diffuse reflection and pair-breaking at6

the surface. As an example, the SC plate was discussed.7

Krinsky et al. used176 the variational principle to derive a new approximation to8

a ferromagnet in a magnetic field, below its critical temperature. They considered1769

a ferromagnet in an external magnetic field with T ≤ TC . Using a variational ap-10

proximation based on the zero-field solution, the authors obtained an upper bound11

on the free energy, an approximate equation-of-state and a lower bound on the12

magnetization, all having the correct critical indices. Explicit numerical calcula-13

tions have been carried out for the two-dimensional Ising model, and it was found14

that the results obtained provide a good approximation to the results of series15

expansions throughout the region T ≤ TC .16

The Gibbs–Bogoliubov inequality8 was used177 to develop a first-order pertur-17

bation theory that provides an upper bound on the Helmholtz free energy per18

unit volume of a classical statistical mechanical system in terms of the free energy19

and pair distribution function. Charged systems as well as a system of Lennard-20

Jones particles were discussed and detailed numerical estimates of the bounds were21

presented.22

Okubo and Isihara178 derived important general inequalities for the derivatives23

of the partition function of a quantum system with respect to the parameters in-24

cluded in the Hamiltonian. Applications of the inequalities were used to discuss25

relations for critical initial exponents, kinetic energy, susceptibility, electrical con-26

ductivity and so on. Existence of an inconsistency analogous to the Schwinger-term27

difficulty in the quantum field theory was pointed out.28

In their second paper,179 Okubo and Isihara analyzed from a general point of29

view an inequality for convex functions in quantum statistical mechanics. From30

an inequality for a convex function of two Hermitian operators, the Peierls and31

Gibbs operators, coarse graining and other important inequalities were derived in32

a unified way. Various different forms of the basic inequality were given. They are33

found useful in discussing the entropy and other physical problems. Special accounts34

were given of functions such as exp(x) and x log x.35

A variational method for many-body systems using a separation into a difference36

of Hamiltonians was presented by Hader and Mertens.180 A particular ansatz for the37

wavefunction was considered which leads to an upper bound for the exact ground38

state energy. This allowed a variation with respect to a separation parameter. The39

method was tested for a one-dimensional lattice with Morse interactions where the40

Toda subsystems can be solved by the Bethe ansatz. In two limiting cases the results41

obtained were exact, otherwise they were in agreement with the quantum transfer42

integral method.43
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Yeh181–183 proposed a derivation of a lower bound on the free energy; in addition1

he analyzed the bounds of the average value of a function.183 He also established1812

a weaker form of Griffiths theorem for the FM Heisenberg model. It was described3

as follows182: Free energy in the canonical ensemble was taken as4

F = −β−1 ln
∑

n

〈n| exp(−Hβ)|n〉 , (148)5

where |n〉 is any complete set of orthonormal states. Bounds of F can be obtained6

from bounds of 〈n| exp(−Hβ)|n〉. As we seen, a very simple upper bound of F was7

given by Peierls63; one way to prove his theorem is by showing that8

〈ψ| exp(−Hβ)|ψ〉 ≥ exp(−β〈ψ|H |ψ〉) . (149)9

Yeh182 derived a rather simple lower bound of F by similar method. He con-10

sidered a Hamiltonian with a ground state energy E0 = 0. He considered a real11

function f(E) = exp(−Eβ), β > 0. It was shown that for any normalized state |ψ〉12

a weaker but simpler upper bound for f may be written as13

exp(−β〈ψ|H |ψ〉p) ≥ 〈ψ| exp(−Hβ)|ψ〉 ≥ exp(−β〈ψ|H |ψ〉) , (150)14

where15

p = exp

(

(−β〈ψ|H2|ψ〉)
〈ψ|H |ψ〉

)

. (151)16

Identifying β = (kBT )
−1 and H as Hamiltonian, a lower bound of free energy was17

obtained from Eq. (150) as18

F ≥ −β−1 ln
∑

ψ

exp
(

− β〈ψ|H |ψ〉p
)

(152)19

where |ψ〉 is any complete orthonormal set of states. This is a general formula for20

a lower bound on the free energy.21

Upper and lower bounds of the canonical ensemble average of any operator A22

can be written down in terms of 〈ϕn|H |ϕn〉, where ϕn are the eigenstates of A.23

Furthermore, bounds of thermodynamic derivatives can be obtained by noting that24

the bounds of25

∂if̄

∂βi
(153)26

can be also derived182 in similar manner. Here,27

f̄ = 〈ψ| exp(−Hβ)|ψ〉 =
∑

n

ρn exp(−Enβ);
∑

n

ρn = 1 . (154)28

From Eq. (150), it is clear that all the bounds are more accurate at higher temper-29

atures. These bounds have been useful in determining the properties of Heisenberg30

ferromagnets.18131

Symanzik184 proved, refined and generalized a lower bound given by Feynman32

for the quantum mechanical free energy of an oscillator. The method, application of33
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a classical inequality to path integrals, also gives upper bounds for one-temperature1

Green’s functions.2

Heise and Jelitto185 formulated the asymptotically exact variational approach3

to the strong coupling Hubbard model. They used a generalization of Bogoliubov4

variational principle, in order to develop a molecular field theory of the Hubbard5

model, which becomes asymptotically exact in the strong coupling limit. In other6

words, in their paper the authors have started from a generalized form of Bogoliubov7

variational theorem in order to set up a theory of the Hubbard model, which yields8

nontrivial results in the strong coupling regime and becomes asymptotically exact9

in the strong coupling limit. For this purpose the Hamiltonian was rotated by a10

unitary two-particle transformation, before the variational principle was applied.11

