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Abstract

The problem of �nding of the ferromagnetic and antiferromagnetic “symmetry broken” so-
lutions of the correlated lattice fermion models beyond the mean-�eld approximation has been
investigated. The calculation of the quasiparticle excitation spectra with damping for the single
and multi-orbital Hubbard model has been performed in the framework of the equation-of-motion
method for two-time temperature Green’s functions within a non-perturbative approach. A uni-
�ed scheme for the construction of generalized mean �elds (elastic scattering corrections) and
self-energy (inelastic scattering) in terms of Dyson equation has been generalized in order to
include the presence of the “source �elds”. The damping of quasiparticles, which reects the
interaction of the single- particle and collective degrees of freedom has been calculated. The
“symmetry broken” dynamical solutions of the Hubbard model, which corresponds to various
types of itinerant antiferromagnetism has been discussed. This approach complement previous
studies and clarify the nature of the concepts of itinerant antiferromagnetism and “spin-aligning
�eld” of correlated lattice fermions. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The problem of the adequate description of the strongly correlated lattice fermions
has been studied intensely during the last decade, especially in context of heavy
fermions and high-Tc superconductivity [1–3]. The behaviour and the true nature of
the electronic states and their quasiparticle dynamics is of central importance to the
understanding of the magnetism in metals and Mott–Hubbard metal–insulator transi-
tion in oxides, the heavy fermions in rare-earths compounds and the high-temperature
superconductivity (HTSC) in cuprates. Recently, there has been considerable interest
in identifying the microscopic origin of these states [4]. Antiferromagnetic correlations
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may play an important role in the possible scenario of normal and superconducting
behaviour of these compounds. Some of the experimental and theoretical results show
that antiferromagnetic spin uctuations are really involved in the problem. This idea
has stirred a great deal of discussion in recent times [5]. An appealing but phenomeno-
logical picture of HTSC, known as nearly antiferromagnetic Fermi liquids (NAFL) ap-
proach, has been developed to explain many anomalous properties of cuprates [6]. This
approach predicts the detailed phase diagram for cuprates [6] and presents arguments
which suggest that the physical origin of the pseudogap found in quasiparticle spec-
trum below critical temperature is the formation of a precursor to a spin-density-wave
state. While the NAFL’s scenario is appealing, it has aparently not yet been derived
from fully microscopic consideration. The problem of the role of antiferromagnetic spin
uctuations for HTSC has recently been the subject of many papers (for recent review,
see e.g. Ref. [7]). These investigations call for a better understanding of the nature of
solutions (especially magnetic) to the Hubbard and related correlated models [8–11].
The microscopic theory of the itinerant ferromagnetism and antiferromagnetism [12,13]
of strongly correlated fermions on a lattice at �nite temperatures is one of the impor-
tant issues of recent e�orts in the �eld [14–17]. In some papers the spin-density-wave
(SDW) spectrum was only used without careful and complete analysis of the quasi-
particle spectra of correlated lattice fermions. The aim of this paper is to investigate
the intrinsic nature of the “symmetry broken” (ferro- and antiferromagnetic) solutions
of the Hubbard model at �nite temperatures from the many-body point of view. In the
previous papers we set up the formalism and derived the equations for the quasiparticle
spectra with damping within single- and multi-orbital Hubbard model for the uniform
paramagnetic case. In this paper we apply the formalism to consider the ferromagnetic
and antiferromagnetic solutions. It is the purpose of this paper to explore more fully
the notion of generalized mean �elds (GMF) [10] which may arise in the system of
correlated lattice fermions to justify and understand the “nature” of the local stag-
gered mean �elds which �x the antiferromagnetic ordering. The present work brings
together the formulation of the itinerant antiferromagnetism of various papers. For this
aim we rederive the SDW spectra by the irreducible Green’s functions (IGF) method
[18] taking into account the damping of quasiparticles. This alternative derivation has a
close resemblance to that of the BCS theory of superconductivity for transition metals
[19,20] with using the Nambu representation (cf. [21]). This aspect of the theory is
connected with the concept of broken symmetry, which is discussed in detail for the
present case. The advantage of the Green’s function method is the relative ease with
which temperature e�ects may be calculated.

2. Itinerant antiferromagnetism

The antiferromagnetic state is characterized by a spatially changing component of
magnetization which varies in such a way that the net magnetization of the system
is zero. The concept of antiferromagnetism of localized spins which is based on the
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Heisenberg model and two-sublattice Neel ground state is relatively well-founded con-
trary to the antiferromagnetism of delocalized or itinerant electrons. The itinerant-
electron picture is the alternative conceptual picture for magnetism [22].
We now sketch the main ideas of the concept of itinerant antiferromagnetism. The

simpli�ed band model of an antiferromagnet has been formulated by Slater [23] within
single-particle Hartree–Fock (H–F) approximation. In this approach he used the “ex-
change repulsion” to keep electrons with parallel spins away from each other and to
lower the Coulomb interaction energy. Some authors consider it as a prototype of the
Hubbard model. However, the exchange repulsion was taken proportional to the num-
ber of electrons with the same spins only and the energy gap between two subbands
was proportional to the di�erence of electrons with up and down spins. In the antifer-
romagnetic many-body problem there is an additional “symmetry broken” aspect. For
antiferromagnet, contrary to ferromagnet, the one-electron H–F potential can violate
the translational crystal symmetry. The period of the antiferromagnetic spin structure
L is greater than the lattice constant a. To introduce the two-sublattice picture for
itinerant model one should assume that L = 2a and that the spins of outer electrons
on neighbouring atoms are reversed to each other. In other words, the alternating (H–
F) potential vi� =−�v exp(iQRi) where Q= (�=2; �=2) corresponds to a two-sublattice
AFM structure. To justify an antiferromagnetic ordering with alternating up and down
spin structure we must admit that in e�ect two di�erent charge distributions will arise
concentrated on atoms of sublattices A and B. This is the picture which accounts well
for quasilocalized magnetic behaviour.
The earlier theories of itinerant antiferromagnetism were proposed by des Cloizeaux

[24] and especially Overhauser [25] (in context of the investigation of the ground
state of nuclear matter). Then Overhauser [26] have applied this approach for the
explanation of the anomalous properties of dilute Cu–Mn alloys, have suggested an
antiferromagnetic mechanism that requires neither two-body interactions between para-
magnetic solute spins, nor a sublattice structure (cf. [27]). Such a mechanism may
be recognized by considering a new type of excited state of the conduction electron
gas. He invented the static SDW which allow the total charge density of the gas to
remain spatially uniform. Overhauser [25–29] suggested that the H–F ground state of
a three-dimensional electron gas is not necessarily a Slater determinant of plane waves.
Alternative sets of one-particle states can lead to a lower ground-state energy. Among
these alternatives to the plane-wave state are the SDW and CDW ground states for
which the one-electron Hamiltonians have the form

