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A comparative study of real many-body dynamics of single-impurity, two-impurity and 

periodic Anderson models (SIAM, TIAM, PAM) is performed using a recently developed 

irreducible Green’s function method. A detailed analysis of the correct definitions of the 

generalized mean field corrections is given for both weak and strong Coulomb correlations. 

We find that for the strongly correlated regime the mean field renormalizations are described 

by complicated correlations which do not reduce to the functional of mean densities of 

electrons. The approach we suggest permits to calculate in a self-consistent way the damping 

of quasiparticles in both considered limits, i.e. weak and strong correlations. Also this 

approach gives a complete and compact description of many-body dynamics for the 

considered system. The corresponding spectrum consists of a broad continuous spectrum and 

a few localized levels embedded in the continuum. Finally we point out the implications of 

our results for the problem of interplay between single-site Kondo screening and interimpuri- 

ty RKKY interaction. 

1. Introduction 

Intersite correlation effects in metal alloys and, especially, in anomalous 

rare-earth compounds and alloys have been the topic of growing interest 

recently. At low temperatures, dilute magnetic alloys show remarkable 

properties, which are mainly related to the single-site Kondo effect [1,2]. In 

ref. [l], however, it has been noticed that even in the typical dilute metal alloys 

there are always traces of interimpurity correlations. These interimpurity 
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correlation effects can lead to suppression of Kondo behaviour, formation of 
clusters, etc. [3-71. In the systems that contain rare earth ions the specific 
low-temperature behaviour mainly shows large conduction electron masses [8]. 
For the heavy fermion systems the problem of interimpurity correlations is 
related to the understanding of their magnetic properties [9,10]. 

Very recently a new development in the field has emerged which is related to 
alloy systems in which radical changes in physical properties occur with 
relatively modest changes in chemical composition [ll-171. A principle 
importance of these studies is connected with a fundamental problem of 
electronic solid state theory, namely with the tendency of 3d electrons in 
transition metal compounds and 4f electrons in rare-earth compounds to 
exhibit both localized and delocalized behaviours. The interesting electronic 
and magnetic properties of these substances are intimately related to this dual 
behaviour of electrons. In spite of experimental and theoretical achievements, 
still a lot remains to be understood concerning such systems. A satisfactory 
overall picture is still in the process of evolution. 

The formation of the singlet state for the single-impurity Anderson and 
Kondo problem is now very well understood within the Bethe-ansatz scheme 
[l]. As for dynamical properties, even for the single-impurity Anderson model, 
the problem is only partially understood at present. The dynamics of the 
Anderson Hamiltonian is even more complicated than the dynamics of the 
Hubbard model. However, both of them are often referred to as the simplest 
models of magnetic metals and alloys. This naive perception contradicts the 
enormous amount of theoretical papers which has been published during the 
last decades and devoted to attacking the Anderson and Hubbard models by 
many refined theoretical techniques [18-221. As is well known now [l], the 
simplicity of the Anderson and Hubbard models manifest itself in the dynamics 
of a two-particle scattering. Nevertheless as to the true many-body dynamics, 
there is still no simple and compact description, except in a very few limiting 
cases. 

The inclusion of interimpurity correlations makes the problem even more 
difficult [23]. More recent calculations for two impurity Anderson and Kondo 
models [24-321 conclude that an analytical solution of the problem seems 
hardly possible. To attack two-impurity problems many advanced methods of 
quantum statistical mechanics have been used [27]. These methods, however, 
were not successful. The most interesting difficulty, which has been pointed out 
in ref. [29], is that in any order of perturbation theory, logarithmically 
divergent diagrams appear which cannot be generated from any divergent 
diagrams in a previous order. All such diagrams appear to have the feature that 
the Kondo effect at one site is interrupted by the spin flip between two sites 
induced by their mutual interaction. Another method which fails for two- 



608 A.L. Kuzemsky et al. I Non-local correlations in the Anderson model 

impurity problems for similar reasons is the path-integral method [29]. As to 
the Bethe-ansatz method, it cannot be applied in standard form. The singe-site 
regime is vital for one-dimensional Bethe parametrization of the spectrum in 
terms of the rapidities, which characterize the state of a many-body system 

]331. 
In the present paper we propose a general theory of interimpurity correla- 

tions on the basis of different points of view [26,27] in connection with real 
many-body dynamics. We pay attention to the calculation of single-electron 
quasiparticle spectra for the two-impurity Anderson model (TIAM), treating 
exactly the mutual multiple elastic scattering by use of the irreducible Green’s 
function approach [34,35]. Thus our theory for the weak Coulomb correlation 
case is a natural extension of the Hartree-Fock theories to include the inelastic 
electron-electron and electron-magnon interactions in a self-consistent way. 
Another important modification which has been already introduced by one of 
us [36] to describe the single-impurity Anderson model (SIAM) is the matrix 
formalism. The matrix form of the whole calculation procedure, which has 
never been done before, reveals many very important features and hidden 
difficulties of SIAM, TIAM and the cluster-impurity Anderson model 
(CIAM). Because these aspects of the problem are of great importance and are 
still not yet clarified completely, we briefly discuss these questions here. We 
will discuss the SIAM and TIAM, and their limitations too. 

