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Interpolation solution of the single-impurity Anderson model
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The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel irreducible Green function
method (IGF). A new solution for the one-particle GF, interpolating between the strong and weak correlation limits, is obtained.
The unified concept of relevant mean-field renormalizations is indispensable for the strong correlation limit.

1. Introduction

The single-impurity Anderson model (SIAM) has been proposed many years ago [1] to describe highly di-
lute random alloys [2,3]. In practice, this model is used to imitate other systems too. For example more re-
cently this model has been widely used to describe mixed valence and heavy fermion systems [4-7]. Although
it is a simplified model, nevertheless it contains most of the relevant physics and a great deal of interesting
work has been done on it [2-7]. But it still remains only partially solved. The elegant Bethe-ansatz technique
as applied to the reduced Anderson model [3] leads to the exact static solution of SIAM only. The general-
ization of this approach for a realistic k2 electron spectrum has not been done yet.

In the past years many efforts have been made to calculate dynamical properties of SIAM using various ad-
vanced methods of many-body theory [4-15]. Unfortunately, the proposed solutions are, as a rule, limited in
several ways; they are valid for a rather narrow interval of relevant parameters. Moreover, no general concept
for construction of the interpolating dynamical solution of SIAM has been proposed. In such a situation the
unified self-consistent approach, which permits one to obtain a solution interpolating between the weak and
strong correlation limits, is highly desirable.

In this paper we present a unified self-consistent calculation of the one-electron Green function (GF) which
gives the correct results both for the weak and the strong Coulomb correlations. The approach we suggest is
founded on the same type of concept which has proved to be valuable for the Hubbard model [16,17] and
which has been suggested as essential for various many-body systems with complex spectrum and strong in-
teraction[16-21]. We believe that the solutions which are derived below bear the real physics of SIAM.

2. Qutline of the method

The irreducible GF (IGF) method allows one to describe completely the quasiparticle spectra with damping
in a very general way. It is based on the notion of the “irreducible” parts of GFs (or the irreducible parts of
the operators, out of which the GF is constructed ) in terms of which it is possible, without recourse to a trun-
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cation of the hierarchy of equations for the GFs, to write down the exact Dyson equation and to obtain an
exact analytical representation for the self-energy operator. Therefore, in contrast to the standard equation-of-
motion approach, the decoupling is introduced in the self-energy operator only. The general philosophy of the
IGF method lies in the separation and identification of elastic scattering effects and inelastic ones. The irre-
ducible GFs are so defined that they cannot be reduced to the lower-order ones by any way of decoupling. This
procedure extracts all relevant (for the problem under consideration) mean-field contributions and puts them
into the generalized mean-field GF. It is worth emphasizing that, in general, the mean-field renormalizations
can exhibit a quite nontrivial structure. To obtain this structure correctly, one must construct the full GF built
of the complete algebra of relevant operators and develop a special projection procedure for higher-order GFs
in accordance with the algebra found. The most important feature of this approach is a very nontrivial structure
of the mean-field renormalizations as found in the cases of the Hubbard model in the strong correlation limit
[16] and the magnetic polaron problem at finite temperatures and an arbitrary value of s—f exchange [19,20].
It is important to note that there is a possibility of generalizing the scheme described above introducing IGFs
for higher-order equations of motion [21].

3. SIAM, weak correlation

Let us consider the standard one-impurity Anderson Hamiltonian [1]:

H= kZ € CioCiot € Y. digdos +3U Y, nénd _,+ g} Vi(cados +ddscra) (1)
(r 3 ag (-4 T

This is the basic Hamiltonian which will be discussed here. The simplest way of dealing with (1) is to apply
the Hartree-Fock (HF) theory [1]. But, as was pointed out in the review paper [3], it is a fairly rough ap-
proximation which has no region of applicability. Nevertheless, from the formal point of view we consider that
the validity region of it is limited to weak correlation (U—0) only. In this limit, due to the mixing of d and
s states, the resonance level exhibits a finite width. We will give below the IGF calculations for U-0.

For the calculation of the electronic quasiparticle spectrum of the model described by the Hamiltonian (1)
let us consider the equations of motion for one-electron GFs

KBl ) D =—i0(t—1' ) ([ero(), o) )4 (2)
Kdoo(1)dos(t' ) = —i0(t—1' ) [doo (), A, (1) ]+ ) - (3)
Because of c-d coupling the GFs (2) and (3) are elements of the matrix GF,

A << cka' |Cl-c';1 >>w <<Cka|d3-a >>w)
G = .
(@) (<<do.,|c,;z>>w KdooldE Y

Performing first time ¢ differentiation of (4) and introducing the irreducible GF by the definition [16,17]

(4)

ir<<dOan0 —0 | d(Ta»w = <<d00n0 -0 | dgo >>w - <n0 —ﬂ> <<d00|da.a >>w ’ (5)
we obtain the following equation in matrix form,