However, the real form of the generalized mean fields for the Hubbard model in12

the strong coupling regime was not determined in complete form. This task was13

fulfilled by Kuzemsky in a series of papers.17,35–3714

Zeile186 proposed a generalization of Feynman variational principle for real path15

integrals in a systematic way. He obtained an asymptotic series of lower bounds for16

the partition function. The author claimed that the method was tested on the an-17

harmonic oscillator and showed excellent agreement with exact results. However,18

Dorre et al.187 using the equivalence between Feynman and Bogoliubov variational19

principle, discussed187 in the formalism of Hamiltonian quantum mechanics an im-20

proved upper bound for the free energy which has been given by Zeile186 using path21

integral methods. It was shown that Zeile’s variational principle does not guarantee22

a thermodynamically consistent description.23

Brandt and Stolze formulated188 a new hierarchy of upper and lower bounds24

on expectation values. Upper and lower bounds were constructed for expectation25

values of functions of a real random variable with derivatives up to the order (N+1)26

which are alternately negative and positive over the whole range of interest. The27

bounds were given by quadrature formulas with weights and abscissas determined28

by the first (N + 1) moments of the underlying probability distribution. Applica-29

tion to a simple disordered phonon system yielded sharp bounds on the specific30

heat.31

Vlachos171 proposed a variational method that uses the frequency and the en-32

ergy shift as variational parameters. The quantum mechanical partition function33

was approximated by a formally simple expression, for a generalized anharmonic34

oscillator in one and many dimensions. The numerical calculations for a single quar-35

tic and two coupled quartic oscillators have led to nearly exact values for the free36

energy, the ground state and the difference between the ground state and the first37

excited state.38

Predescu189 presented a generalization of the Gibbs–Bogoliubov–Feynman39

inequality for spinless particles and then illustrated it for the simple model of a40

symmetric double-well quartic potential. The method gives a pointwise lower41

bound for the finite-temperature density matrix and it can be systematically im-42
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proved by the Trotter composition rule. It was also shown to produce ground state1

energies better than the ones given by the Rayleigh–Ritz principle as applied to the2

ground state eigenfunctions of the reference potentials. Based on this observation,3

it was conjectured that the local variational principle may perform better than the4

equivalent methods based on the centroid path idea and on the Gibbs–Bogoliubov–5

Feynman variational principle, especially in the range of low temperatures. However,6

clear evidence for such a statement was not given.7

All these points of view acquire significance of the variational principles as a8

general method of solution for better insight into the complicated behavior of the9

many-particle systems.10

11. The Hartree Fock Bogoliubov Mean Fields11

The microscopic theory of superconductivity was created simultaneously by12

Bardeen et al. and Bogoliubov.192–198 An important contribution to the theory13

of superconductivity were the works of Fröhlich,199 who put forward the idea of the14

importance of the electron–phonon interaction for the phenomenon of supercon-15

ductivity, and the theory of Schafroth, Butler and Blatt,200 who conjectured that16

superconductivity is due to Bose–Einstein condensation of correlated electron pairs.17

In their paper, Bardeen et al., determined the ground state energy and the spectrum18

of elementary excitations of their model.190,191 The BCS theory was constructed19

on the basis of a model Hamiltonian that takes into account only the interaction of20

electrons with opposite momenta and spins, whereas Bogoliubov theory was based21

on the Fröhlich Hamiltonian199 and used the method of compensation of dangerous22

diagrams.194 Bogoliubov et al., have generalized to Fermi systems the Bogoliubov23

method of canonical transformations proposed earlier in connection with a micro-24

scopic theory of superfluidity for Bose systems.112 This approach has formed the25

basis of a new method for investigating the problem of superconductivity. Starting26

from Fröhlich Hamiltonian, the energy of the SC ground state and the one-fermion27

and collective excitations corresponding to this state were obtained. It turns out28

that the final formulae for the ground state and one-fermion excitations obtained29

independently by Bardeen et al.190 were correct in the first approximation. The30

physical picture appears to be closer to the one proposed by Schafroth, Butler and31

Blatt. The effect on superconductivity of the Coulomb interaction between the elec-32

trons was analyzed in detail. A criterion for the superfluidity of a Fermi system with33

a four-line vertex Hamiltonian was established.34

Roughly speaking, to explain simply the theory of superconductivity it is possi-35

ble to say that the Fermi sea is unstable against the formation of a bound Cooper36

pair when the net interaction is attractive; it is reasonable to expect that the pairs37

will be condensed until an equilibrium point is reached. The corresponding antisym-38

metric wavefunctions for many electrons was constructed in BCS model.201,202 They39

noted also that their solution may be considered as an exact in the thermodynamic40

limit.41
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The most clear and rigorous arguments in favor of the statement that the BCS1

model is an exactly solvable model of statistical physics were advanced in the papers2

of Bogoliubov et al.192,197,198 They showed that the free energy and the correlation3

functions of the BCS model and a model with a certain approximating quadratic4

Hamiltonian are indeed identical in the thermodynamic limit. In his theory,192–1985