H = (p2=2m)− G(�x cosQz + �y sinQz) (1)

(spiral SDW; Q = 2kFz) and

H = (p2=2m)− 2G cos(Qr) (2)

(CDW; Q = 2kFz). The periodic potentials in above expressions leads to a corre-
sponding variation in the electronic spin and charge densities, accompanied by a
compensating variation of the background. The e�ect of Coulomb interaction on the
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magnetic properties of the electron gas in Overhauser’s approach renders the paramag-
netic plane-wave state of the free-electron-gas model unstable within the H–F approx-
imation. The long-range components of the Coulomb interaction are most important in
creating this instability [29]. It was demonstrated [28] that a non-uniform static SDW
is lower in energy than the uniform (paramagnetic state) in the Coulomb gas within
the H–F approximation for certain electron density.
The H–F is the simplest approximation but neglects the important dynamical part.

To include the dynamics one should take into consideration the correlation e�ects. The
role of correlation corrections which seems to suppress SDW state as well as the role
of shielding and screening were not fully clari�ed [30,31]. Overhauser remarked that
SDW ground states do not occur for �-function interactions, whatever their strength.
This question was investigated further in Ref. [32]. An instability of the paramagnetic
Hartree-Fock state against a state with di�erent orbitals for di�erent spins was inter-
preted as a magnetic phase transition. It is important to note that in the Slater’s and
des Cloiseaux’s models an electron moving in a crystal does not change its spin. In
these models the main processes are related with pairing of electrons having the same
spins, one from each of the two sublattices. In the Overhauser’s approach to itinerant
antiferromagnetism the combination of the electronic states with di�erent spins (which
pairs opposite spins) is used to describe the SDW state with period Q. The �rst ap-
proach is obviously valid only in the simple commensurate two-sublattice case and the
later is applicable to the more general case of an incommensurate spiral spin state. The
general SDW state have the form

	p� = �p� cos(�p=2) + �p+Q−� sin(�p=2) (3)

The average spin for helical or spiral spin arrangement changes its direction in (x–y)
plane. For the spiral SDW states a spatial variation of magnetization correspond to
Q = (�=a)(1; 1). The antiferromagnetic phase of chromium [33,34] and its alloys has
been satisfactorily explained in terms of the SDW within a two-band model [35]. It
is essential to note that chromium becomes antiferromagnetic in a unique manner. The
antiferromagnetism is established in a more subtle way from among the spins of the
itinerant electrons than the magnetism of collective band electrons in metals like iron
and nickel. The essential feature of chromium which makes possible the formation
of the SDW is the existence of “nested” portions of the Fermi surface [34]. The
formation of bound electron–hole pairs takes place between particles of opposite spins;
the condensed state exhibits the SDW.
The recent attempt to describe antiferromagnetic insulator at T=0 using a one-electron

approach was made in Ref. [36]. To do this, the authors proposed to overcome the
inadequacies of standard local-spin-density theory by adding a spin-dependent magnetic
pseudopotential to Kohn–Sham equations.
For the Hubbard model [37] the qualitative phase diagram was calculated by Penn [38].

Unfortunately, his work gives a clear physical picture but do not emphasize the lattice
character of the tight binding or Wannier fermions as well as the essence of the
anomalous spin-ip averages. The Hubbard model is a simpli�ed but workable model
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for the correlated lattice fermions and the applicability of the SDW Overhauser concept
to highly correlated tight binding electrons on a lattice deserve the careful analysis
within this model. In earlier papers [39–42] the single- and multi-orbital Hubbard
model have been inspected with respect to antiferromagnetic solutions in the mean-�eld
approximation mainly.

3. Hubbard model

The Hubbard model has been widely recognised as a workable model for a study of
the correlated itinerant electron systems. For the sake of completeness we shall discuss
the single-orbital and multi-orbital cases separately.

3.1. Multi-orbital Hubbard model

To demonstrate the advantage of our approach we shall consider the quasiparticle
spectrum of the lattice fermions for degenerate band model. Let us start with the second
quantized form of the Hamiltonian taking the set of the Wannier functions [��(r−Ri)].
Here � is the band index (�= 1; 2; : : : ; 5)

H =
∑
ij���

t��ij a
+
i��aj�� +

1
2

∑
ij;mn

∑
�����′

〈i�; j�|W |m; n�〉a+i��a+j��′am�′an�� : (4)

For a degenerate d-band the second quantized form of the total Hamiltonian in the
Wannier-function representation then is reduced to the following model Hamiltonian:

H = H1 + H2 + H3 : (5)

The kinetic energy operator is given by

H1 =
∑
ij

∑
���

t��ij a
+
i��aj�� : (6)

The term H2 describes one-centre Coulomb interactions

H2 =
1
2

∑
i��

U��ni��ni�−� +
1
2

∑
i��

∑
��′
V��ni��ni��′(1− ���)

−1
2

∑
i���

I��ni��ni��(1− ���) + 12
∑
i���

I��a+i��a
+
i�−�ai�−�ai��(1− ���)

−1
2

∑
i���

I��a+i��ai�−�a
+
i�−�ai��(1− ���) : (7)

In addition to the intrasite intraorbital interaction U�� which is the only interaction
present in the single-orbital Hubbard model, this term contains three more kinds of
interorbital interactions.
The last term H3 describes the direct intersite exchange interaction

H3 =−1
2

∑
ij�

∑
��′
J ��ij a

+
i��ai�−�′a

+
j��′aj�� : (8)
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The de�nition of various integrals in H is obvious. It is reasonable to assume that

U�� = U; V�� = V; I�� = I; J ��ij = Jij : (9)

This Hamiltonian di�er slightly from the analogous Hamiltonian of Ref. [40] where
the only intrasite interaction terms of the second-quantized Hamiltonian of the d-band
were taken into consideration.