Of further interest is the problem of adequate description of many-body 
dynamics for the case of very strong Coulomb correlations. A number of other 
approaches for the strongly correlated electronic systems have been proposed, 
trying to find an answer to Anderson’s question: “. . . whether a real many- 
body theory would give answers radically different from the Hartree-Fock 
(H-F) results?” [37]. By applying our theory to SIAM and TIAM we obtain an 
essentially new (and “radically different from the H-F”) solution for the 
strongly correlated case. Moreover, the general concept of constructing the 
interpolated dynamical solution between SIAM and TIAM arises naturally in 
the framework of our approach. It is worthy to emphasize that the approach 
we suggest is founded on the same type of concept which has been proved to 
be valuable for various many-body systems with complicated many-branch 
spectra and strong interactions [34-36,38-401. The unified concept of relevant 
generalized mean-field is indispensable to understand the real many-body 
dynamics of SIAM and TIAM. The importance of the irreducible Green’s 
function (IGF) formalism lies in the fact that it gives a compact and convenient 
description of the dynamic behaviour of a system of continuous spectrum with 
a strongly localized perturbation (i.e., a Fermi sea of conduction electrons with 
a single (s-type) impurity orbital). Since the pioneering work of Friedel [41] the 
concept of virtual bound state (or resonant scattering state) is also indispens- 
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able to understand local perturbations in narrow bands of transition and 
rare-earth metal compounds. There are, however, several appreciable differ- 
ences between Friedel’s [41] and Anderson’s [37] pictures which have been 
clarified by Blandin [42]. Namely, he clearly pointed out the essence of the 
whole problem: local perturbations in narrow d-bands of transition metals can 
be discussed within an extended Slater-Koster model. Moreover within the 
H-F approximation one can easily see evidence for bound state. The phase- 
shift analysis, taking into account the symmetry of the problem, is also 
particularly fruitful, but only in the single-impurity case. Outside the H-F 
approximation and in the many-impurity case, big problems remain open: 
among them, the basic problem of calculating the adequate parameters of 
SIAM within modern band structure theory and multi-orbital impurity states. 
Even for the case of SIAM this problem is quite difficult and we did not 
attempt to consider it, neither for SIAM nor for TIAM. However, the detailed 
presentation and discussion of the dynamical properties of TIAM we give here 
will anyway be useful to understand better the limits of applicability of the 
traditional models to real substances. 

The present paper is divided into eight sections. In the second one the 
description of SIAM, TIAM and PAM is specified and a general discussion of 
the adequacy of those models is given. In the third section a brief outline of the 
IGF method is presented. In the fourth section the problem of interrelations 
between SIAM, TIAM, CIAM and PAM is considered. The quasiparticle 
spectrum of PAM is calculated within IGF approach. In section 5 the spectrum 
of the quasiparticle excitations and their damping is calculated for TIAM in the 
weakly correlated case. The role of interimpurity correlations is clearly shown. 
The case of very strong Coulomb correlations is considered in section 6 for 
SIAM. Then this approach is used in section 7 in the case of TIAM. The 
results of our comparative study of the differing Anderson models are 
discussed in the concluding section 8. 

2. Presentation of the model 

In the case of SIAM and by including the correlation effects in the low 
density case, Schrieffer and Mattis [44-451 showed that the criterion for the 
occurrence of magnetic moments (which has been deduced by Anderson within 
H-F approximation) does not hold. The solution is never magnetic. So arises 
the problem of the role of the electronic correlation effects [44-451. The two- 
impurity Anderson model (TIAM) has been first proposed by Alexander and 
Anderson [43]. They have put forward a theory which introduces the impurity- 
impurity interaction within a game of parameters. 
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They assume a Hamiltonian [43] 

H=H,+H,+H,,, (1) 

where 

H,=c + ‘kCkoCko 
ku 

(4 

is the Hamiltonian of a set of conduction, quasi-free electrons and the {ek}‘s 
are the corresponding energies; c:~ and ckW are the creation and annihilation 
operators for an electron with momentum k in spin state U, 

where the {EOi}‘s are the position energies of the localized states (for simplicity 
we consider identical impurities and only s-type (i.e. non-degenerate) orbitals 
which we call d): E,, = E,, = E,, U is the intraorbital Coulomb repulsion, VI2 

is the direct transfer integral between the two d states and dit,, di, are, 
respectively, creation and annihilation operators for a d electron of spin (+ at 
site i; nyg is the corresponding number operator. The most important term, 
which contains the essence of the specific behaviour of the Anderson model, is 

ffs,, = c (v,;c;,& + &&&) . 
iku 

(4) 

This term describes the hybridization interaction term between the localized 
impurity states and extended conduction states. 

The definition of the hybridization matrix elements I/k has been given by 
Anderson in his SIAM [37] as follows: 

Vdk =& C eik'RnVd(R,) , 
R,#O 

(54 

with 

V&J = 1 (p;(r) HH-F(r) a(r - R,) dr . (5b) 

The use of HHmF . m the r.h.s. of eq. (5b) is notable, since it justifies the 
treatment of the SIAM entirely in the H-F approximation. As for the TIAM, 
the situation with the right definitions of the parameters VI2 and vi, in eqs. (3) 
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and (4) is rather unclear. The definition of VIZ, as it was given in ref. [43], is 
the following: 

(now Hd without “H-F” mark). The essentially local character of Hd, eq. (3), 
clearly shows that VIZ describes the direct coupling between nearest neigh- 
bouring sites. The SIAM is rather a straightforward adaptation of the Hartree- 
Fock picture for the wave functions 
operator representation [37], 

to the language of the second-quantified 

where di, is the one-electron creation operator consistent with the one- 
electron energy eCn) which results from the relevant H-F equations. This 
scheme has not been analyzed in details for TIAM. The reason for that is 
rather evident. The justification of the TIAM needs a certain generalization of 
eq. (7) in the form 

Going back to SIAM, it has been shown that eq. (7) actually leads to omitl ng 
many interesting terms [l] like c+dcd, ctctdd, etc. But the term ctdcd just 
describes the contact exchange coupling which definitively must be compared 
to the VI, term for TIAM. In addition, with two new indices i = 1,2, the 
number of omitted terms are greatly increased. 

