ji(2) = i[ae™ TP X (2) ~ B2 X1 (2)],

12
ja(2) = ctg (mof2)[ae ™2 X (2) + ge—treld x-1(2)], (12)

where a and B are arbitrary real constants and
the function X(z) is given by Eq. (11).

Proof. Let us consider an arbitrary solution
of problem (3) that satisfies identity (7) by Lemma
2 for some fixed value of the constant C = C ,.
We can assume that C , # 0; otherwise, the conclusion
of the theorem follows from Lemma 3. Together
with this solution we consider the one-parameter
family of solutions of problem (3)

j(z:0)= 171 — afy (2), 2€S8y; f2(Z) —ajni(2), 2ES: ),  (13)
where j,, (z) and j,, (z) are given by Egs. (9)
and satisfy identity (7) for C = 0. By Lemma 2,
the solution (13) satisfies identity (7) for C =
C(e). The direct substitution of (13) in identity
(7) with allowance for Eq. (9) ylelds

20’92 X ()71 (2) - itg (n@f2)j2(Z)) = Co — Ca).

Since j(z) is postulated not to satisfy the homogene-
ous identity (7}, the left-hand side of the latter
equation is a nonzero constant; consequently,

an o, exists such that C( «,) = 0, and by Lemma

3 the corresponding function (13) j(z; o) differs
from the function (10) only by a certain real multi-
plier R.

Theorem 2. Problem (1), (2) is unconditionally
uniquely solvable, and its solution is given by
Egs. (12), where the constants are expressed as
follows:

a=(lx—L)2A, B=Ux +1)2A,

4\:-?!{ r(?)r(!-gi)

We prove this theorem by direct caleulagy,
substituting Egs.
(2).

A=

Remark. It is readily established on th

of Eqs. (12) and (14) that the solution of the hﬂth

boundary-value problem (1), (Z) satisfies iqgp
(7), where

I} -1
ﬁ.:

tity.

C=4af=

It follows from this result, in particular, that ¢,
above-formulated particular solutions (8) ang (10)
correspond to the cases Iy = tly, l.e., to an gy.
ternal current transmitted along the diagonals of
the investigated field.
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Advanced and retarded thermodynamic two-
time Green's function were introduced in the sta-
tistical mechaniecs of gquantum systems by N. N.
Bogolyubov and §. V. Tyablikov. * In contrast
to causal Green's functions, they can be extended
into the complex plane. These convenient analytical
properties. contributed to a situation in which the
method of thermodynamic two-time Green's functions
has found broad application in statistical mechan-
ics. 27 A system of coupled equations, together
with the corresponding spectral representations,
1s used to find advanced and retarded Green's
functions. As other authors have indicated, '~ ° in
the treatment of this system of equations the main
problem is to develop procedures for effective de-
coupling of the system of equations in order to
obtain clesed equations for determining the Green's
functions. The fact that such an approximation
must be selected on an individual basils, depending
on the nature of the problem, ' sometimes is crit-
icized for its unsystematic nature in works that
utilize Green's functions and diagramming. However,

974 Sov. Phys, Dokl. 34{11}, November 1989

0038-5689/89/11 0974-03 $02.00

in the diagram approach there also is ambiguity
in the generation of the required approximation,
and the answer to the question which diagrams
must be summed is obvious only for a small range
of relatively simple problems.

In this paper we will show that for a wide
range of various problems of statistical mechanics
and condensed-media theory a fairly systematic
method can be drawn up for constructing approx”
mation solutions on the basis of the method of 1"
reducible Green's functions.“~* In our approach
we will discuss from a unified standpeint the fungsa
mental questions that arise in the constructiol 0
approximation solutions on the basis of the methﬂung
of irreducible Green's functions. We will be de@
with Green's functions of the type

G'(r, 1)Y= KAW). B Y =—if (e — 1) (A B )]0, 77

It has been noted elsewhere! that the lchai
equations obtained for Eq. (1) is identical