3.2. Single-orbital Hubbard model

The model Hamiltonian which is usually referred to as Hubbard Hamiltonian [36]

H =
∑
ij�

tija+i�aj� + U=2
∑
i�

ni�ni−� (10)

includes the intraatomic Coulomb repulsion U and the one-electron hopping energy
tij. The electron correlation forces electrons to localize in the atomic orbitals, which
are modelled here by the complete and orthogonal set of the Wannier wave functions
[�(r−Rj)]. (The Wannier representation, which is unitary transformation of the Bloch
representation is an important background of the Hubbard model. It is well known that
in one dimension the Wannier functions decrease exponentially but less is known about
two and three dimensional cases.) On the other hand, the kinetic energy is reduced
when electrons are delocalized. The main di�culty of the right solution of the Hubbard
model is the necessity in taking into account both of these e�ects simultaneously. Thus,
Hamiltonian (10) is speci�ed by two parameter: U and e�ective electron bandwidth

�=

(
N−1∑

ij

|tij|2
)1=2

:

The important third “player” is the Pauli principle.
The band energy of Bloch electrons �(k) is de�ned as follows:

tij = N−1∑
k

�(k)exp[ik(Ri − Rj)] ;

where N is the number of the lattice sites. It is convenient to count the energy from
the centre of gravity of the band, i.e. tii =

∑
k �(k) = 0. The e�ective electron band-

width � and Coulomb intrasite integral U de�ne completely the di�erent regimes in
three dimension depending on parameter  = �=U . It is usually a rather di�cult task
to �nd interpolation solution for the dynamical properties of the Hubbard model. We
evidently have to improve the early Hubbard’s theory taking account of variety of pos-
sible regimes for the model depending on electronic density, temperature and values
of . It was the purpose of the papers [3,10] to �nd the electronic quasiparticle spectra
in a wide temperature and parameters of the model range and to account explicitly
for the contribution of damping of the electronic states when calculating the various
characteristics of the model. In the past years many theoretical papers have been pub-
lished, in which the approximative dynamical solution of models (5) and (10) have
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been investigated by means of various advanced methods of many-body theory. De-
spite the considerable contributions to development of the many-body theory and to our
better understanding of the physics of the correlated electron systems, the fully consis-
tent dynamical analytical solution of the Hubbard model is still lacking. To solve this
problem with a reasonable accuracy and describe correctly an interpolating solution one
needs more sophisticated approach than usual procedures which have been developed
for description of the interacting electron-gas problem.

4. Irreducible Green’s functions method

Recent theoretical investigations of strongly correlated electron systems have brought
forth signi�cant variety of approaches. To describe from the �rst principles of the
condensed matter theory and statistical mechanics the physical properties of strongly
correlated systems we need to develop a systematic theory of quasiparticle spectra.
In this paper we will use the approach which allows one to describe completely

the quasi-particle spectra with damping in a very natural way. This approach has been
suggested as essential for various many-body systems and we believe that it bears
the real physics of strongly correlated electron systems [10,18]. The essence of our
consideration of the dynamical properties of many-body system with strong interaction
is related closely with the �eld theoretical approach and use the advantage of the
Green’s functions language and the Dyson equation. It is possible to say that our
method tends to emphasize the fundamental and central role of the Dyson equation for
the single-particle dynamics of the many-body systems at �nite temperatures.
In this section, we will discuss briey this novel non-perturbative approach for de-

scription of the many-body dynamics of strongly correlated systems. A number of
other approaches has been proposed and our approach is in many respects an addi-
tional and incorporate the logic of development of the many-body techniques. The
considerable progress in studying the spectra of elementary excitations and thermody-
namic properties of many-body systems has been for most part due to the development
of the temperature-dependent Green’s functions methods. We have developed the help-
ful reformulation of the two-time GFs method which is especially adjusted [3] for
the correlated fermion systems on a lattice. The very important concept of the whole
method are the generalized mean �elds. These GMFs have a complicated structure for
the strongly correlated case and are not reduced to the functional of the mean densities
of the electrons, when we calculate excitations spectra at �nite temperatures. To clarify
the foregoing, let us consider the retarded GF of the form

Gr = 〈〈A(t); B(t′)〉〉=−i�(t − t′)〈[A(t)B(t′)]�〉; �=±1 : (11)

As an introduction of the concept of IGFs let us describe the main ideas of this
approach in a symbolic form. To calculate the retarded GF G(t− t′) let us write down
the equation of motion for it

!G(!) = 〈[A; A+]�〉+ 〈〈[A;H ]−|A+〉〉! : (12)
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The essence of the method is as follows [18]: It is based on the notion of the “IRRE-
DUCIBLE” parts of GFs (or the irreducible parts of the operators, out of which the
GF is constructed) in terms of which it is possible, without recourse to a truncation of
the hierarchy of equations for the GFs, to write down the exact Dyson equation and
to obtain an exact analytical representation for the self-energy operator. By de�nition
we introduce the irreducible part (ir) of the GF

ir〈〈[A;H ]−|A+〉〉= 〈〈[A;H ]− − zA|A+〉〉 : (13)

The unknown constant z is de�ned by the condition (or constraint)

〈[[A;H ]ir−; A+]�〉= 0 : (14)

From condition (14) one can �nd

z =
〈[[A;H ]−; A+]�〉

〈[A; A+]�〉
=
M1
M0

: (15)

Here M0 and M1 are the zeroth and �rst-order moments of the spectral density. There-
fore, irreducible GF are de�ned so that it cannot be reduced to the lower-order ones by
any kind of decoupling. It is worthy to note that the irreducible correlation functions are
well known in statistical mechanics. In the diagrammatic approach the irreducible ver-
tices are de�ned as the graphs that do not contain inner parts connected by the G0-line.
With the aid of de�nition (13) these concepts are translating into the language of re-
tarded and advanced GFs. This procedure extracts all relevant (for the problem under
consideration) mean-�eld contributions and puts them into the generalized mean-�eld
GF, which here are de�ned as

G0(!) =
〈[A; A+]�〉
(!− z) : (16)

To calculate the IGF ir〈〈[A;H ]−(t); A+(t′)〉〉 in (12), we have to write the equation of
motion after di�erentiation with respect to the second time variable t′. Condition (14)
removes the inhomogeneous term from this equation and is the very crucial point of the
whole approach. If one introduces an irreducible part for the right-hand-side operator
as discussed above for the “left” operator, the equation of motion (12) can be exactly
rewritten in the following form:

G = G0 + G0PG0 : (17)

The scattering operator P is given by

P = (M0)−1 ir〈〈[A;H ]−|[A+; H ]−〉〉ir(M0)−1 : (18)

The structure of Eq. (17) enables us to determine the self-energy operator M , in
complete analogy with the diagram technique

P =M +MG0P : (19)