Bogoliubov gave a rigorous proof that at vanishing temperature the correlation6

functions and mean values of the energy of the BCS model and the Bogoliubov–7

Zubarev–Tserkovnikov model are equal in the thermodynamic limit. Moreover, Bo-8

goliubov constructed a complete theory of superconductivity on the basis of a model9

of interacting electrons and phonons.192–198 Generalizing his method of canonical10

transformations15,203,204 to Fermi systems and advancing the principle of compen-11

sation of dangerous graphs,194 he determined the ground state consisting of paired12

electrons with opposite moments and spins, its energy and the energy of elementary13

excitations. It was shown also that the phenomenon of superconductivity consists14

in the pairing of electrons and a phase transition from a normal state with free15

electrons to a SC state with pair condensate.16

The pairing Hamiltonian has the form:17

H− µN =
∑

kσ

E(k)a†kσakσ +
∑

kp

V (k, p)a†k↑a
†
−k↓a−p↓ap↑ , (155)18

where µ is the chemical potential and N is the number of particles.19

The essential step which was made by Bogoliubov was connected with intro-20

ducing the anomalous averages or the generalized mean fields Fp = 〈a−p↓ap↑〉. It is21

reasonable to suppose that because of the large number of particles involved, the22

fluctuations of a−p↓ap↑ about these expectations values Fp must be small. Hence,23

it is possible to express such products of operators in the form:24

a−p↓ap↑ = Fp + (a−p↓ap↑ − Fp) . (156)25

It is reasonable to suppose that one may neglect the quantities which are bilinear in26

the presumably small fluctuation term in brackets. This way leads to the Bogoliubov27

model Hamiltonian of the form:28

Hmod − µN =
∑

kσ

E(k)a†kσakσ +
∑

kp

V (k, p)(a†k↑a
†
−k↓Fp + F ∗

k a−p↓ap↑ − F ∗
kFp) .29

(157)30

Here the Fk should be determined self-consistently.192–19831

Thus, Bogoliubov created a rigorous theory of superfluidity112 and supercon-32

ductivity198 within the unified scheme115 of the nonzero anomalous averages or the33

generalized mean fields, and showed that at the physical basis of these two funda-34

mental phenomena of nature lies the process of condensation of Bose particles11635

and, respectively, pairs of fermions.36

Indeed, Bogoliubov et al.,192,197 have shown on the basis of the model Hamilto-37

nian of BCS–Bogoliubov, that the thermodynamic functions of a superconducting38
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system, which were obtained by a variation method in BCS, are asymptotically ex-1

act for V → ∞, N/V = const. (V is the volume of the system and N the number of2

particles). This conclusion was based on the fact that each term of the perturbation3

theory series, by means of which the correction to that solution was calculated, is4

asymptotically small for V → ∞. In addition, it was shown that it is possible to5

satisfy with asymptotic exactness the entire chain of equations for Green’s functions6

constructed on the basis of the model Hamiltonian of BCS–Bogoliubov. Thus, the7

asymptotic exactness of the known solution for the SC state was proved without8

the use of perturbation theory. It was shown also that the trivial solution that cor-9

responds to the normal state should be rejected at temperatures below the critical10

temperature. In other words, starting with the reduced Hamiltonian of supercon-11

ductivity theory, Bogoliubov et al.192,197 proved the possibility of exact calculation12

of the free energy per unit volume.13

Somewhat later, on the basis of the BCS theory, a similar investigation was14

made by other authors.205–208 Muhlschlegel205 studied an asymptotic expansion of15

the BCS partition function by means of the functional method. The canonical op-16

erator exp[−β(H −µN)] associated with the BCS model Hamiltonian of supercon-17

ductivity was represented as a functional integral by the use of Feynman’s ordering18

parameter. General properties of the partition function in this representation were19

investigated. Taking the inverse volume of the system as an expansion parameter, it20

was possible to calculate the thermodynamic potential including terms independent21

of the volume. Muhlschlegel’s theory yielded an additional evidence that the BCS22

variational value is asymptotically exact. The behavior of the canonical operator for23

large volume was described and related to the state of free quasiparticles. A study24

of the terms of the thermodynamic potential which were of smaller order in volume25

in the low-temperature limit, showed that the ground state energy is nondegenerate26

and belongs to a number eigenstate.27

Thirring and Wehrl209 investigated in which sense the Bogoliubov–Haag treat-28

ment of the BCS–Bogoliubov model gives the correct solution in the limit of infinite29

volume. They found that in a certain subspace of the infinite tensor product space30

the field operators show the correct time behavior in the sense of strong conver-31

gence. Thus, a solution of the SC type with a gap in the spectrum of elementary32

excitations really can exist for the model Hamiltonian of BCS–Bogoliubov.33

In general, the problem of explaining the phenomenon of superconductivity re-34

quired the solution of the very difficult mathematical problems associated with35

the foundation of applied approximations.2,15 In connection with this, Bogoliubov36

investigated192–198 the reduced Hamiltonian, in which the interaction of single elec-37

trons is studied, and carried out for it a complete mathematical investigation for38

zero temperature. In this connection, he laid the bases of a new powerful method39

of the approximating Hamiltonian, which allows linearization of nonlinear quan-40

tum equations of motion, and reduction of all nonlinearity to self-consistent equa-41

tions for the ordinary functions into which the defined operator expressions trans-42

late. This method was extended later to nonzero temperatures and a wide class of43
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systems, and became one of most powerful methods of solving nonlinear equations1

for quantum fields.2,152

Petrina contributed much to the further clarification of many complicated as-3

pects of the BCS–Bogoliubov theory. He performed a close and subtle analy-4

sis15,115,210–213 of the BCS–Bogoliubov model and various related mathematical5

problems.6

In his paper210 “Hamiltonians of quantum statistics and the model Hamilto-7

nian of the theory of superconductivity”, an investigation was made of the general8