For TIAM there is a possibility of using new basis states, the so-called 
“even” and “odd” parity states [46,47], e.g. dpp = (d,, 2 d20)lfi with p = e 
for even (+l) and p = o for odd (-1). Then the Hamiltonian will con-erve 
parity and can be expressed in terms of creation and annihilation operators 
with parity. It leads to a two parity channel problem instead of a two impurity 
problem [6]. 

Our main interest in this paper is connected with situations when the 
virtual-mixing mechanism is dominant and the term VI2 plays no essential role. 
Also we mention only briefly the recent analysis of the applicability of the 
Anderson effective Hamiltonian to the 4f-phenomena in relation to photoelec- 
tron spectroscopy [48]. The claim is that the effective parameters in the 
Anderson Hamiltonian should be in principle frequency dependent, because 
the Anderson model is thought to be an effective Hamiltonian for the low 



612 A. L. Kuzemsky et al. I Non-local correlations in the Anderson model 

frequency phenomena. In the high frequency phenomena a more general 
fundamental Hamiltonian must be used. This last statement is quite interesting 
(compare with ref. [49]) but it needs however a separate discussion. 

To summarize this chapter we conclude that, despite the well founded 
derivation of the TIAM, the latter could at most be considered as a reasonable 
semi-empirical model. Rather than attempting to calculate the parameters of 
the TIAM we shall give a detailed discussion of its many-body dynamics which 
is of particular interest. In the next sections we shall show how the self- 
consistent treatment of the dynamics yields a far better understanding of the 
SIAM and the TIAM itself. 

3. Outline of the method 

At this point it is worthwhile to underline that it is essential to apply an 
adequate method in order to solve a concrete physical problem: the final 
solution should contain a correct physical reasoning in a most natural way. The 
list of many-body techniques that have been applied to the Anderson model is 
extensive [1,2,18-321. In this paper it will be attempted to justify the use of a 
novel IGF approach [34-361 to SIAM and TIAM. It is quite revealing to follow 
the logic of development of many-body techniques. This logic is well known. 
The simple Hartree-Fock or RPA treatment of the correlations between 
electrons omits several essential features. One of them is the damping of 
quasiparticles. Usually, this latter problem requires much larger theoretical 
efforts. However, this must be a final goal towards a real understanding of 
many-body dynamics in strongly correlated electronic systems. 

The IGF method allows one to describe completely the quasiparticle spectra 
with damping in a very general way. It is based on the notion of the 
“irreducible” parts of the GF’s (or the irreducible parts of the operators, out of 
which the GF’s are built). In terms of the IGF’s it is then possible, without 
recourse to a truncation of the hierarchy of equations, to write down the exact 
Dyson equation and to obtain an exact analytical representation of the self- 
energy operator. Therefore, in contrast to the standard equation-of-motion 
approach, the decoupling is introduced in the self-energy operator only. The 
general philosophy of the IGF method lies in the separation and identification 
of elastic scattering effects and inelastic ones. This last point is quite often 
underestimated, since there are quite a lot of works where both effects are 
mixed. However, as far as the right definition of quasiparticle damping is 
concerned, the separation of elastic and inelastic scattering process is believed 
to be crucially important for the many-body systems with complicated many- 
branch spectrum and strong interactions [34-36,38-401. 
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The IGF’s are defined in such a way that they cannot be reduced to the 
lower-order ones by any way of decoupling. This procedure extracts all 
relevant (for the problem under consideration) mean-field contributions (elastic 
scattering terms) and puts them into the generalized mean-field GF’s. It is 
worth emphasizing that, in general, the mean-field renormalizations can exhibit 
a quite nontrivial structure. To obtain this structure correctly, one must 
construct the full GF’s from the complete algebra of relevant operators and 
develop a special projection procedure for higher-order GF’s in accordance 
with a given algebra. 

4. The hierarchy of the Anderson models 

It will be quite revealing to discuss the interrelations of SIAM, TIAM and 
PAM (as well as a cluster impurity periodic Anderson model (CIPAM), which 
has been described in details by ref. [50]). The basic assumption of the periodic 
impurity Anderson model approach is the presence of two very well defined 
subsystems, i.e. the Fermi sea of nearly free conduction electrons and the 
localized impurity orbitals embedded into the preceding continuum (in rare- 
earth compounds for example the continuum is actually a mixture of s, p, and d 
states and the localized orbitals are f states). The simplest form of PAM, 

assumes a one-electron energy level E, and hybridization interaction V as well 
as the Coulomb interaction U at each lattice site. Using the transformation 

(10) 

the Hamiltonian (9) can be rewritten in Wannier representation in the form 

If one retains the k-dependence of the hybridization matrix element V, in eq. 
(11) the last term of the r.h.s. in eq. (11) will be as follows: 

ijrr 

vj = + 2 Vk eik.(R,-Ri) . 
k 

(12) 
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The on-site hybridization V,, is equal to zero for symmetry reasons. Moreover 
as compared to the SIAM, the PAM has its own specific features. This can lead 
to peculiar magnetic properties for concentrated rare earth systems [50] where 
the criterion for magnetic ordering depends on the competition between 
indirect RKKY-type interaction (not included in SIAM) and the Kondo-type 
singlet state screening (contained in SIAM). Instead of carrying through such a 
laborious programme in the rare earth systems for example, we will consider 
here a simpler case, namely the comparison of the dynamical behaviours of 
SIAM and PAM in the limit of weak Coulomb correlations. Of course, this is 
not directly related to Kondo-type behaviours which show up in the strongly 
correlated (U-w) regime [51]. However, this comparison procedure will be 
very instructive for future analysis of TIAM. Let us consider the PAM in Bloch 
representation, 