From de�nition (19) it follows that we can say that the self-energy operator M is de-
�ned as a proper (in diagrammatic language “connected”) part of the scattering operator
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M = (P)p. As a result, we obtain the exact Dyson equation for the thermodynamic
two-time Green’s functions:

G = G0 + G0MG ; (20)

which has well-known formal solution of the form

G = [(G0)−1 −M ]−1 : (21)

Thus, by introducing irreducible parts of GF (or the irreducible parts of the operators,
out of which the GF is constructed) the equation of motion (12) for the GF can be
exactly (but using constraint (14)) transformed into Dyson equation for the two-time
thermal GF. This is a very remarkable result, which deserve the underlining, because
the traditional form of the GF method did not include namely this point. The projection
operator technique has essentially the same philosophy, but with using constraint (14)
in our approach we emphasize the fundamental and central role of the Dyson equation
for the calculation of the single-particle properties of the many-body systems. It is
important to note, that for the retarded and advanced GFs the notion of the proper part
is symbolic in nature [18]. However, because of the identical form of the equations
for the GFs for all three types (advanced, retarded and causal), we can convert in
each stage of calculations to causal GFs and, thereby, con�rm the substantiated nature
of de�nition (19)! We therefore should speak of an analog of the Dyson equation.
Hereafter we will drop this stipulation, since it will not cause any misunderstanding.
It should be emphasized that the scheme presented above give just an general idea
of the IGF method. The speci�c method of introducing IGFs depends on the form
of operator A, the type of the Hamiltonian and the conditions of the problem. The
general philosophy of the IGF method lies in the separation and identi�cation of elastic
scattering e�ects and inelastic ones. This last point is quite often underestimated and
both e�ects are mixed. However, as far as the right de�nition of quasiparticle damping
is concerned, the separation of elastic and inelastic scattering processes is believed
to be crucially important for the many-body systems with complicated spectra and
strong interaction. Recently, it was emphasized especially that the anomalous damping
of electrons (or holes) distinguishes cuprate superconductors from ordinary metals.
From a technical point of view the elastic (GMF) renormalizations can exhibit a quite
non-trivial structure. To obtain this structure correctly, one must construct the full GF
from the complete algebra of the relevant operators and develop a special projection
procedure for higher-order GF in accordance with a given algebra. It is necessary to
emphasize that there is an intimate connection between adequate introductions of mean
�elds and internal symmetries of the Hamiltonian.

5. Symmetry broken solutions

In many-body interacting systems, symmetry is important in classi�cation of the
di�erent phases and in understanding the phase transitions between them [43–49]. Ac-
cording to Bogolubov [43] (cf. [48]) in each condensed phase, in addition to the normal
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process, there is an anomalous process (or processes) which can take place because of
the long-range internal �eld, with a corresponding propagator. The anomalous propa-
gators for interacting many-fermion system corresponding to the ferromagnetic (FM)
and antiferromagnetic (AFM) long-range ordering are given by

FM : Gfm ∼ 〈〈ak�; a+k−�〉〉 ;
AFM : Gafm ∼ 〈〈ak+Q�; a+k+Q′�′〉〉 :

(22)

In the SDW case, a particle picks up momentum Q − Q′ from scattering against the
periodic structure of the spiral (nonuniform) internal �eld, and has its spin changed
from � to �′ by the spin-aligning character of the internal �eld. The long-range-order
(LRO) parameters are:

FM : m= 1=N
∑
k�

〈a+k�ak−�〉 ;

AFM : MQ =
∑
k�

〈a+k�ak+Q−�〉 :
(23)

It is important to note that the long-range order parameters are the functions of the
internal �eld, which is itself a function of the order parameter. There is a more
mathematical way of formulating this assertion. According to the paper [14], the
phrase “symmetry breaking” means that the state fails to have the symmetry that the
Hamiltonian has. True broken symmetry can arise only if there are in�nitesimal “source
�elds” present. Indeed, for the rotationally and translationally invariant Hamiltonian the
suitable source terms should be added:

FM : ��BHx
∑
k�

a+k�ak−� ;

AFM : ��BH
∑
kQ

a+k�ak+Q−� ;
(24)

where �→ 0 at the end of calculations.
Broken symmetry solutions of the Overhauser type (3) imply that the vector Q is a

measure of the inhomogeneity or breaking of translational symmetry. It is interesting
to note the remark of paper [47] (cf. [49]) about antiferromagnetism, for which “a
staggered magnetic �eld plays the role of symmetry-breaking �eld. No mechanism can
generate a real staggered magnetic �eld in an antiferromagnetic material”. The Hubbard
model is a very interesting tool for the analysing of this concept [42–52].
Penn [38] shown that antiferromagnetic state and more complicated states (e.g. fer-

rimagnetic) can be made eigenfunctions of the self-consistent �eld equations within
an “extended” mean-�eld approach, assuming that the “anomalous” averages 〈a+i�ai−�〉
determine the behaviour the system on the same footing as “normal” density of quasi-
particles 〈a+i�ai�〉. It is clear, however, that these “spin-ip” terms broke the rota-
tional symmetry of the Hubbard Hamiltonian. For the single-band Hubbard Hamiltonian
the averaging 〈a+i−�ai; �〉=0 because of the rotational symmetry of the Hubbard model.
The including of the “anomalous” averages lead to unrestricted H–F approximation.
The rigorous de�nition of the unrestricted Hartree–Fock approximation (UHFA) has
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been done recently in Ref. [14]. This approximation has been applied also for the
single-band Hubbard model (10) for the calculation of the density of states. The fol-
lowing de�nition of UHFA has been used:

ni−�ai� = 〈ni−�〉ai� − 〈a+i−�ai�〉ai−� : (25)

Thus, in addition to the standard H–F term, the new, the so-called “spin-ip” terms,
are retained. This example clearly show that the nature of the mean-�elds follows from
the essence of the problem and should be de�ned in a proper way. So, one need the
properly de�ned e�ective Hamiltonian He� . We shall analyse below in detail the proper
de�nition of the irreducible GFs which include the “spin-ip” terms. For single-orbital
Hubbard model this de�nition should be modi�ed in the following way:

ir〈〈ak+p�a+p+q−�aq−�|a+k�〉〉!= 〈〈ak+p�a+p+q−�aq−�|a+k�〉〉! − �p;0〈nq−�〉Gk�
−〈ak+p�a+p+q−�〉〈〈aq−�|a+k�〉〉! : (26)

From this de�nition it follows that such way of introduction of the IGF broaden the
initial algebra of the operators and initial set of the GFs. This means that “actual”
algebra of the operators must include the spin-ip terms at the beginning, namely:
(ai�, a+i�, ni�, a

+
i�ai−�). The corresponding initial GF will have the form(

〈〈ai�|a+j�〉〉 〈〈ai�|a+j−�〉〉
〈〈ai−�|a+j�〉〉 〈〈ai−�|a+j−�〉〉

)
:

With this de�nition we introduce the so-called anomalous (o�-diagonal) GFs which
�x the relevant vacuum and select the proper symmetry broken solutions. In fact, this
approximation has been investigated earlier by Kishore and Joshi [51]. They clearly
pointed out that they assumed that the system is magnetized in the x direction instead
of conventional z-axis. The detailed investigation and classi�cation of the magnetic and
non-magnetic symmetry broken solutions of the three-band extended Hubbard model
for CuO2 planes of high-Tc superconductors was made in Ref. [52] within mean-�eld
approximation.