Hamiltonian of quantum statistics and the model Hamiltonian of the theory of9

superconductivity in an infinite volume. The Hamiltonians were given a rigorous10

mathematical definition as operators in a Hilbert space of sequences of translation-11

invariant functions. It was established that the general Hamiltonian is not sym-12

metric but possesses a real spectrum; the model Hamiltonian is symmetric and13

its spectrum has a gap between the energy of the ground state and the excited14

states.15

In the following paper,211 the model Hamiltonian of the theory of superconduc-16

tivity was investigated for an infinite volume and a complete study was made of its17

spectrum. The grand partition function was determined and the equation-of-state18

was found. In addition, the existence of a phase transition from the normal to the19

SC state was proved. It was shown that in the limit V → ∞ the chain of equations20

for the Green’s functions of the model Hamiltonian has two solutions, namely the21

free Green’s function and the Green’s function of the approximating Hamiltonian.22

In his paper,212 Petrina has shown that the Bogoliubov result that the average23

energies (per unit volume) of the ground states for the BCS–Bogoliubov Hamilto-24

nian and the approximating Hamiltonian asymptotically coincide in the thermo-25

dynamic limit is also valid for all excited states. He also established that, in the26

thermodynamic limit, the BCS–Bogoliubov Hamiltonian and the approximating27

Hamiltonian asymptotically coincide as quadratic forms.28

Petrina213 considered also the BCS Hamiltonian with sources, as it was pro-29

posed by Bogoliubov and Bogoliubov, Jr. It was proved that the eigenvectors and30

eigenvalues of the BCS–Bogoliubov Hamiltonian with sources can be exactly de-31

termined in the thermodynamic limit. Earlier, Bogoliubov proved that the energies32

per volume of the BCS–Bogoliubov Hamiltonian with sources and the approxi-33

mating Hamiltonian coincide in the thermodynamic limit. These results clarified34

substantially the microscopic theory of superconductivity and provided a deeper35

mathematical foundation to it.36

Raggio and Werner169 have shown the existence of the limiting free energy37

density of inhomogeneous (site-dependent coupling) mean field models in the ther-38

modynamic limit,45 and derived a variational formula for this quantity. The formula39

requires the minimization of an energy term plus an entropy term as a functional40

depending on a function with values in the one-particle state space. The minimizing41

functions describe the pure phases of the system, and all cluster points of the se-42

quence of finite volume equilibrium states have unique integral decomposition into43
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pure phases. Some applications were considered; they include the full BCS model1

and random mean field models.2

A detailed and careful mathematical analysis of certain aspects of the BCS–3

Bogoliubov theory was carried out by Watanabe,214–222 mainly in the context of4

the solutions to the BCS–Bogoliubov gap equation for superconductivity.5

BCS–Bogoliubov theory correctly yields an energy gap.223,224 The determina-6

tion of this important energy gap is by solving a nonlinear singular integral equation.7

An investigation of the solutions to the BCS–Bogoliubov gap equation for supercon-8

ductivity was carried out by Watanabe.214–222 In his works, the BCS–Bogoliubov9

equations were studied in full generality. Watanabe investigated the gap equation10

in the BCS–Bogoliubov theory of superconductivity, where the gap function is a11

function of the temperature T only. It was shown that the squared gap function is12

of class C2 on the closed interval [0, TC ]. Here, TC stands for the transition temper-13

ature. Furthermore, it was shown that the gap function is monotonically decreasing14

on [0, TC ] and the behavior of the gap function at T = TC was obtained and some15

more properties of the gap function were pointed out.16

On the basis of his study Watanabe then gave, by examining the thermody-17

namical potential, a mathematical proof that the transition to a SC state is a18

second-order phase transition. Furthermore, he obtained a new and more precise19

form of the gap in the specific heat at constant volume from a mathematical point20

of view. It was shown also that the solution to the BCS–Bogoliubov gap equa-21

tion for superconductivity is continuous with respect to both the temperature and22

the energy under the restriction that the temperature is very small. Without this23

restriction, the solution is continuous with respect to both the temperature and24

the energy, and, moreover, the solution is Lipschitz continuous and monotonically25

decreasing with respect to the temperature.26

van der Walt et al.225,226 have obtained analytic expressions for the BCS–27

Bogoliubov gap of a many-electron system within the BCS model interaction in28

one, two and three dimensions in the weak coupling limit, but for arbitrary in-29

teraction width ν = ~D/EF , 0 < ν < ∞. Here, ~D is the maximum energy of30

a force-mediating boson and EF is the Fermi energy (which is fixed by the elec-31

tronic density). The results obtained addressed both phononic (ν ≪ 1) as well32

as nonphononic (e.g., exciton, magnon, plasmon, etc.) pairing mechanisms where33

the mediating boson energies are not small compared with EF , provided weak34

electron–boson coupling prevails. The essential singularity in coupling, sometimes35

erroneously attributed to the two-dimensional character of the BCS model interac-36

tion with (ν ≪ 1), was shown to appear in one, two and three dimensions before37

the limit ν → 0 is taken.38

McLeod and Yang227 studied the uniqueness and approximation of a positive39

solution of the BCS–Bogoliubov gap equation at finite temperatures. When the40

kernel was positive representing a phonon-dominant phase in a superconductor,41

the existence and uniqueness of a gap solution was established in a class which42