+ c V,(d:&,, + C;,dkn) . 
kc 

(13) 

For simplicity in this section we will discuss the case when U+ 0. The more 
basic drawback of the Hartree-Fock type solution is that it ignores the 
correlation of the “up” and “down” electrons. Actually we will take into 
account the latter correlation for the PAM and SIAM in a self-consistent way 
using the IGF method. It can be shown that the use of the matrix Green’s 
function for PAM, 

(14) 

permits to handle the relevant equations within a very compact form. The 
first-time dldt equation of motion for the double-time thermal GF [52], 

((A(t) Wt’))l) = W - t’> ([A(t), WI+ > , (15) 

reads 

w - Ek -‘k 

I[ 

@k&h, ‘hvktho 
-vk w-E(k) ’ @&:,>u ‘@,&:,ho 1 

(16) 

where A = dk+p,d~+q._cdq _. 
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According to refs. [34-361 the definition of the irreducible parts for U ---, 0 is 
as follows: 

Then we obtain after using eqs. (17,18) in the r.h.s. of eq. (16) 

[ 

w - Ek 

-v, w -&)] [ 2 Z::] 
(19) 

The following notations have been used: 

E,(k) = E(k) - Und, , nd, = (ni_,) . 

The definition of the generalized mean field (GMF) (which for the weakly 
correlated case coincides with the Hartree-Fock mean field) Green’s function 
(GF) is evident. All inelastic renormalization terms are now related to the last 
term in the r.h.s. of eq. (19). All elastic scattering (or mean field) renormaliza- 
tion terms are contained in the following matrix equation for GMF-GF: 

It is easy to solve eq. (20) and we find 

cw 

(21) 

(22) 

At this point it is worthwhile to underline the significant difference between 
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PAM and SIAM, which was shortly mentioned in ref. [36]. The corresponding 
SIAM equation for GMF-GF reads [36] 

c @ - Ep)sppk [ 
-vpqd 

I[ 

~cpX,>>” tfcp,Id;,~” 1 0 

P -% &w-E,) ((~oX,Y’ ~~o,14,~” = 0 1 . I[ 1 

(23) 
This form of matrix notation for SIAM has never been used before. However, 
it clearly shows which fundamental problem has been posed by Anderson in his 
famous paper [37], i.e. how to define the quasiparticle spectrum of a system 
with strongly localized levels embedded in a continuum of states. Within our 
matrix representation, the eigenvalue problem reveals a fundamental difficulty: 
the number of states in the conduction band and in the localized orbital are 
different, namely if we include the spin degeneracy the conduction band 
contains 2N states whereas the localized (s-type) level contains only 2. The 
comparison of eqs. (20) and (23) shows clearly that this difficulty does not exist 
for PAM: the number of states in both localized and delocalized subbands are 
the same, i.e. 2N (see fig. 1). There are many other relevant questions 
connected with the comparison between PAM and SIAM, but we believe that 
in order to understand the nature of the spectrum of elementary excitations 
this is the most fundamental one. 

The eq. (23) for GMF-GF of SIAM is exactly solvable as well as the 
corresponding eq. (20) for PAM. However, the presence of C, in eq. (23) 
clearly means that this solution is simply to solve for any fixed momentum p. In 
general, the compact solutions found by Anderson [37] are written in the 
following forms: 

l __ .._ .__ ,..,._..,.,.,.....,.............. ,_........... l j l 

SIAM TIAM CUM! CIPAM PAM 

z..., __ l _.. - l 

i:) [:I (“1 El i:i 
Fig. 1. The hierarchy of the Anderson models (the numbers are given in the case of ‘s’ orbitals 

with n S N; the upper row gives the number of conduction states per spin and the lower row gives 

the number of localized states per spin). For a detailed presentation of the CIPAM, see also ref. 

1651. 
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(24) 

The fundamental difference between SIAM and PAM plays a very essential 
role when we proceed with incorporating the correlation effects, i.e. when we 
include the inelastic scattering or self-energy corrections. 

Let us again consider the PAM, starting from eq. (16). After second time 
differentiation dldt of the higher-order GF in the r.h.s. of eq. (16) and 
introducing irreducible parts for the r.h.s operators by analogy with eqs. 
(17), (18), the equation of motion (16) can be exactly rewritten in the form of 
the Dyson equation, 

Note that no decoupling has been done till now but only identical transforma- 
tion. The formal solution of the Dyson equation can be cast as follows: 

G = [(e”)-l -&I-’ ) (26) 

where the self-energy operator A has the form 

with 

(27) 

In order to calculate the self-energy operator in a self-consistent way, we 
have to express it approximately by lower order GF’s. However, the advantage 
of using the Dyson equation consists in the right functional structure of the 
single-particle GF. In analogy with low density electron gas we calculate the 
self-energy operator (28) in the pair approximation. With the help of the 
spectral theorem [52] we express the GF by the correlation function. Then for 
the correlation function we use the following so-called “trial solution” in the 
case of a low density of quasiparticles (n) e 1: 
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(a’ _ t 
r. gar+s,-rak+s.eak+p,o @> aq,-&>)i’ = (a:+p,cak+p,&)) 