6. Dynamical properties

In many-body interacting systems the quasiparticle dynamics can be quite non-trivial.
Here the problem of the adequate description of the many-body dynamics of the
multi-orbital Hubbard model will be discussed in the framework of equation-of-motion
appproach for two-time thermodynamic Green’s functions. Our main motivation was
the intention to formulate the consistent theory of dynamical properties of the Hubbard
model taking into account the symmetry broken (magnetic) solutions.
This formulation gives to us an opportunity to emphasize some important issues

about the relevant dynamical solutions of the strongly correlated models of fermions
on a lattice and to formulate in a more sharp form the ideas of the method of the
irreducible Green’s functions (IGF) [18]. This IGF method allows one to describe the
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quasiparticle spectra with damping of the strongly correlated electron systems in a
very general and natural way and to construct the relevant dynamical solution in a
self-consistent way on the level of Dyson equation without decoupling the chain of the
equation of motion for the GFs.
The interplay and the competition of the kinetic energy and potential energy a�ects

substantially the electronic spectrum. The renormalized electron energies are tempera-
ture dependent and the electronic states have a �nite life times. These e�ects are most
suitable accounted for by the Green’s functions method. We shall use the (IGF) method
of Section 4. To give a more instructive discussion let us consider the single-particle
GF of lattice fermions, which is de�ned as

G����′(ij; t − t′) = 〈〈ai��(t); a+j��′(t′)〉〉=−i�(t − t′)〈[ai��(t); a+j��′(t′)]+〉

= 1=2�
∫ +∞

−∞
d! exp(−i!t)G����′(ij;!) :

(27)

Actually, this GF is a matrix (10 × 10) in the joint tensor product vector space
of spin and orbital momentum. The diagonal elements of this matrix GF are normal
propagators, while the o�-diagonal elements are anomalous. The equation of motion
for the Fourier transform of the GF has the form∑

m�

A��(im)G����′(mj;!) = �ij������′ +
∑
m�

[B��1 (im)〈〈am��nm��|a+j��′〉〉

+B��2 (im)〈〈am��nm�−�|a+j��′〉〉
+B��3 (im)(〈〈ai��nm��|a+j��′〉〉
+〈〈ai�−�a+m�−�am��|a+j��′〉〉)] : (28)

Here we have introduced the notations

A��(im) = !�mi��� − t��im ; B��1 (im) = (V − I)�im(1− ���) ;
B��2 = [U��� + V (1− ���]�im; B��3 (im) = Jim(1− �im)��� :

(29)

Let us introduce, by de�nition, an “irreducible” GF in the folowing way:

(ir〈〈ai��a+m��1am��1 |a+j��′〉〉) = 〈〈ai��a+m��1am��1 |a+j��′〉〉 − 〈nm��1〉�mi〈〈ai��|a+j��′〉〉
−〈ai��a+m��1〉〈〈am��1 |a+j��′〉〉 : (30)

According to (14), the following constraint should be valid:

〈[(ai��nm��1 )(ir); a+j��′ ]+〉= 0 : (31)

Substituting (30) in (28) we obtain the following equation of motion in the matrix (in
spin space) form:∑

m�

F��(im)G��(mj;!) = 1 +
∑
m�

[L��1 (il)D
�� �
1 (mj) + L��2 (im)D

��;�
2 (mj)

+L��3 (im)(R
��
1 (im; j) + R

��
2 (im; j))] ; (32)



A.L. Kuzemsky / Physica A 267 (1999) 131–152 143

where

F��(im) =

(
E��11 (im) E��12 (im)

E��21 (im) E��22 (im)

)
; 1 =

(
1 0
0 1

)
����ij ; (33)

L��1 (im) =
(
B��1 (im) B��2
0 0

)
; L��2 (im) =

(
0 0

B��1 (im) B��2 (il)

)
;

L��3 (im) =
(
B��3 (im) 0
0 B��3 (im)

)
and

E��11 (im) = A
��(im)− B��1 (im)〈am�↑a+m�↑〉

−
∑
�

(B��1 (im)〈nm�↑〉��� − B��2 (im)〈ni�↓〉���)

−B��3 (im)(〈ai�↑a+m�↑〉+ 〈ai�↓a+m�↓〉)−
∑
l

B��3 (ml)〈nl�↑〉 ; (34)

E��12 =−B��2 〈am�↑a+m�↓〉 −
∑
l

B��3 〈a+l�↓al�↑〉�im (35)

and similar expressions for E21 and E22 with reversed spin indices. The higher-order
GF have the form

D1 =

(
((ir)〈〈am�↑nm�↑|a+j�↑〉〉) ((ir)〈〈am�↑nm�↑|a+j�↓〉〉)
((ir)〈〈am�↑nm�↓|a+j�↑〉〉) ((ir)〈〈am�↑nm�↓|a+j�↓〉〉)

)
;

D2 =

(
((ir)〈〈ai�↑nm�↑|a+j�↑〉〉) ((ir)〈〈ai�↑nm�↑|a+j�↓〉〉)
((ir)〈〈ai�↓nm�↓|a+j�↑〉〉) ((ir)〈〈ai�↓nm�↓|a+j�↓〉〉)

) (36)

and R have the following structure:

R=

(
((ir)〈〈am�↑a+m�↑am�↑|a+n�↑〉〉) ((ir)〈〈am�↑a+m�↑am�↑|a+n�↓〉〉)
((ir)〈〈am�↑a+m�↓am�↓|a+n�↑〉〉) ((ir)〈〈am�↑a+m�↓am�↓|a+n�↓〉〉)

)
:

To calculate the higher-order GF D1, D2, R1 and R2, we will di�erentiate the r.h.s.
of it with respect to the second-time variable (t′). Combining both (the �rst- and
second-time di�erentiated) equations of motion we get the “exact” (no approximation
have been made till now) “scattering” equation

G��(ij;!) = G��0 (ij;!) +
∑
mn��

G��0 (im;!)P
��(mn;!)G��0 (nj;!) : (37)

Here we have introduced the generalized mean-�eld (GMF) GF G0 according to the
following de�nition:∑

m�

F��(im)G��0 (mj;!) = �ij��� : (38)
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The scattering operator P has the form

P��(mn;!) =

(
P��11 (mn;!) P��12 (mn;!)