contains solutions obtainable from bounded domain approximations. The critical43
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temperatures that characterize SC–normal phase transitions realized by bounded1

domain approximations and full space solutions were also investigated. It was shown2

under some sufficient conditions that these temperatures are identical. In this case,3

the uniqueness of a full space solution follows directly. The authors227 also presented4

some examples for the nonuniqueness of solutions. The case of a kernel function with5

varying signs was also considered. It was shown that, at low temperatures, there6

exist nonzero gap solutions indicating a SC phase, while at high temperatures, the7

only solution is the zero solution, representing the dominance of the normal phase,8

which establishes again the existence of a transition temperature.9

In a series of papers,228–230 Combescot et al. studied various aspects of the BCS10

ansatz for superconductivity190 in the light of the Bogoliubov approach.11

In Ref. 228, they extended the one-pair Cooper configuration towards BCS–12

Bogoliubov model of superconductivity by adding one-by-one electron pairs to an13

energy layer, where a small attraction acts. To do it, they solved Richardson’s14

equations analytically in the dilute limit of pairs on the one-Cooper pair scale. It15

was found, through keeping only the first-order term in this expansion, that the N16

correlated pair energy reads as the energy of N isolated pairs within a N(N − 1)17

correction induced by the Pauli exclusion principle which tends to decrease the18

average pair binding energy when the pair number increases. Quite remarkably,19

extension of this first-order result to the dense regime gives the BCS–Bogoliubov20

condensation energy exactly. These facts may lead one to a different interpretation21

of the BCS–Bogoliubov condensation energy with a pair number equal to the num-22

ber of pairs feeling the potential and an average pair binding energy reduced by23

Pauli blocking to half the single Cooper pair energy — instead of the more standard24

but far larger SC.25

In the subsequent paper229 the usual formulation of the BCS–Bogoliubov ansatz26

for superconductivity in the grand canonical ensemble makes the handling of27

the Pauli exclusion principle between paired electrons straightforward. It however28

masks that the many-body effects between Cooper pairs interacting through the re-29

duced BCS–Bogoliubov potential are entirely controlled by this exclusion. To show30

it up, one has to work in the canonical ensemble. The proper handling of Pauli31

blocking between a fixed number of composite bosons is however known to be quite32

difficult. To do it, the authors have developed a commutator formalism for Cooper33

pair condensate, along the line that they used for excitons. The authors229 then34

rederived, within the N -pair subspace, a few results of BCS–Bogoliubov theory35

of superconductivity obtained in the grand canonical ensemble, to evidence their36

Pauli blocking origin. They ended by reconsidering what should be called Cooper37

pair wavefunction and concluded differently from the usual understanding.38

In their third paper, Combescot et al.230 showed that the Bogoliubov approach39

to superconductivity provides a strong mathematical support to the wavefunction40

ansatz proposed by Bardeen, Cooper and Schrieffer.190 However, there are some41

subtle differences in the both the approaches. Indeed, the BCS ansatz — with all42

pairs condensed into the same state — corresponds to the ground state of the43
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Bogoliubov Hamiltonian. From the other hand, this Hamiltonian only is part of1

the BCS Hamiltonian. As a result, the BCS ansatz definitely differs from the BCS2

Hamiltonian ground state. This can be directly shown either through a perturbative3

approach starting from the Bogoliubov Hamiltonian or better by analytically solv-4

ing the BCS Schrödinger equation along Richardson–Gaudin exact procedure. Still,5

the BCS ansatz leads not only to the correct extensive part of the ground state6

energy for an arbitrary number of pairs in the energy layer where the potential7

acts — as recently obtained by solving Richardson–Gaudin equations analytically8

— but also to a few other physical quantities such as the electron distribution,9

as it was shown by the authors. The paper230 also considered arbitrary filling of10

the potential layer and evidences the existence of a super dilute and a super dense11

regime of pairs, with a gap different from the usual gap. These regimes constitute12

the lower and upper limits of density-induced BEC–BCS crossover in Cooper pair13

systems. It should be noted, however, that this theory needs an additional careful14

examination.15

In 1958, Bogoliubov231 proposed a new variational principle in the many-particle16

problem. This variational principle is the generalization of the Hartree–Fock vari-17

ational principle.5,10 It is well known232,233 that the Hartree–Fock approximation18

is a variational method that provides the wavefunction of a many-body system19

assumed to be in the form of a Slater determinant for fermions and of a product20

wavefunction for bosons. It treats correctly the statistics of the many-body system,21

antisymmetry for fermions and symmetry for bosons under the exchange of parti-22

cles. The variational parameters of the method are the single-particle wavefunctions23

composing the many-body wavefunction.24

Bogoliubov231 considered a model dynamical Fermi system describing the25

Hamiltonian with two-body forces. The Hamiltonian of a nonrelativistic system26

of identical fermions interacting by two-body interactions was27

H =
∑

kσ

(E(k) − EF )a
†
kσakσ +

1

2V

∑

k,k′,σ

J(k, k′|σ1σ2σ′
2σ

′
1)a

†
kσa

†
kσakσakσ . (158)28

The a†kσ and akσ are single-particle creation and annihilation operators satisfying29

the usual anticommutation relations, EF is the Fermi energy level and V is the30

volume of the system.31

The Hamiltonian under consideration is a model Hamiltonian; it takes into32

account the pair interaction of the particles with opposite momentum only. It can33

be rewritten in the following form231:34

H =
∑

qs

(E(k)− EF )a
†
qsaqs +

1

2V

∑

q,q′,s

I(q, q′|s1, s2, s′2s′1)a†qs1a†qs2aq′s′2aq′s′1 .35

(159)36

Here q describes the pair of momentum (k,−k); hence q and −q describe the same37

pair. Index s = (σ, ν), where ν = ±1 is an additional index231 permitting to classify38

k as (q, ν). Bogoliubov231 had shown that the ground state of the system can be39
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found asymptotically exactly for the limit V → ∞ by following the approach of the1

paper.1922

This approach found numerous applications in the many-body nuclear3

theory.232–240 The properties of all existing and theoretically predicted nuclei can4

be calculated based on various nuclear many-body theoretical frameworks. The clas-5

sification of nuclear many-body methods can be also done from the point of view of6

the pair nuclear interaction, from which the many-body Hamiltonian is constructed.7