(ap+q,-ma~+q,-u (t))(a~,~,a,,-,(t))6k+,,k+,~~+,,,+,6,,, . (29) 

After the substitution of eq. (29) into eq. (28) we find for the self-energy 

Mkc(“) = $; j- ” ~;ld?f’“, {n(w,) I1 - n(w2) - n(w3>l 

+ 4%) 4~3)~&$+, -c~(~l) gk+p,w (02) $,-JO,) > 

where 

gk,Jw) = - + Im Gkr(w + i0) 

is the spectral density. The eq. 
consistent system of equations 
corresponding density of states, 

(30) with eq. (26) form together the self- 
to calculate single-electron GF’s and the 

(30) 

(31) 

D(W) = -& x Im Gko(w + i0) . 
km 

(32) 

If we start the iteration procedure with the simplest first iteration expression 

gk, - s(w - ‘%T@)) 9 (33) 

then after integration we find the standard second-order expression for the 
self-energy (cf. ref. [34]), 

(34) 

Here nkP = [exp(PEkr) + ‘I- ’ is the Fermi distribution function. It is interest- 
ing to note that the same sort of calculation for the self-energy can be done in 
the case of SIAM [36]. But then the pair approximation in eq. (29) does not 
work. Actually the analogous expression for SIAM self-energy is 

zc 

M&(w) = u* 1 d”1 d”2 d”3 
w + co1 - l.o* - w3 

{n(q) [l - n(w*) - n(oJ3)] 
-cc 

(35) 

where 
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(36) 

and the first iteration expression has the form 

go,(w) - a(0 - E, - un-,) 9 (37) 

then we immediately obtain M,“, = 0. This result reflects the fact that only one 
impurity site is present. The recipe to calculate the self-energy operator for 
SIAM has been given by ref. [36]. We will use it for TIAM in the next section 
5. In the case of PAM the same kind of approximation as in ref. [36] will lead 
to the expression for the self-energy in the following form: 

MkV(w) = $ T I dw, [ coth(T) + tanh( 

To conclude this section we propose in fig. 1 a possible hierarchy of the 
various Anderson models. Except the specific case of the SIAM we always 
have the situation which corresponds to inter-impurity interactions. The 
corresponding physical behaviour can then be understood looking through the 
SIAM-TIAM and CIPAM-PAM complementary solutions. 

5. TIAM. Weak correlation 

We again consider the TIAM Hamiltonian (1). The IGF solution of this 
model is obtained by analogy with the SIAM for small U. 

Taking into account the first time differentiation of the relevant GF matrix, 

T -% L &o-E,) i -viz 
. . . . . . . . . . . . . . . . . . . . . 

-& -51 &4J 
p 0:01 r 0 0 - 

(39) 

The notations are as follows: 
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In compact form the eq. (39) can then be expressed as 

c i&,(w) = i + iJB,(w) . 
P 

(41) 

We thus have the equation of motion (39) which is a complete analog of the 
corresponding equations for the SIAM and PAM. Let us again introduce by 
definition the irreducible part of the GF’s 

where we expect the thermal average (n,_,) to be uniform (in principle it is 
possible to consider a non-uniform solution), 

(n,-,> = (n,-,> = (n-J. (43) 

Now, if we consider the eq. (39), taking into account the definition (42), we 
obtain in analogy with ,eq. (19) the same equation as (41); only, instead of 
i>,(w) it will contain b’,‘(w). Let us define as previously the GMF-GF in the 
following way: 

(44) 

After performing the second time variable differentiation in the r.h.s. of (39) 
and introducing the relevant irreducible parts for the GF’s we are able to 
rewrite the equation of motion in the form of a Dyson equation 

&~O+~Ok& (45) 

Let us remind again that Go is defined as follows: 
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The matrix 6;” describes the exact solution of the TIAM in the H-F 
approximation. The SIAM-GF’s are shown in the left upper corner of each 
matrix. We thus have a very clear representation of the essence of the nonlocal 
interimpurity correlation problem in the case of two localized levels interacting 
with a continuous spectrum of conduction electrons. The eq. (46) represents 
the exact solution for the considered problem in the H-F approximation. After 
some algebra we find the following for the diagonal elements: 

(47) 

Here we have introduced the notations 

A,,@, w) = (V,, + s)(V,, + s)(w - E,, -=)-I , 
OC7 On w - Eo, 

(48) 

A,,(w) = (h(~) + V,&&(w) + v,& - Eo, - T g) -’ 7 (49) 
P 

A,,(o) = (Am + V,,)(A,,(w) + vid( w - Eo, - T $k$) -’ 9 (50) 
P 

where 
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h21(W) = A,,(w) = G g 
P 

(51) 

describes the so-called “indirect coupling” [43]. If we put VI, = V,, = 0, we 

obtain 

42(w) = 
(J42W2 

6J - Eov - c, Iv,,12/(w - &p) ’ 

A,Jw) zz w _ E (h12(W))2 
OV - c, Iv,,12GJ - Ep) ’ 

Iv,kl” 
AII(k, w, = (w _ E,,) ’ 

(52) 

(53) 

(54) 

The detailed analysis of the H-F solution for two impurities has been done 

previously [43,53]. Here we will consider the quasiparticle interactions by 

using the Dyson equation for the TIAM. 