P��21 (mn;!) P��22 (mn;!)

)
: (39)

Let us write down explicitly the �rst matrix element

P��11 (mn;!) =
∑
ij��

[B��1 (im)(
(ir)〈〈am�↑nm�↑|a+n�↑nn�↑〉〉(ir))B��1 (nj)

+B��1 (im)(
(ir)〈〈am�↑nm�↑|a+n�↑nn�↓〉〉(ir))B��2 (nj)

+B��2 (im)(
(ir)〈〈am�↑nm�↓|a+n�↑nn�↑〉〉(ir))B��1 (nj)

+B��2 (im)(
(ir)〈〈am�↑nm�↓|a+n�↑nn�↓〉〉(ir))B��2 (nj)] : (40)

Here we presented for brevity the explicit expression for a part of Hamiltonian (5)
only without last term. Using (17)–(19) we �nd the Dyson equation in the Wannier
basis

G��(ij;!) = G��0 (ij;!) +
∑
mn��

G��0 (im;!)M
��(mn;!)G��(nj;!) : (41)

Eq. (41) is the central result of the present consideration.

7. Quasiparticle formulation

Let us �rst consider how to describe our system in terms of quasiparticles. For
a translationally invariant system, to describe the low-lying excitations in terms of
quasiparticles one has to make a Fourier transformation

G��(ij;!) = N−1∑
k

exp[ik(Ri − Rj)]G��(k;!) ;

M��(ij;!) = N−1∑
k

exp[ik(Ri − Rj)]M��(k;!) ;
(42)

t��ij = N
−1∑

k

exp[ik(Ri − Rj)]��(k) :

The Dyson equation (41) in the Bloch vector space are given by

G��(k;!) = G��0 (k;!) +
∑
��

G��0 (k;!)M
��(k;!)G��(k;!) : (43)

The renormalized energies in the mean-�eld approximations are the solutions of the
equation∑

�

F��(k)G��0 (k;!) = 1��� : (44)
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Using (44) we �nd

E��11(k) = [!− ��(k)]��� − (1− ���)(V − I)K��↑↑
−
∑
�

[(1− ���)���(V − I)N�↑ + (U��� + V (1− ���))���N�↓ ] ; (45)

E��12(k) = [U���+ V (1− ���)]K��↑↓ ; (46)

N�� = N
−1∑

p

〈a+p��ap��〉 ; (47)

K���1�2 = N
−1∑

p

〈ap��1a+p��2〉 : (48)

For the degenerate Hubbard model (V = I = J = 0) we get

E��11(k) = [!− ��(k)− UN�↓ ]��� : (49)

The spectrum of electronic low-lying excitations without damping follows from the
poles of the single-particle mean-�eld GF(

Ê11 Ê12
Ê21 Ê22

)(
Ĝ011 Ĝ012
Ĝ021 Ĝ022

)
=
(
1 0
0 1

)
: (50)

Here Ĝ0 denotes a matrix in the space of band indices. If we put the spin-ip contri-
butions

Ê12 = Ê21 = 0 ;

then the quasiparticle spectra are given by

det|Ê11|= 0; det|Ê22|= 0 :
For the multiorbital Hubbard model (5) we �nd

G�011(!) =

[
!− ��(k)− UN�↓ − V

∑
�

(1− ���)(N�↓ + N�↑)

+ I
∑
�

(1− ���)N�↑
]−1

: (51)

Finally, we turn to the calculation of the damping. In the general case to �nd the
damping of the electronic states, one needs to �nd the matrix elements of self-energy
in (43). Thus, we have(

Ĝ11 Ĝ12
Ĝ21 Ĝ22

)
=

[(
Ĝ011 Ĝ012
Ĝ021 Ĝ022

)−1
−
(
M̂ 11 M̂ 12

M̂ 21 M̂ 22

)]−1
: (52)
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From this matrix equation we have

Ĝ11 = (Ĝ
−1
011 − �̂11)−1; Ĝ21 = (Ĝ

−1
021 − �̂21)−1 ;

Ĝ12 = (Ĝ
−1
012 − �̂12)−1 Ĝ22 = (Ĝ

−1
022 − �̂22)−1 ; (53)

where true self-energy has the form

�̂11 = M̂ 11 − Ê12Ê−1
22 M̂ 21 + [M̂ 12Ê

−1
22

+(M̂ 12 − Ê12)Ê−1
22 M̂ 22(Ê22 − M̂ 22)−1](M̂ 21 − Ê21) : (54)

The elements of the mass operator matrix M̂ are proportional to the higher-order GF
of the following form:

((ir)〈〈ak+p��1a+p+q��2aq��2 |a+k+s��3a+r��4ar+s��4〉〉(ir);p) :
For the explicit approximate calculation of the elements of the self-energy it is con-
venient to write down the GFs in (54) in terms of correlation functions by using the
well-known spectral theorem [54]:

((ir)〈〈ak+p��1a+p+q��2aq��2 |a+k+s��3a+r��4ar+s��4〉〉(ir);p)

=
1
2�

∫ +∞

−∞

d!′

!− !′ (exp(�!
′) + 1)

∫ +∞

−∞
exp(−i!′t) dt

×〈a+k+s��3 (t)a+r��4 (t)ar+s��4 (t)|ak+p��1a+p+q��2aq��2〉(ir);p) : (55)

Further insight is gained if we select the suitable relevant “trial” approximation for
the correlation function on the r.h.s. of (55). In this paper we show that the earlier
formulations, based on the decoupling or=and diagrammatic methods can arrive at from
our technique but in a self-consistent way. Clearly that the choice of the relevant trial
approximation for correlation function in (55) can be done in a few ways. For example,
the reasonable and workable one may be the following “pair approximation” [3], which
is especially suitable for the low density of the quasiparticles:

