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INTERACTION 

The renormalized electron and phonon spectra of the BariSiC-Labbe-Friedel model of a transition metal are derived. 

Using the method of double-time thermal Green functions, the self-consistent system of equations including electron- 

phonon interaction is obtained. For the band and atomic limits of the Hubbard model the explicit solutions for the electron 

and phonon energies are obtained. The modified Stoner criterion is discussed. The energy gap, appearing between electron 

bands in the strong correlation limit, persists in the present calculations. The Eliashberg-type equations of superconduc- 

tivity are obtained. 

1. Introduction 

In recent years, the problem of satisfactory description of the electron, thermal and superconducting 
properties of transition metals has evoked a great interest. A systematic, self-consistent treatment of the 
electron-phonon interaction plays an important role in this respect [l-3]. Particular properties of the 
transition metals, their alloys and compounds follow, to a great extent, from the dominant role of 
d-electrons. In the case of simple metals, where the approximation of almost free electrons is valid, 
efficient methods exist to carry the above task, based on pseudopotential concept [4, 51. However, these 
methods cannot be applied to transition metals, since the d-electron wave functions are strongly 
localized and, therefore, a tight-binding scheme is more suitable. 

BariSic, Labbe and Friedel [l] (BLF) proposed the Hamiltonian for a transition metal, in which they 
generalized the well-known Hubbard Hamiltonian [6] to include the lattice dynamics. The interaction of 
tightly bound d-electrons with lattice vibrations is constructed, in the BLF [l] Hamiltonian, within the 
“rigid ion” approximation, i.e. assuming that the d-electron wave function “rigidly” follows the moving 
ion. Contrary to other works [2, 31, the BLF Hamiltonian uses characteristic parameters of the 
transition metal in an explicit way. In the papers [l, 8-lo] the squared matrix element of the 

electron-phonon interaction is calculated in the tight-binding approximation and many quantities 
connected with it are evaluated, e.g. cohesion energy [l, 8, lo], McMillan factor for superconducting 
transition temperature [l, 3, 8-101. In the paper [9] the paramagnetic susceptibility is also calculated, 
while in [ll] the phonon singularities in quasi-one-dimensional systems are studied. 

In the present paper the BLF model is used for a self-consistent calculation of the renormalized 
electron and phonon spectra of the transition metals and their compounds, both in the band limit and in 
the strong Coulomb correlation limit. Single-particle densities of electrons and phonons, phonon 
damping and a modified Stoner criterion of magnetism are found. In the case of strong correlation, the 
usual Hubbard energy gap between two electron bands persists in our calculations too, despite of 
electron-phonon interaction included. The Eliashberg-type system of equations for superconductivity 
has also been obtained for the BLF model, allowing one the investigation of the superconducting 
properties of the transition metals within the same scheme. 
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2. The Hamiltonian of the model 

Following [l] we consider a system of tightly-bound electrons in the one-band approximation, 
described by the Hubbard Hamiltonian [6]: 

He = C tqa &ajc + k U C n,tZ-c 9 (2.1) 
ii,u i,u 

where aL, ati are creation and annihilation operators for electrons at the site Ri, U is the Coulomb 
repulsion energy of the electrons at one site. The hopping integral tij is given by 

tij=ld3r4*(r-Rj)[g+x Vs(r-R,)]$(r-Ri), 
1 

(2.2) 

where {4(r - Ri)} are a complete, orthonormal set of Wannier wave functions. Assuming V,(r) to be a 
short-range, self-consistent potential, eq. (2.2) may be rewritten as 

tij z zj + Jij + J,$ = t(R) - Ri) ) i#j, 

where 

(2.3) 

(2.4a) 

(2.4b) 

Ji, = d3r$*(r - Rj + Ri) V,(r) 4(r). (2.4~) 

Note to # t(0). Considering small vibrations of ions in the “rigid ion” approximation, we replace in eq. 
(2.4) the ion position Ri by (Ri + Ui), i.e. its equilibrium position plus displacement. It is assumed that 
d-electron wave functions change very little under displacement of the ion. Also the orthogonality of 
the displaced wave functions is assumed: 

I d3r4*(r - Rj - Uj) #(r - Ri - Ui) z 8,. (2.5) 

As it follows from eq. (2.5) the creation and annihilation operators a’-,, a, may be introduced in the 
deformed lattice, and Hamiltonian (2.1) may be rewritten in terms .of them: 