The formal solution of the matrix Dyson, eq. (45), has the form 

Let us consider the explicit expression for the self-energy matrix 

00 0 

lcf = 0 M22 M23 ) F I 0 42 MS3 

(55) 

(56) 

where 

In order to calculate the self-energy matrix elements [57], let us perform for 

the TIAM the same type of procedure as it has been done previously for the 

SIAM [36]. With the help of the spectral theorem one can express the GF’s 

(57) in terms of correlation functions. The natural “trial solution” for the 

correlation functions can be proposed in the following way [34]: 
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b&L#LA&) L(O d,-,(O) 
= ~LLcM LAN @:A&)) 

+ (d:-,dl-,(t))(d:,dl-,dl,(t) d:-,(9) 
+ (dl-,d:-,(t))(d:,d:-,dl,(t) d,-,(t) 3 (W 

(&d:-,d,dL@) d:-,(t) d,-,(4) 
= @-,Ld-,@I LW h&LAN 

+ (d:-,dl-,(t))(d:,d*-,dl,(t) LAN 
+ (d*-,d:-,(t))(d:,d:-,dl,(t) d,-,(9) . (59) 

The terms which describe the correlations of the “up” and “down” spins on the 
same and different sites correspond to the second terms in the r.h.s. of eqs. 
(58) and (59), 

Here S+=d\d,,S-=d\d,. 

Using eqs. (58)-(61) we find the following explicit expressions for the 
self-energy matrix elements: 

(62) 

For M,, we obtain the same expressions with the substitution of index 1 by 2, 
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io 

M?(U) = iJ2 
i 

du, dw, 
1+ NW,) - fi(%) 

0 - w1 - o2 
m 

(64) 

(65) 

Here N(w,) means Bose distribution function. For MyJ we must again change 
index l-+2. Eqs. (62), (63) and (64), (65) g’ ive the complete self-consistent 
description of nonlocal correlations and quasiparticle interactions for the 
TIAM. The diagonal elements of the self-energy matrices M,, and M,, 

describe single-site inelastic scattering processes; non-diagonal elements M23 

and M32 describe the intersite inelastic scattering processes. As well as the 
non-diagonal elements of the GMF-GF e”, the latter non-diagonal matrix 

elements are responsible for the specific features of the dynamical behaviour of 
the TIAM and, more generally, the CIAM. 

6. SIAM. Strong correlation 

As for the strong correlation regime, even for the SIAM, and in spite of a 
great number of theoretical efforts, a compact and closed form of the one- 
particle propagator has not yet been obtained [l&20,51]. The matrix form of 
our calculation as in the case of the weak correlation will help us to better 
understand the essence of the difficulties. 

In analogy with the Hubbard model [34], for the description of the strong 
local correlations, we must use a new algebra of operators, namely {foam} with 
(Y = +, 

f,,, = n;-,do, , %7 + = n,, ) n, = 1 - n,, . (66) 

In terms of the new operators the relevant matrix GF for the SIAM (23) can be 
rewritten identically in the following form: 

(67) 
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To calculate t$s GF we need to write down the equation of motion for the 
auxiliary GF, G, 

In the matrix notation the equation of motion reads 

B&(w)-i=b, (69) 

where 

-v, -v/c 

Cl-E,-U + 0 , 
0 Cl-E,-U _ 1 

Here b is a higher-order GF. As an example we give now two matrix 
elements, 

D,, = (((c,,n,_, + &+,&, - c;-&-d,,,>lf~+,~w 2 

(72) 

D,, = (((c,,(l -no_,,) - &$,-,~,,, + c;-do-do,>lfi+,hu . 

Let us introduce the matrix of irreducible GF, Bir in accordance with the 
definition given in ref. [34], 

(73) 

where the coefficients APa are determined from the condition 

Similarly as in the preceding section we obtain the Dyson equation 

&~“+~“n;r&, (75) 
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a0 

where G is the generalized mean-field GF. The explicit form of the mean-field 
renormalizations is as follows: 

++ 
A = 

(G&c,-, + c;-,~o-J(no, -no-J) 
(no-, > 

5 (76) 

A__ _ -((&&, + c;-,LJ1+ 43, - %J) _ 

(n,-, > 
> (77) 

A-+ = _A++, A+- = _A--. 

The generalized mean-field GF of the d-electrons has the form 

~~o,I4,x = (nopg > 
w-E,)-U+-C&A++ 

1+ CPQA-+ 
w-E,-U _ 

+ 
1 - (%,> C, VP,+- 

w-E,-U_-C,V,A-- > w-E,-U ’ (78) 
+ 

For VP = 0, we obtain the exact atomic solution with poles at E, + U, and 

E, + U-, 

F”‘(w) = 
(GJ 

w-E,-U + 
l- h-J 

+ o-E,-U ’ _ (79) 

The equation corresponding to eq. (78) for the conduction electron GF reads 

Taking into account that 

(0 - Eo - u+> %+Ac:,~” = c Vp((no-,)~cp,ILJO) > 
P 

(81) 

(w - Eo - u-)tfo+h:J” = c V,Kl - (no-,))(cp,k:,~ol > 
P 

(82) 

we find the following expression for the diagonal element of the conduction 

electron GF: 

‘@I&:,>>: = (w - ‘k - Iv,l’F”‘h’))-’ . (83) 

This form of solution also gives the correct expression for V, = 0. The GMF- 
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GF’s (78) and (83) are the essentially new solutions of SIAM in the strongly 
correlated limit. The paper of ref. [54] is close to our approach; however, the 
explicit form of the single-particle GF has not been written explicitly. Oh and 
Doniach [55] calculated the dynamical properties of the SIAM in the context of 
core-level photoemission spectra. For the mean-field GF they obtained the 
following result [55] : 