Y &,(0)G(w, p)=1+UD"(w), (6)
p

where all definitions are rather evident. In order to calculate the higher-order GF on the r.h.s. of (6) we have
to write the equation of motion obtained by means of differentiation with respect to the second time variable
t'. Definition (5) allows us to remove the inhomogeneous term in this equation. If one introduces irreducible
parts for the r.h.s. operators by analogy with expression (5), the equation of motion (6) can be exactly re-
written in the form of the Dyson equation
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G=G°+G°MG . (7
The generalized mean-field GF G° satisfies the equation
Y B, (0)G%w,p)=1. (8)
P
The explicit solution of (8) for diagonal elements is
-1
+ 0 _ e I Vk I 2 )
<<cko'|cka'>>w— (w €x w—ed—Un_,, > (9)
1L, 12\
<<d0a|da’a>>2;=(w_€d—Un—a_ Z__ - (10)
» W—6

These expressions coincide with Anderson’s HF result [1] and in the limit U=0 lead to exact results for GFs.
The self-energy operator M, which describes inelastic scattering processes, has the following matrix form:

. 0 0
M=(0 Mso)’ (b
where

M80=U2<<d()an0—a|dg-an0—o>> . (12)

Thus, by introducing irreducible parts of GF (or the irreducible parts of the operators, out of which the GF
is constructed ) the equations of motion for the GF (4) were exactly transformed into the Dyson equation (7)
with an exact representation of the self-energy operator, expressed in terms of higher order GF. It should be
emphasized that for the weak correlation case, U—0, the functional of the mean-field renormalization can be
represented in terms of mean densities of electrons (see eq. (5)).

The formal solution of the Dyson equation (7) can be written as

G=[(G>)~'=M]-". (13)

From (13) one immediately obtains

) AR
<<d00|d00>>w= w_ed_Un—a_MOO'_z——_ ’

p W—¢

Vv, |2 !
<<cka|c:a>>w=(w—ek— 1Vl ) . (14)

w—e;—Un_,—Mg,

In order to calculate the self-energy operator in_a self-consistent way, we have to express it approximately
by lower order GFs. Let us start in analogy with the Hubbard model [16] with a pair-type approximation

dw, dw, d
Mp(@) = U? | = n(wr) (1= (@)~ (@)
+n(w;)n(w;)} 8o —o(@1)&os(@2)80 —o(w3) , (15)
where

1
gOa(w) =- '7; Im<<d00' |d(-)t7 >>w .
If we take for the first iteration step
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8oo(w)~d(w—e;—Un_,), (16)

we immediately obtain M, =0. This result reflects the fact that only one impurity site is present. For the pe-
riodic Anderson model the pair approximation (15) should work quite well.

Let us try (again in analogy with the Hubbard model [16]) another type of approximation for M. Owing
to the well known spectral theorem the GF in the r.h.s. of (12) can be expressed in terms of correlation func-
tions. The approximation which we will use now reflects the interference between the one-particle branch and
the collective one:

<d3-—ad0—ad(-);dOa(t)d(‘)'-—a(t)dO—a(t)>z<n0—an0—a(t)><dgad00(t)>
+<d8-ad0—a g—a(t)dOU(t)><d(-)+—ad0—a(t)>+<d(-),'ad(-)+—ad0—a(t)d00(t)><d0—¢7 g—a(t)> . (17)

If we retain only the first term in (17) (cf. ref. [12]) and make use of the same first iteration as (16), we
obtain for the self-energy operator

1-n(e;—Un_,)

a ~ T2
Mio(w)=U w—e;—Un_,

<n0—an0—a’>- (18)

It is very interesting that when retaining the second term in (17) we obtain

AL
Qo 15 = (0= 4= Um, Mot} - 5, L= (19)
F4 P
2 -1
Koy 14 Y= (w—ed—UnT—Mao(w)— yA%l) (20)
P W—¢€
where

1+N(w)—n(w,)
W—WwW; —w,

T 1 1
Mao(0)=U* | do, do, (- Limess 153 Do ) - Limc el pn) 1

with S§ =dg,dy, and S§g =dg, dy,, or, in more convenient form (cf. ref. [12]),

w—w w 1
M3y(w)=U? J. dw, (coth 3T L +tanhﬁ)(— ;Imxé‘oi (a)—w,)) Zos() . (22)

The essential feature of this approximation is connected with the fact that spin up and spin down electrons
are correlated when they occupy the impurity level. So this really improves the HF theory in which just these
correlations are missed. The scattering of the d-electron with the band electron causes the impurity level to be
shifted and broadened. But by including the correlation effects for the weak correlation case we obtain ad-
ditional shift and broadening due to electron—electron inelastic scattering processes. This, of course, leads to
small corrections for shift and width and influence mainly the line form of the spectral density. The role of
electron-electron correlation becomes much more crucial for the case of strong correlation. In the region where
U is very large, but finite, the theory faces the most serious difficulties [14].