He = to C niC + C t(Rj + Uj - Ri - Ui) a&aju + $l_J 2 nionr_c. 
io ip ic7 

i#j 

(2.6) 

For small displacements Ui we may expand t(R) as 

WW t(Rj + uj - Ri - Ui) = t(Rj - Ri) + r R=R,_R ’ (Uj - ui) +  . ’ ’ 
I 1 

(2.7) 
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In the BLF paper [l] the following approximation, based on the nature of tight-binding functions, was 
introduced: 

WR) 
-=-q+(R). JR 

(2.8) 

Here q. is a coefficient characterizing the exponenti$ decrease of the radial part of the d-function, 

Gl)- 40 exp(-4014>, ( usually qo is of the order of 1 A-‘). 
Finally eq. (2.6) may be rewritten in the following form: 

Ei!e=Hz+H,_i, (2.9) 

HZ = to C n2, + C t@‘,aj, + i U C n,ni_, , (2.10) 
iu ijo L c 

itj 

where t$ = t(Rj - Ri) at equilibrium positions, 

(2.11) 

i#j 

The operator Hei (2.11) describes the interaction between lattice vibrations and tightly-bound electrons in 
the localized Wannier basis. 

The Hamiltonian for the ionic subsystem is assumed to have the usual form: 

(2.12) 

The total Hamiltonian is a sum of (2.9) and (2.12). The localized basis representation, used above, 
underlines the tight-binding nature of d-electrons; besides, such form is necessary when disordered 
alloys or amorphous compounds [12-141 are to be described. In the case of the crystal it is convenient to 
introduce the normal coordinate operators Q,,, P,,, connected with the bare phonon (i.e. obtained 
without the d-electron influence [S]) of frequency wolV and polarization e,, at the wave vector q and 
branch index V. In terms of these Hi is diagonal: 

(2.13) 

and the displacement is given by 

ui = hz Q,,e,, eiqRi (2.14) 

(M is mass of the ion and N their number in the crystal). This leads to the following interaction 
operator 

He-i = 2 A,,(i, j) Qq@+,aju , (2.15) 
ijuqv 
i#j 
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where 

A,&, i) = $& tt 
(R. - RI ’ eqv 

iR, _ Ri, 
[eiqRr _ eiqR,] (2.16) 

represents the matrix element of the electron-phonon interaction in terms of the parameters qo, t$, M, 

Ri characterizing the transition metal. 
Because of the strong localization of the wave function it is reasonable to introduce the nearest 

neighbour (nn.) approximation. Then the hopping integral t(R) is related to the width W of the d band 
in a very simple way: W = 2Zt(R,) (Z is the number of n.n.). We introduce the notation R, for the 
position of the n.n. with respect to the atom at the origin of the coordinate system. Then 

Ri+, = Ri + R, = 2 (ia + Km) aa, (2.17) 
a=1 

where a, are elementary translations of the lattice. Within the n.n. approximation and using (2.17) the 
hopping term in (2.10) may be written as 

C t(Rx) ULUi+w7 (2.18) 
iru 

while the electron-phonon part (2.15) (2.16) as 

He-i = c A,,(i, i + K) QqvULai+K,v , (2.19) 

A,,(i, i + K) z & t(&) RK * eqv eiqRi[l - eiqRR”] . 
IRXI 

(2.20) 

Note that in the rigid-ion model of BLF [l] as well as in the Hubbard model [6], s-electrons are not 

accounted for explicitly, although their influence is taken into account in some indirect way. It is 
supposed that they participate in the determination of the bare phonon frequencies woqV and that the 
Coulomb repulsion parameter U is renormalized due to the screening by the s-electrons. 

3. Electron Green’s function 

We begin an investigation of our model from the so-called band limit for Hubbard Hamiltonian, 
U 4 W, a situation typical for a transition metal (e.g. U/W = 0.14-0.16 for Fe, Ni, Co). In this case it is 
convenient to use the momentum representation 

The band energy is given by 

&k = to+ c t(R,) eikR= . 
c 

(3.2) 
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For lattices with the center of inversion, t(R,) = t(-R,) = t*(R,), so that 

&k = to + c t(R,) cos(kR,) . (3.2a) 

The interaction in the momentum representation looks as 

He-i = c VA k + 4) Qqvat+q.oab, 
bu 

where 

v,(k, k’) = R 
0 

$h 2 t(R,) R, * ekr_k,v[eimLR. - eik’RK] 
K 

= Ro$h c @+z) R . e~~_+,[sin(kR,) - sin(k’R,)] 
I 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

with R. = IRKI as n.n. distance ((3.4b) is valid for the structures with a center of inversion). Summations 
over wave vectors in (3.1), (3.3) are limited to the first Brillouin zone. 