An important goal of nuclear structure theory is to develop the computational tools8

for a systematic description of nuclei across the chart of the nuclides. Nuclei come in9

a large variety of combinations of protons and neutrons (≤ 300). Understanding the10

structure of the nucleus is a major challenge. To study some collective phenomena11

in nuclear physics, we have to understand the pairing correlation due to residual12

short-range correlations among the nucleons in the nucleus. This has usually been13

calculated by using the BCS theory or the Hartree–Fock–Bogoliubov theory. The14

Hartree–Fock–Bogoliubov theory is suited well for describing the level densities in15

nuclei..237,239 The theory of level densities reminds in certain sense the ordinary16

thermodynamics. The simplest level density of nucleons calculations were based17

usually on a model Hamiltonian which included a simple version of the pairing18

interaction (between nucleons in states differing only by the sign of the magnetic19

quantum number).20

Sheikh and Ring236 derived the symmetry-projected Hartree–Fock–Bogoliubov21

equations using the variational ansatz for the generalized one-body density-matrix22

in the Valatin form. It was shown that the projected-energy functional can be23

completely expressed in terms of the Hartree–Fock–Bogoliubov density matrix and24

the pairing tensor. The variation of this projected-energy was shown to result in25

Hartree–Fock–Bogoliubov equations with modified expressions for the pairing po-26

tential and the Hartree–Fock field. The expressions for these quantities were explic-27

itly derived for the case of particle number projection. The numerical applicability28

of this projection method was studied in an exactly soluble model of a deformed29

single-j shell.30

Behkami and Kargar237 have determined the nuclear level densities and ther-31

modynamic functions for light A nuclei, from a microscopic theory, which included32

nuclear pairing interaction. Nuclear level densities have also been obtained using33

Bethe formula as well as constant temperature formula. Level densities extracted34

from the theories were compared with their corresponding experimental values. It35

was found that the nuclear level densities deduced by considering various statis-36

tical theories are comparable; however, the Fermi-gas formula241 becomes inade-37

quate at higher excitation energies. This conclusion, which has also been arrived38

at by other investigations, revealed that a realistic treatment of the statistical nu-39

clear properties requires the introduction of residual interaction. The effects of the40

pairing interaction and deformation on nuclear state densities were illustrated and41

discussed.42

1530010-51



July 3, 2015 13:21 IJMPB S0217979215300108 page 52

2nd Reading

A. L. Kuzemsky

Robledo and Bertsch238 have presented a computer code for solving the equa-1

tions of the Hartree–Fock–Bogoliubov theory by the gradient method, motivated2

by the need for efficient and robust codes to calculate the configurations required3

by extensions of the Hartree–Fock–Bogoliubov theory, such as the generator coor-4

dinate method. The code was organized with a separation between the parts that5

are specific to the details of the Hamiltonian and the parts that are generic to the6

gradient method. This permitted total flexibility in choosing the symmetries to be7

imposed on the Hartree–Fock–Bogoliubov solutions. The code solves for both even8

and odd particle number ground states, with the choice determined by the input9

data stream.10

Lewin and Paul240 have shown that the best method for describing attractive11

quantum systems is the Hartree–Fock–Bogoliubov theory. This approach deals with12

a nonlinear model which allows for the description of pairing effects, the main ex-13

planation for the superconductivity of certain materials at very low temperature.14

Their paper is a detailed study of Hartree–Fock–Bogoliubov theory from the point15

of view of numerical analysis. Lewin and Paul started by discussing its proper dis-16

cretization and then analyzed the convergence of the simple fixed point (Roothaan)17

algorithm. Following the works for electrons in atoms and molecules, they had18

shown that this algorithm either converges to a solution of the equation or oscillates19

between two states, none of them being solution to the Hartree–Fock–Bogoliubov20

equations. They also adapted the Optimal Damping Algorithm to the Hartree–Fock–21

Bogoliubov setting and also analyzed it. The last part of the paper was devoted to22

numerical experiments. The authors considered a purely gravitational system and23

numerically discovered that pairing always occurs. They then examined a simplified24

model for nucleons, with an effective interaction similar to what is often used in25

nuclear physics. In both cases, Lewin and Paul240 discussed the importance of using26

a damping algorithm.27

Many other applications of the Hartree–Fock–Bogoliubov theory to various28

many-particle systems were discussed in Refs. 242–246. Generalization of Lieb vari-29

ational principle166 to Bogoliubov-Hartree–Fock theory was considered recently by30