4. SIAM, strong correlation
To depict the behavior of the system in the case of strong Coulomb correlations when the scattering between
the band and d electrons is present we need a more sophisticated approach than the one proposed in refs. [8-

15]. The relevant algebra of the operators used for the description of the strong correlation has a similar form
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as for the Hubbard model [16]. Let us represent the matrix GF (4) in the following form,

A Kol Do  Zp Lol [0 Do )

G (w)= , 23
() (za<<jzm,|c;:,>>w S g Kfowo | [ 30D e (23)

where

f0a0=ng—ad00 (a=i), n(-)’-a:nOw n(:.i_a=1_n00‘- (24)

The equation of motion for the auxiliary GF é,

. <<ckalcl'ctr>>w <<cka|f(-)+-+a>>w <<Cka|fg—a>>w
Go(0)=| forolCitDw Soral f3+0D0 foral [T-oDa ], (25)
<<f(‘)—olclta>>w <<,f£)—a|fa-+a>>w <<ﬁ)—a'lf(T—a’>>w
in matrix notation reads
EG(w)-I=D, (26)
where
w—€; —Vk -—Vk _ _
E:( 0 w-e-U, 0 ), Ua:(()]’ z:-'—’ 27
0 0 w—e;—U_ - T
and
1 0 0 0 0 0
I=|o0 ng_o 0 , D= Dy Dy Di. (28)
0 0 no_o D31 D32 D33

Here D is a higher-order GF. As an example we give now two matrix elements
D22 = << (cpanO —a+d(-)+—acp —adOa—c;—adO —adOo) | fa’+a>>w H
D33 = << (Cpa( 1 —Hhy -a) _d(-)'——acp —dd()a+c;—a'd0 —a'dOU) I f(‘)‘-—a»w . (29)

Let us introduce the matrix irreducible GF D" in accordance with the definition given in ref. [16],

o Ate -

D*=D- ;(A_a) (G G2y, (30)
where the coefficients A*# are determined from the condition

([D5p.f 85+ >=0. (31)
The corresponding exact Dyson equation is

G=6°+6°MG, (32)

where GO is the generalised mean-field GF. It is very important to show the explicit form of the mean-field
renormalizations,

= <(dg-acp—a+c;—ad0—a)(nOU_nO—a)> , (33)

A++
<n0—a>

470



Volume 153, number 8,9 PHYSICS LETTERS A 18 March 1991

— _ < (d(-)*'—acp—a'*'c;-ado -—a) ( 1 +n00—n0 —a)>

A (34)
l_nO—a

A= ==A**Y, At " =—A4—".

The generalized mean-field GF of the d-electrons has the form
{fo_o> > VA'+)

+ 0o _ P " D
<<d00'|d00'>>w— Cl)—fd—U+—2p V‘,A++(l+ Cl)'_—-?—U_
1_<n0—0‘> ( E:pI/ *-
+w—e,,—U_—Z,, V,A=~ l+w= —U+ (35)

For V,=0 we obtain the exact atomic solution

<n0—a> - 1_<n0—u>
at _
FH= w—€,-U, + w—e—-U_"

The conduction electron GF in this approximation reads
Lewoles D S=[w—e— | Vi |’ F*(w)]".

This form of solution also gives the correct expression for V,=0. The self-energy operator has the form
M= (z V,V, L £ (3*)"))) I,
pq

This equation is an analogue of the equation for the self-energy operator in the Hubbard model [16] so we
are not going to write it explicitly here especially because of its complicated structure. But it is important to
note that the self-energy operator for the periodic Anderson model is much more similar to the self-energy
operator of the Hubbard model.

5. Conclusions

In summary, we have obtained a new interpolation solution - the one-particle GF for the SIAM in the frame-
work of the IGF formalism. In the weak correlation case the functional of the generalized mean-fields (GMF)
depends only on the mean electron densities and this solution improves the HF solution[1] and allows one
to incorporate the correlation of the spin-up and spin-down electrons occupying the impurity level, in a self-
consistent way. For the case of strong Coulomb correlation we obtained an essentially new solution confirming
the statement [16-21] that in this case the mean-field renormalisations have a quite nontrivial structure and
cannot be reduced to the mean density functional. The theory we suggest allows one to find explicitly the damp-
ing of quasiparticle excitations in a self-consistent way as was demonstrated in detail here for the weak cor-
relation case. And lastly, it should be emphasized that SIAM and the periodic Anderson model (PAM) will
have a very different structure from GMF as well as from the structure of inelastic scattering corrections due
to the self-energy operator. A more detailed analysis of the obtained solution and a comparison with the so-
lution for PAM will be published elsewhere.
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