〈a+k+s��(t)a+r�−�(t)ar+s�−�(t)ak+p��a+p+q�−�aq�−�〉ir

≈ 〈a+k+s��(t)ak+p��〉〈a+r�−�(t)aq�−�〉〈ar+s�−�(t)a+p+q�−�〉
+〈a+k+s��(t)aq�−�〉〈a+r�−�(t)ak+p��〉〈ar+s�−�(t)a+p+q�−�〉 : (56)

Using (56) in (55) we obtain the approximate expression for the self-energy operator
in a self-consistent form (the self-consistency means that we express approximately the
self-energy operator in terms of the initial GF and, in principle, one can obtain the
required solution by suitable iteration procedure):

M��
11 (k; !) =

1
N 2�3

∑
pq��

(
B��1 B

��
1

∫
d!1 d!2 d!3

!+ !1 − !2 − !3

×N (!1; !2; !3)[g��p+q↑↑(!1)g��q↑↑(!2)g��k+p↑↑(!3)
+g��k+p↑↑(!3)g

��
q↑↑(!2)g

��
p+q↑↑(!1)]
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+B��1 B
��
2

∫
d!1 d!2 d!3

!+ !1 − !2 − !3N (!1; !2; !3)[(↓↑)(↑↓)(↑↑)

+(↑↓)(↓↑)(↑↑)] + B��2 B��1
∫

d!1 d!2 d!3
!+ !1 − !2 − !3

×N (!1; !2; !3)[(↑↓)(↓↑)(↑↑) + (↑↑)(↑↓)(↓↑)]

+B��2 B
��
2

∫
d!1 d!2 d!3

!+ !1 − !2 − !3N (!1; !2; !3)[(↓↓)(↓↓)(↑↑)

+(↑↓)(↓↓)(↓↑)]
)
; (57)

where we have used the notations

N (!1; !2; !3) = [n(!2)n(!3) + n(!1)(1− n(!2)− n(!3))] ;

gk��′(!) =−1� ImGk��′(!+ i�); n(!) = [exp(�!) + 1]−1

Here we present for brevity the explicit expression for a part of Hamiltonian only
without last term. Eqs. (43) and(57) form a closed self-consistent system of equations
for the single-electron GF for the Hubbard model, but for weakly correlated limit only.
In principle, one may use on the r.h.s. of (57) any workable �rst iteration-step forms
of the GFs and �nd a solution by repeated iterations. It is most convenient to choose
as the �rst iteration step of the following simple one-pole approximation:

gk�(!) ≈ �(!− �(k�)) : (58)

Then, using (58) in (57), one can get for the self-energy an explicit expression. How-
ever, the actual explicit calculations will be much more transparent if we con�ne
ourselves of the single-orbital Hubbard model to discuss more explicitly the reliability
of the present approach.

8. Antiferromagnetic single-particle states

The technique for obtaining of the antiferromagnetic solutions to the correlated
fermions on a lattice is presented in this section for single-orbital Hubbard model
(10). In general, it can be easily applied for multiorbital extended Hubbard model.
As discussed above, the self-consistent approach to calculation of the one-particle

properties requires the calculation of the following GF:(
〈〈ai�|a+j�〉〉 〈〈ai�|a+j−�〉〉
〈〈ai−�|a+j�〉〉 〈〈ai−�|a+j−�〉〉

)
= Ĝ(ij;!) : (59)

The equation of motion for the Fourier transform of the GF has the form∑
m

Â(im)Ĝ(mj;!) = �ij���′ + U 〈〈ai�ni−�|a+j�′〉〉 ; (60)
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where

Â(im) =
(
(!�mi − tim) 0

0 (!�mi − tim)
)
: (61)

Using the de�nition of the irreducible parts (26) the equation of motion can be exactly
transformed to the following form:∑

m

Â1(im)Ĝ(mj;!) = �ij���′ + UD̂
ir
(ij;!) ; (62)

where

Â1(im) =
(
(!�mi − tim − U 〈ni−�〉) −U 〈ai�a+i−�〉

−U 〈ai−�a+i�〉 (!�mi − tim − U 〈ni�〉)
)
: (63)

To calculate the irreducible higher-order GF Dir we have to write the equation of
motion for it. After introducing the irreducible parts for the right-hand-side operators
we �nd∑

n

D̂
ir
(in;!)Â2(nj) = U 2D̂1(ij;!) ; (64)

where

D̂1(ij;!)

=

(
(ir)〈〈ai�ni−�|a+j�nj−�〉〉(ir) (ir)〈〈ai�ni−�|a+j−�nj�〉〉(ir)
(ir)〈〈ai−�ni�|a+j�nj−�〉〉(ir) (ir)〈〈ai−�ni�|a+j−�nj�〉〉(ir)

)
: (65)

Then equation of motion for the GF can be exactly transformed into the following
scattering equation:

G(ij;!) = G0(ij;!) +
∑
mn

G0(im;!)P(mn;!)G0(nj;!) ; (66)

where the generalized mean-�eld GF G0 reads∑
m

A1(im)G0(mj;!) = �ij (67)

and the scattering operator P have the form

P̂(ij;!) = U 2

(
(ir)〈〈ai�ni−�|a+j�nj−�〉〉(ir) (ir)〈〈ai�ni−�|a+j−�nj�〉〉(ir)
(ir)〈〈ai−�ni�|a+j�nj−�〉〉(ir) (ir)〈〈ai−�ni�|a+j−�nj�〉〉(ir)

)
: (68)

The Dyson equation (41) then will be reduced for the single-band Hubbard model to
the following form:

G(ij;!) = G0(ij;!) +
∑
mn

G0(im;!)M (mn;!)G(nj;!) : (69)

The mass operator M (mn;!) = U 2P(p)(mn;!) describes the inelastic (retarded) part
of the electron–electron interaction. For purposes of analogy with the theory of su-
perconductivity [19] let us write the Hartree–Fock (elastic) part of the Coulomb mass
operator (not included in (68)):

M̂
HF
(im) = U

( 〈ni−�〉 〈ai�a+i−�〉
〈ai−�a+i�〉 〈ni�〉

)
�im : (70)
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To obtain workable expressions for various parts of the mass operator we use the
spectral theorem, inverse Fourier transformation and make relevant approximation in
the time-correlation functions. In analogy with the theory of superconductivity the
suitable approximation which describe the interaction between the charge and spin
collective excitations can be written as