Bach et al.167 In its original formulation, Lieb variational principle holds for fermion31

systems with purely repulsive pair interactions. As a generalization, authors proved32

for both fermion and boson systems with semibounded Hamiltonian that the in-33

fimum of the energy over quasifree states coincides with the infimum over pure34

quasifree states. In particular, the Hamiltonian was not assumed to preserve the35

number of particles.36

It is instructive to remind that in mathematics, the infimum (abbreviated inf;37

plural infima) of a subset S of a partially ordered set T is the greatest element of T38

that is less than or equal to all elements of S. Consequently the term greatest lower39

bound is also commonly used. Infima of real numbers are a common special case40

that is especially important in analysis. However, the general definition remains41

valid in the more abstract setting of order theory where arbitrary partially ordered42

sets are considered.43
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To shed light on the relation between authors’ result and the usual formulation1

of Lieb variational principle in terms of one-particle density matrices, it was also2

included a characterization of pure quasifree states by means of their generalized3

one-particle density matrices.4

12. Method of an Approximating Hamiltonian5

It is worth noting that a complementary method, which was called the method of6

an approximating Hamiltonian, was formulated3,4,247–249 for treating model systems7

of statistical mechanics. The essence of the method consists in replacement of the8

initial model Hamiltonian H , which is not amenable to exact solution, by a suitable9

approximating (or trial) Hamiltonian Happr. The next step consists of proving their10

thermodynamical equivalence, i.e., proving that the thermodynamic potentials and11

the mean values calculated on the basis of H and Happr are asymptotically equal12

in the thermodynamic limit45 N , V → ∞, N/V = const.13

When investigating the phenomenon of superconductivity, Bogoliubov suggested14

the method of approximating Hamiltonian and justified it for the case of temper-15

atures close to zero. By employing this method, Bogoliubov rigorously solved the16

BCS model of superconductivity at zero temperature. This model was defined by17

the Hamiltonian of interacting electrons with opposite momenta and spins.18

To explain the superconductivity phenomenon, it was necessary to solve very19

difficult mathematical problems connected with the justification of approximations20

employed. In this connection, Bogoliubov considered the reduced Hamiltonian in21

which only the interaction of electrons was taken into account. He gave a complete22

mathematical investigation of this Hamiltonian at zero temperature. Moreover, he23

laid the foundation of a new powerful method of approximating Hamiltonian which24

allows one to linearize nonlinear quantum equations of motion so that the nonlin-25

earity is preserved only in self-consistent equations for ordinary functions that are26

obtained from certain operator expressions. This method was then extended to the27

case of nonzero temperatures and applied to a broad class of systems. Later, this28

approach became one of the most effective methods for solving nonlinear equations29

for quantum fields.30

The method of approximating Hamiltonian is based on the proof of the thermo-31

dynamic equivalence of the model under consideration and approximating Hamil-32

tonian. Thermodynamic equivalence means here the coincidence of specific free33

energies and Green’s functions for model and approximating Hamiltonian in the34

thermodynamic limit45 when V and N tends to ∞, N/V = const.35

It was shown above that in many cases it may be assumed that the effective36

Hamiltonian H for the system of particles may be written as the sum of the Hamil-37

tonian of the reference system Happr, plus the rest of the effective Hamiltonian38

H = Happr + ∆H . Then the Bogoliubov inequality states that the Helmholtz free39

energy F of the system is given by40

F ≤ F appr + 〈H −Happr〉appr , (160)41
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where F appr denotes the free energy of the reference system and the brackets a1

canonical ensemble average over the reference system.2

Bogoliubov Jr. elaborated a new method247–251 of finding exact solutions for a3

broad class of model systems in quantum statistical mechanics — the method of4

approximating Hamiltonian. As it was mentioned above, this method appeared in5

the theory of superconductivity.197,1986

Bogoliubov Jr. investigated some dynamical models247 generalizing those of the7

BCS type. A complete proof was presented that the well-known approximation8

procedure leads to an asymptotically exact expression for the free energy, when the9

usual limiting process of statistical mechanics is performed. Some special examples10

were considered.11

A detailed analysis of Bogoliubov approach to investigations of (Hartree–Fock–12

Bogoliubov) mean field-type approximations for models with a four-fermion in-13

teraction was given in the papers.250,251 An exactly solvable model with paired14

four-fermion interaction that is of interest in the theory of superconductivity was15

considered. Using the method of approximating Hamiltonian, it was shown that it16

is possible to construct an asymptotically exact solution for this model. In addi-17

tion, a theorem was proved that allows us to compute, with asymptotic accuracy18

in the thermodynamic limit, the density of the free energy under sufficiently gen-19

eral conditions imposed on the parameters of the model system. An approximate20

method for investigating models with four-fermion interaction of general form was21

presented. The method was based on the idea of constructing an approximating22

Hamiltonian and it allows one to study the dynamical properties of these models.23

The method combines the standard approach to the method of the approximat-24

ing Hamiltonian for the investigation of models with separable interaction and the25

Hartree–Fock scheme of approximate computations based on the concept of self-26

consistency. To illustrate the efficiency of the approach presented, the BCS model27

that plays an important role in the theory of superconductivity was considered28

in detail. Thus, the effective and workable approach was formulated which allows29

one to investigate dynamical and thermodynamical properties of models with four-30

fermion interaction of general type. The approach combines the ideas of the stan-31

dard Bogoliubov approximating Hamiltonian method for the models with separable32

interaction with the method of Hartree–Fock approximation based on the ideas of33

self-consistency.34

Bakulev et al.252 discussed thoroughly the principle of thermodynamic equiv-35

alence in statistical mechanics in the approach of the method of approximating36

Hamiltonian. They discussed the main ideas that lie at the foundations of the37

approximating Hamiltonian method in statistical mechanics. The principal con-38

straints for the model Hamiltonian to be investigated by approximating Hamilto-39

nian method were considered along with the main results obtainable by this method.40