G(W) = 
1 -n_, n-m 

6J - E, - &(w) + w - E, - u -Z,(w) ’ (84) 

where 

(85) 

This solution simply describes the two localized levels E, and E, + U 
broadened and shifted due to the mixing potential V,. Our theory can be 
considered as a direct generalization of Oh and Doniach’s result [55] in the 
framework of the IGF approach. Of course our eq. (78) is more general than 
eq. (84) (obtained within the first order in V,). Also it is important to note that 
in the atomic limit, when U+ CC and V, -+ 0, the correct functional form of the 
solution must be recovered. Oh and Doniach [55] found that, for V, b 0.5 eV, 
Im G,,(w) starts to go negative for a certain range of w values, indicating that 
their decoupling procedure does not conserve probability at each value of o. 
Our expression (78) contains complicated correlation functions, which, in 
principle, must be calculated self-consistently; doing so, the difficulties with the 
negative spectral density does not appear. For a rough estimation of the 
behaviour of the correlation functions (eqs. (76), (77)) at low temperatures we 
can use Oh and Doniach’s expression (30) [55], for example (9” meaning the 

principal part) 

v, M I dw A 
+G- ~B Pi? (w - %) (o - E, -A)‘+ A2 > 

+ (%J(~(-E,) v, 
(sk - E, - U - A) 

(E~-E~-U-A)~+A’ 

Vk M I do A 
+; _B 8 (w - %) (o - E, - U-A)’ + A2 > 

(86) 
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and 

=(no_JV,(S(-E/J (Ek-Eo-U-n) 
(Q - E, - U-A)” + A2 

M 
dw A 

_B ’ (W-Q) (o-Eo-U-A)2+A2 
(87) 

where 

Zoo(w) = A(w) + iA . (88) 

The set of eqs. (76)-(78) and (86)-(87) completely solve the GMF description 
of SIAM in the strongly correlated case. It is worthy to note that after 
substitution of (86) and (87) into (76) and (77) we obtain the GF (78) at the 
second order in V,. In addition, our theory allows to calculate inelastic 
scattering corrections which are described by the self-energy operator 

icf=i-’ c vpvq 
P4 

where 

4, = ir~Y221Y:2Yr > 4, = “tY331Y:3~ir ) 

y,, = cp,ylo-r + &,CP~,dO, - C;_,d,_,d,, 3 (90) 

Y33 = c,,(l - 11o_fl) - &c,_,&, + c;-,do-&o, . 

The complete solution of the Dyson equation in the form of (75) is very 
complicated. Nevertheless it is possible to write down the simplest approximate 
solution which includes the inelastic scattering corrections 

@ovl4,)L = (no-, > 1+ 
C, VP,-+ 

o - E, - U - C, VP,++ - &f2,(w) o - E, - ii&,(o) 

+ l- (no-,> 
w - E, - C, VpA-- - ii,,(w) 

2, &A+- 

W-E,-U-I&&) 
(91) 
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The calculation of higher-order GF’s which describe the inelastic scattering 
corrections (90) can be done in the same way as in the previous sections 4 and 
5. 

7. TIAM. Strong correlation 

In the preceding sections we have considered a self-consistent description of 
the dynamical behaviours of (i) the TIAM in the case of weak correlations, and 
(ii) the SIAM in the case of strong correlations. In this section we will examine 
the case of the very strong Coulomb correlations for the TIAM. For this aim it 
is convenient to use the relevant algebra of Hubbard’s operators Xmn [56,57]. 
The TIAM Hamiltonian takes then the following form (U+w): 

H=x E~,,,c:,,,c~~ + c Eo,,,X;“’ + c E,,X; 
km 

i= 1,2. (92) 

As it has been mentioned above, a more symmetric form of the problem can be 
handled by using a new set of variables, 

x”,” = & (XY” k Xi”) ) xy = 5 (XY” + XYO) ) 

xy =$(xy”-xyo). (93) 

In terms of the so-called “odd” and “even” variables the full Hamiltonian of 
the TIAM can be rewritten as 

H=H,+H,, (94) 

where 

H,, = c EkmC;mCkm + c Eo,(XY +X~m)+E,o(X~+X~), 
km m 

H, = -& 2 (V,+~;~Xo,rn + V,_c:,X”” + kc.) . 

(95) 

(96) 

The new hybridization matrix element is expressed as 
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V,, = -$j V( 1 2 e’k’R) , (97) 

the two impurities being located on the z axis at -R/2 and + R/2. The 
convenience of the even and odd operators representation is obvious. The 
relevant matrix GF is a 3 X 3 matrix (instead of a 5 x 5 matrix by using the 
same algebra of operators as in section 6), 

From the comparison of eqs. (68) and (98) we can see that the new set of 
variables (even and odd) somewhat allows to consider the TIAM in terms of 
the SIAM. However, this “reduction” from TIAM to SIAM is only partial, as 
we will see later. The equation of motion for the GF (98) can then be written 

(99) 

10 0 

i= [ 0 A;, 

(100) 
00 0 1 A,,,’ 

(101) 

(102) 
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The method to introduce the irreducible parts for the TIAM in the case of 
strong correlations is the same as for eq. (73). We follow here the same 
approach. The coefficients A”’ are determined from the condition 

For 

([D~~,x;“]+) =o. (104) 

example, let us calculate the coefficient A12+ (compare with eq. (76)), 

(P;~X”l+) = (~~4&,)“~ XT”]+> =&+([X~m,X~ol+) > 

The GMF Green’s function is defined as 

j@=i. 