〈a+n�(t)a+n−�(t)an−�(t)am�a+m−�am−�〉ir

≈ 〈a+n�(t)am�〉〈nn−�(t)nm−�〉
+〈a+n−�(t)am−�〉〈a+n�(t)an−�(t)am�a+m−�〉
+〈an−�(t)a+m−�〉〈a+n�(t)a+n−�(t)am�am−�〉
+〈a+n�(t)am−�〉〈a+n−�(t)an−�(t)am�a+m−�〉
+〈a+n−�(t)am�〉〈a+n�(t)an−�(t)a+m−�am−�〉
+〈am−�(t)am�〉〈a+n�(t)a+n−�(t)a+m−�am−�〉 : (71)

The suitable or relevant approximations follows from the concrete physical conditions
of the problem under consideration. We consider here for illustration the contributions
from charge and spin collective degrees of freedom. We get

M (ij;!) =
U 2

2�2

∫ +∞

−∞
d!1 d!2

ctg�!1=2 + tg�!2=2
!− !1 − !2

×
((

Im 〈〈ni−�|nj−�〉〉!1 Im 〈〈ai�|a+j�〉〉!2 Im 〈〈ni−�|nj�〉〉!1 Im 〈〈ai�|a+j−�〉〉!2
Im 〈〈ni�|nj−�〉〉!1 Im 〈〈ai−�|a+j�〉〉!2 Im 〈〈ni�|nj�〉〉!1 Im 〈〈ai−�|a+j−�〉〉!2

)

+

(
Im 〈〈S−�i |S�j 〉〉!1 Im 〈〈ai−�|a+j−�〉〉!2 Im 〈〈S−�i |S−�j 〉〉!1 Im 〈〈ai−�|a+j�〉〉!2
Im 〈〈S�i |S�j 〉〉!1 Im 〈〈ai�|a+j−�〉〉!2 Im 〈〈S�i |S−�j 〉〉!1 Im 〈〈ai�|a+j�〉〉!2

)
:

(72)

It shows that it is possible to do all calculations in the localized Wannier basis as we
did while deriving the equations for the strong coupling superconductivity in transition
metals [19]. This has the great advantage for consideration of disordered transition
metal alloys.
As for the translationally invariant crystal with broken symmetry the following spe-

cial Fourier transform should be performed for the generalized mean-�eld GF G0(ij;!)
(67):

G110 (ij;!) =
∑
k

exp[ik(Ri − Rj)]G110 (k;!) ;

G120 (ij;!) =
∑
k

exp[ikRi − i(k + Q)Rj]G120 (k;!) ;

G210 (ij;!) =
∑
k

exp[i(k + Q)Ri − ikRj]G210 (k;!) ;

G220 (ij;!) =
∑
k

exp[i(k + Q)(Ri − Rj)]G220 (k;!) : (73)
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The result of this transformation is then

G0 =

(
G110 G120
G210 G220

)
=

(
!− EHF↓ (k + Q) �↑↓(k)

�↓↑(k) !− EHF↑ (k)

)
(!− EMF1 (k))(!− EMF2 (k))

; (74)

where

EHF� = �(k) + U 〈n�〉 ;
��−�(k) = U

∑
iexp(ikRi)〈ai�a+i−�〉 ;

EMF1; 2

=

EHF↑ (k) + EHF↓ (k + Q)

2
±

√√√√(EHF↑ (k)− EHF↓ (k + Q)

2

)2
+ �↑↓(k)�↓↑(k)

 :

(75)

It is evident that one can de�ne the Overhauser’s angle �k

cos2 �k =
�↑↓(k)�↓↑(k)

(!− EHF↑ (k))2 + �↑↓(k)�↓↑(k)
: (76)

In Overhauser’s notations �↑↓(k) = �↓↑(k) = �. The self-consistent set of equations
for determining of the SDW (or “gap”) order parameter �, chemical potential � and
averaged moment 〈s z〉 is

�= U=N
∑
k

〈a+k+Q↓ak↑〉 ;

〈s z〉= U=N
∑
k

〈a+k↑ak↑ − a+k↓ak↓〉 ;

n= N−1∑
k

(n(EMF1 (k)) + n(EMF2 (k))) :

(77)

The above expressions were derived for correlated itinerant fermions on a lattice within
Hubbard model and for �nite temperatures. These equations were also deduced in pre-
vious papers in the course of their analysis. Here we deduced it by using more so-
phisticated arguments of the IGFs method in complete analogy with our description of
the Heisenberg antiferromagnet at �nite temperatures [53]. However, the self-consistent
system of equations (69) and (72) for determining the quasiparticle spectra with damp-
ing is not as obvious generalization as Eqs. (77). This is intrinsically the many-body
manifestation of the correlation e�ects of itinerant fermions on a lattice and show
clearly the advantage of the present approach.
To con�rm this, the explicit calculations of the damping should be performed. The

natural way to tackle this program would then to look at the calculations of the col-
lective GFs or generalized spin (and charge) susceptibilities in (72) but it deserves
of separate consideration. Again this problem bears close similarity to paramagnetic
Hubbard model and antiferromagnetic Heisenberg model and it can be argued that this
e�ect of interference of single particle and collective modes of excitations should be
considered carefully.
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9. Discussion

We have been concerned in this paper with establishing what is the essence of
single-particle excitations of correlated lattice fermions, rather with their detailed prop-
erties. We have considered the single- and multiband Hubbard model but the cal-
culational details were mainly presented for single-band Hubbard model where the
appropriate concepts are easier to demonstrate. We have considered a general family
of symmetry broken solutions for itinerant lattice fermions, identi�ng the type of or-
dered states and then derived explicitly the functional of generalized mean �elds and
self-consistent set of equations which describe the quasiparticle spectra and their damp-
ing in the most general way. While such generality is not so obvious in all applications,
it is highly desirable in treatments of such complicated problems as the competition
and interplay of antiferromagnetism and superconductivity, heavy fermions and anti-
ferromagnetism, etc., because of the non-trivial character of coupled equations which
occur there. Both of these problems are subjects of current but independent research.
Another development of the present approach is the consideration of the itinerant

antiferromagnetism of highly correlated lattice fermions when U is very big but �nite.
Like the weak-coupled case described in this paper, the symmetry broken approach will
work, but matters are complicated by the necessity of constructing of the more extended
algebra of relevant operators [3]. This idea has been carried out for the paramagnetic
solution of the single-band Hubbard model [10]. It would be interesting to understand
on a deeper level the relationship between Mott–Hubbard metal–insulator transition and
various ordered magnetic states within the Hubbard model.
In conclusion, we have demonstrated that irreducible Green’s functions approach

is a workable and e�cient scheme for the consistent description of the correlated
fermions on a lattice at �nite temperatures and can be generalized naturally to include
the symmetry broken concept.
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