© 1990 American institute of Physics
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only advanced and retarded Green's functions,

put also causal Green's functions. The method

of irreducible Green's functions *~7 is a useful
reformulation of the conventional method of the
gogolyubov—Tyablikov equations of motion. The
constructive idea was that in calculating the one-
papticle characteristics of a system it would be
convenient first to represent Green's function (1)
gs @ formal solution of the Dyson equation in order
o perform the necessary decoupling of multiparticle
correlation functions in the mass operator, since

py so doing the decoupling procedure could be
conditionally monitored by analogy with the diagram
aspproach. The method of irreducible Green's func-
tions * ~*° is closely related to the Mori —Zwanzig
projection method,® which essentially follows from
the idea of N. N. Bogolyubov of "concise descrip-
tion" of the system.2,3 [n this approach the in-
finite chain of coupled equations for the correlation
functions reduces to several relatively simple equa-
tions, in which "effective" allowance is made for

the significant information on the system that deter-
mines the particular features of the given problem.
[t is essential to emphasize that when the method

of irreducible Green's functions is used, the struc-
ture of the resultant solution depends significantly

on the order of the equations for the Green's functions

m which the irreducible parts are singled out. This

r turn determines the nature of the approximate
solutions that we build on the basis of the exact
representation.

To clarify the foregoing, let us consider the
retarded Green's function G = <<A(t), AT(t')>>.
let us introduce into the equation of motion

WG(W) = A, A" I+ [A, H]_1A™Y (2)
§ the by definition irreducible (ir) Green's function
"CAH)_ A D, =K[A,H]_ —ad |A"H,, (3)
§ there the quantity o is determined from the con-
dition
{((4,H])" 41, =0. (4)

from Bq. (4) we find

a={[[A,H]_A L) (([A, A ] )7 = M, (My) ™) (9)

§ fere M, and M, are the zeroth and first order

ments of the spectral density.2:3 A Green's

§ ‘iction that cannot be reduced by decoupling

Y2 Green's function of lower order is said to be
Teducible. Irreducible correlation functions are
“ll known in statistical physics; in the diagram
®thod irreducible vertices are a set of graphs

| { ! cannot be cut along a single line. Definition

) translates these concepts into the language

fetarded and advanced Green's functions. We
;.Ssify all renormalizations of the average field,
,;Eﬂh are separated bymeans of Eq. (3), as Green's

,&Fﬁﬂns in the generalized average-field approxi-
ton (GAFA):

@ =([4, 4" ) Y (w - ). (6)

flEah:-ul:aie Green's funection (3), we use the pro-

EEUP? > of differentiation with respect to the second
e g

N, In the resultant equation we isolate the
Qucible part by analogy with Egq. (3). As a
y we find

G{{u)=G“(m)+G“(w]P(m}G“(w). (7)
T we have introduced the scattering operator
P (Mo QLA HY L V(LA HT Y Y (M) (8)

4

k=
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The structure of Eq. (7) enables us to determine
the mass operator M, in complete analogy with the
diagram technique:

P=M+MG°P. (9)

As a result, we ohtain the exact Dyson equation
(as yet no decouplings have been performed) for
the thermodynamic two-time Green's functions:

G=G°+G°MG;, M=(P)". (10)

The mass operator M is expressed according to

Eq. (9) in terms of the "proper" part (or in the
diagram technique, the bound part) of the multi-
particle irreducible Green's function and describes
possible inelastic-scattering processes that lead

to damping and to additional renormalization of

the frequency of the self-consistent quasiparticle
excitations. Strictly speaking, definition (89) is
symbolic in nature; of course, because of the iden-
tical form of the equations for the Green's functions
for all three types, we can convert in each stage
of calculations to casual Green's functions and corn-
firm the substantiated nature of definition (9)}.