From this equation one can find that 

(105) 

(106) 

wo+mlx~o>>: = 
(Ah, > 

[ cfJ - Eo, -+q; v:+( (S,,(X~” - x”=“>c,,) ’ (lo7) 
(A;, > >I 

(XomIXmo>>: = @,m > 

[ 0.J - Eo, -&c v;_( (S,,(X”” - X”“)c,,) 

Pn @kn) )I 

’ (lo*) 

and the equation for conduction electron GF, 

(109) 

If we take in the r.h.s. of eq. (109) the diagonal elements, i.e. terms 
proportional to 6pk 6mn we easily find 

<<ckmIc:,>>: = 
1 

w - Ed - (IVk+12(A;,) + IV,_l’(A,,))l(o -E,,) ’ (‘lo) 

In the case of V,,, = 0, this expression corresponds to an exact solution 
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(111) 

Using the definition of 6;” as previously considered it is then possible to derive 

the approximate Dyson equation 

The self-energy operator is given by the second order in V,,, 

(112) 

(113) 

* nl 

The matrix M,, has a similar form as eq. (89) and all further considerations 

(section 6) can be again performed here as for the SIAM. The difference now 

consists of the non-diagonal terms of self-energy operators M,, and M,,. In 

analogy with eqs. (64) and (65) they contain higher-order GF’s which describe 

inelastic impurity-impurity correlations terms. In order to obtain an approxi- 

mate estimation of higher-order correlators contained in eq. (113), it is 

possible to use any relevant expression since the functional structure of 

dynamical TIAM solutions has the right general form. A more consistent 

approach would need to calculate the collective correlation function indepen- 

dently, like transversal spin susceptibility ((S: IS,’ )) W. We plan to look into this 

aspect of the problem in the future. 

8. Concluding remarks 

In summary, we have developed a new approach to describe the many-body 

dynamics of SIAM and TIAM in the framework of the IGF formalism. We 

have obtained a new interpolation solution, the one-particle GF’s for the 

SIAM and TIAM as well as the solution for the PAM in the weakly correlated 

case. In this last case the functional of the generalized mean-fields only 

depends on the mean densities of electrons. Moreover our solution improves 

the H-F solution; it allows to incorporate (i) the correlation of the spin-up and 

spin-down electrons at the impurity level as well as (ii) the impurity-impurity 

correlation effects in the case of the TIAM. As far as strong Coulomb 

correlations are concerned we have obtained essentially new solutions. 

Furthermore we are then able to confirm the statement [34-36,38-401 that in 

this case the mean-field renormalizations have a quite nontrivial structure and 
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cannot be reduced to the mean density functional. The theory we suggest 
allows to find explicitly the damping of quasiparticle excitations in a self- 
consistent way as was demonstrated here. 

In order to give a complete picture of the role of non-local or impurity- 
impurity correlations we must extract the Kondo-type peak of the spectral 
density of states in the strongly correlated case for low temperatures. For the 
SIAM there are a few reasonable schemes on how to do so [51,58,59]. For the 
TIAM this type of behaviour has not yet been described analytically. There are 
only a few numerical calculations [60,61] within quantum Monte-Carlo algo- 
rithm which gives some useful insights into the considered problem. However it 
is evident that for the TIAM (or for the CIAM [66]) the definition of the 
Kondo effect, which is associated with the screening of a single impurity spin at 
a characteristic temperature T,, must be redefined. An approach which 
permits to define the renormalized Kondo temperature in the presence of 
additional impurities has been proposed many years ago [23] within the 
framework of a perturbation theory. The main assumption of ref. [23] is that, 
at the impurity site i, the logarithmic contribution which characterizes a Kondo 
system undergoes a transformation such that 

In T-+ ln(T2 + W2)“2 (114) 

under the influence W of interacting impurities around i. So, as emphasized by 
the authors of ref. [23], the single-impurity treatment is almost valid and needs 
only small corrections in the dilute limit. However, a more correct way to 
define the Kondo temperature in the U+w limit of the Anderson model is 
related to the low temperature behaviour of the spin susceptibility [1,62] 

1 

x 
-- 

2nT, ’ 

where in the symmetrical case the Kondo 

T 

e 
-7ruiar 

k 
IT 

temperature is 

(115) 

(116) 

In the region where Tk is of the same order as T,,,, the role of non-local 
correlations is strongly increased and the correct definition of the Kondo 
temperature is a very nontrivial problem. The various cluster Anderson models 
confirm the necessity of adapted definitions of the Kondo temperature. For 
example in ref. [31], where the Anderson cluster has been considered, the 
Kondo temperature is defined to be the triplet-singlet splitting, and in this 
model is given by (see also [8] and [50]) 
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4v2 
Tk=-. 

El - &f 
(117) 

The nonexponential dependence of the Kondo temperature on the hybridiza- 
tion follows from modeling the continuous spectrum of band energies by only a 
few discrete states. In the region of interplay between RKKY and Kondo 
behaviours the key point is then to connect the partial Kondo screening effect 
with the low temperature behaviour of the total spin susceptibility. The 
non-local contributions to the total spin susceptibility of two very well formed 
impurity magnetic moments have been calculated by ref. [63] (see also [6,64]), 

xpair - 2x - 12 nEF -& 
c 1 

* cos( 2/&R) 

WB (k,W3 ’ 
(118) 

The problem is how to find an interpolated expression of the susceptibility in 
the region of RKKY-Kondo interplay. As it is well known, it is extremely 
difficult to describe such a threshold behaviour analytically. However, progress 
is expected both from analytical and numerical investigation in this fascinating 
field. 
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