It was shown how it is possible to enlarge the class of model Hamiltonians solvable41

by approximating Hamiltonian method with the help of an example of the BCS-42

type model. Additional rigorous studies of the theory of superconductivity with43
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Coulomb-like repulsion was carried out by Bakulev.253 The traditional method of1

the approximating Hamiltonian was applied for the investigation of a model of a2

superconductor with interaction of the BCS-type and Coulomb-like repulsion, the3

latter being described by unbounded operators. It was shown that the traditional4

method can be generalized in such a way that for the model under consideration5

one can prove the asymptotic (in the thermodynamic limit V → ∞, N → ∞,6

N/V = const.) coincidence not only of the free energies (per unit volume) but also7

of the correlation functions of the model and approximating Hamiltonian.8

13. Conclusion9

The aim of the present overview was to justify a statement that in many cases10

the methods of quantum statistical mechanics, many of which were formulated and11

developed by Bogoliubov,1–4 allow one to develop efficient approaches for solution12

of complicated problems of the many-particle interacting systems.13

In the present survey, we discussed tersely the Bogoliubov variational principle.14

It was shown in the preceding sections that this principle provides an extremely15

valuable treatment of mean field methods and their application to the problems16

in statistical mechanics and many-particle physics of interacting systems. With17

its remarkable workability, the Bogoliubov variational principle has found many18

applications as an effective method not only in condensed matter physics but also19

in many other areas of physics (see, e.g., Ref. 254). It is also hoped that this work20

will lead to greater insight into the application of variational principles to various21

many-particle problems.22

There is another aspect of the problem under consideration. It is of great im-23

portance to determine correctly the mean field contribution when one describes the24

interacting many-particle systems by the equations-of-motion method.5,17 It was25

mentioned briefly that the method of two-time temperature Green’s functions5,1726

allows one to investigate efficiently the quasiparticle many-body dynamics gener-27

ated by the main model Hamiltonians from the quantum solid state theory and the28

quantum theory of magnetism. The method of quasiaverages allows one to take a29

deeper look at the problems of spontaneous symmetry breaking, as well as at the30

problems of symmetry and dissymmetry in the physics of condensed matter.5,17,1831

Summarizing the basic results obtained by Bogoliubov by inventing the variational32

principles, method of quasiaverages and results in the area of creation of asymp-33

totic methods of statistical mechanics, one must especially emphasize that thanks to34

their deep theoretical content and practical direction, these methods have obtained35

wide renown everywhere. They have enriched many-particle physics and statistical36

mechanics with new achievements in the area of mathematical physics as well as37

in the areas of concrete applications to physics, e.g., theories of superfluidity and38

superconductivity.39

In the papers,17,35–37 we have formulated the self-consistent theory of the cor-40

relation effects for many-particle interacting systems using the ideas of quantum41
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field theory for interacting electron and spin systems on a lattice. The workable and1

self-consistent irreducible Green’s functions approach to the decoupling problem for2

the equation-of-motion method for double-time temperature Green’s functions has3

been presented. The main achievement of this formulation was the derivation of the4

Dyson equation for double-time retarded Green’s functions instead of causal ones.5

That formulation permitted to unify convenient analytical properties of retarded6

and advanced Green’s functions and the formal solution of the Dyson equation,7

that, in spite of the required approximations for the self-energy, provides the cor-8

rect functional structure of single-particle Green’s function. The main advantage9

of the mathematical formalism was brought out by showing how elastic scattering10

corrections (generalized mean fields) and inelastic scattering effects (damping and11

finite lifetimes) could be self-consistently incorporated in a general and compact12

manner. We have presented there the novel method of calculation of quasiparticle13

spectra for basic spin lattice models, as the most representative examples. Using the14

irreducible Green’s functions method, we were able to obtain a closed self-consistent15

set of equations determining the electron Green’s function and self-energy. For the16

Hubbard and Anderson models, these equations gave a general microscopic de-17

scription of correlation effects both for the weak and strong Coulomb correlation,18

and, thus, determined the interpolation solutions of the models. Moreover, this ap-19

proach gave the workable scheme for the definition of relevant generalized mean20

fields written in terms of appropriate correlators.21

We hope that these methods of statistical mechanics have been explained with22

sufficient details to bring out their scope and power, since we believe that those23

techniques will have application to a variety of many-body systems with complicated24

spectra and strong interaction.25

These applications have illustrated some of subtle details of the irreducible26

Green’s functions approach and exhibited their physical significance in a repre-27

sentative form. As it was seen, these treatments has advantages in comparison with28

the standard methods of decoupling of higher-order Green’s functions within the29

equation-of-motion approach.30

The main advantage of the whole method is the possibility of a self-consistent31

description of quasiparticle spectra and their damping in a unified and coherent32

fashion.33

The most important conclusion to be drawn from the present consideration is34

that the generalized mean fields for the case of strong Coulomb interaction in the35

Hubbard model has quite a nontrivial structure and cannot be reduced to the mean36

density functional.37

Recently the problem of the advanced mean field methods in complex systems25538

has attracted big attention. Our consideration reveals the fundamental importance39

of the adequate definition of generalized mean fields at finite temperatures, that40

results in a deeper insight into the nature of quasiparticle states of the correlated41

lattice fermions and spins and other interacting many-particle systems.42
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