We therefore should speak of an analog of the Dyson
equation. Hereafter we will drop this stipulation,
since it will not cause any misunderstanding. We
wish to emphasize that the method presented above
for introducing irreducible Green's functions is
only a general scheme. The specific method of
introducing irreducible parts (we may legitimately
speak of irreducible operators) depends on the
form of operators A, the type of Hamiltonian, and
the conditions of the problem. The effectiveness
of this approach has been demonstrated ®-!5 for
describing the normal and superconductive proper-
ties of systems with strong coupling and a com-
plex type of electronic spectrum. Let us illustrate
this through some examples. Let us consider the
Hubbard model as our first example. Let us write
the Hamiltonian for it in the form

]
H= Ztia, a0+ ~UZnign_,, (11)
if o 2 ia

This Hamiltonian depends on twe parameters: the
effective bandwidth w and the repulsive energy

U of electrons. As the ratio of these two gquantities
Is altered, radical changes in the type of metal-
insulator transition occur in the system, and so
forth. The case of a very strong but finite elec-
tron correlation poses the greatest difficulty. In-
troducing the auxiliary operators °

dfﬂ!J:n?_.urafﬂ (ﬂ;':iL ”¢'+g=nfﬂ'1 nf-c,r:(l _nfﬂ‘)"

we represent the one-particle Green's function as
Cijo (W)= &85 |27, Dy = I djag 1 d5, M, = Z G2 (w).
af o

ir o
Using relations (2)-(10}, we derive the exact Dy-
son equation, whose mass operator has the form

Mao(@)=®E 11,1, MU D,y 1 D W B, (12)
ez

In our approach we have for Eg. (6) a nonlocal
expression, now in the generalized average-field
approximation:

(13)

n_g (1_'”--0')
G W) - + + )
00(q, w) w-FE_~n_,W; _, w-Ey —(l-n_g}W; _,

We thus have obtained in its most complete version
the explicit form of the average fields, which are
described by the correlators

A. L. Kuzemskii 975




W~ (e onjya_o)+la_gnja’_ )+
+inj_ g ni_, )+{amaf_aa,+aa;u)—{a,ﬂa;_,a;_na;ﬂ}i. (14)

Solution (13) is more general than the "Hubbard
III" solution and the solution by the curl method. ?
The "Hubbard 1" solution is a particular case of
relation (14) which corresponds to the approximation
W® v (njognj-o> = n?; . It is worth noting that

in our approach the irreducibility of average fields
(14) to functionals of the average electron density
in the atomic limit is demonstrated exactly. In
general, average fields may have an extremely non-
trivial structure that is hard to determine for vari-
ous independent considerations. For example, in-
the superconductivity theory of N. N. Bogolyubov, 2
the average fields should include anomalous pairings.
For example, for model (11) from Ref. 10 we have

YQaMi_ g la), W=«ay,n_, I.:":;:flr D—={ny_og ) ay laj, N+
o) ey _,la;, M. (13)
Definition (15) made it possible to perform a con-
sistent derivation of the equations of supercon-
ductivity in the strong-coupling approximation for
transition metals'® »!!* and strongly disordered binary
alloys. ** To understand more clearly this funda-
mental proposition regarding the complex struc-
ture of the average fields, let us investigate the
problem of the magnetic polaron. Usually we con-
sider. The s—d-exchange model of magnetic semi-
conductors. In contrast to the scattering regime, !3
In calculating the one-electron Green's function by
using Egs. (2)-(10) we will take account of the
possible formation of a magnetopolar state at finite
temperatures. '* The expression for the spectrum
of a magnetic polaron has the form

Evo =g, +12_ N 0 (Exo),

¥, ()= E{ (SZ457)
° ¢ |[1-TApo(@)(wrzowg —€p, o0 _o)
. [14 7ML (}] (S ) (SIY) }
(1T Ao ()] (@ — €84 g o)

At a zero temperature the solution which we obtained
reduces to the classical Shastry—Mattis result. %

(16)

The appreoach developed here is closely related
to the fundamental ideas of N. N. Bogolyubov re-
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:_II_ .

garding broken symmetry and quasiaverageg_ziaf

In essence, any method of introducing aVeragg
fields should be consistent with the nature of
broken symmetry of the system. A vivid eXa

of this assertion is the unsolved problem of givin

a microscopic description of antifermmag‘netism 1.3 B
] :

for which a method of constructing a Consistent
theory can be outlined on the basis of thijsg a

Furthermore, as we see from relations ( 12)-(f§;m§.. -
’ o

the method which we have developed makes it
to caiculate in a straightforward manner the
of quasiparticle excitations and damping of thesga
excitations in the case where the system hag
complex multibranch spectrum.
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