We introduce now the double-time Green’s function (GF) for electron and phonon operators [15]: 

G& - 0 = ((a,,&), a&,(f))> = -iO(t - t’)([a,(t), a&(t)]+>, 

Q,(t - t’) = ((Q,,(t), QWI>> = -iW- f'NQ&), QW)l-> . 

(3.5) 

(3.6) 

We are going to calculate functions (3.5) and (3.6) using the equation of motion method for GF [H-17]. 
It leads to the following equation for an electron GF (Fourier transformed with respect to time) 

(w - ~0~) G,(w) = l+ c V&J - 4, ~)((a,-q,mQqYb~,>>, , 
qy 

where 

(3.7) 

&Opu = &p + $ c (n k,-g> . 
k 

(3.8) 

As usually, the electron-electron scattering is limited here to the elastic processes: 

((a p+q,oa;+q,-oak,-,(a~,,)), = 6q,o(n k,-cr) G,(o) . (3.9) 

Inelastic processes may be accounted for, in principle, by means of the irreducible GF method [16, 171. 
In order to evaluate the GF occurring on the left-hand side of eq. (3.7) the GF is differentiated with 

respect to the second time variable t’. After some algebra one gets [16]: 

‘Z&J) = GO,(o) + GO,(w) I’,,&) GO,(w), (3.10) 
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where the free-particle GF and the scattering operator are 

Go, = (w - ~0~ I-’ 9 

PPLhJ) = c Vv(P - 4, P> VVJP, P - Q’)((a,-,,~Q,,IQ:,“,a:-,,,,>>, . 
4W’u’ 

(3.12) 

Following the works [16, 171 we introduce the mass operator M,(o) as the proper part of the operator 
P (without parts connected with the single Go line) according to the equation P = M + MGOP. Then eq. 
(3.10) turns into the Dyson’s equation G = Go + G’MG, which can be solved immediately 

G,(w) = {[G$&)]-’ - M,(w)}-’ . (3.13) 

In order to calculate the mass operator self-consistently, we express the GF from (3.12) in terms of its 
correlator: 

((a p+q,oQqul Q:~v~+,o o >> = f -$$ (e”‘je + 1) f & em’“” (Q&(t) c~p’-~,,Jt) ap-,,Qqv) (3.14) 

-cc -m 

(here the temperature T of the system enters as 8 = kBT). Assuming that the renormalization of the 
electron-phonon interaction vertex may be neglected, (camp. Migdal’s paper [18]), we decouple the 
two-particle correlator in the following way 

(Q:w(t) u;-~,,&) a,,-q,rQqJ = (Q:dO Q,vk&,&) ap-r,c) . (3.15) 

Now, expressing one particle correlators in terms of the corresponding GFs, we get the final expression 
for the mass operator 

Here n(w) and N(w) are the Fermi- and Bose-distribution functions. Throughout the paper the 
argument o of the functions Go, G, M, D etc. is to be understood as w + ia, with 6 = O+. 

4. Phonon Green’s function 

Phonon GF D,(o) obeys the following equation of motion: 

(co*- o&w) Dpv(w) = 1+ C Vvh, q - ~)((&~4Qfv))w. (4.1) 

As in the previous section, by (double) differentiation of the higher GF, occurring in (4.1), with respect 
to the second time variable r’, the following equation is obtained: 

Dpvb) = DOpAw) + @v(w) T,(~) DOpv(o) , (4.2) 
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where 

D”, = (w’ - a&J1 , (4.3) 

T&&J) = c Vv(q, 4 -PI V&‘, q’+ P)((u:-,~~,l~i+,~,u,,~,))~ . 
4”1’w’ 

(4.4) 

Defining the mass operator ZI as the proper part of the scattering operator T, i.e. by eq. T = 17 + z7D”T, 
we get Dyson’s equation for one-phonon GF: 

Dp&) = D;&) + D%J) n,,(w) D&w) . (4.5) 

As previously, renormalization of the vertex is neglected, which corresponds to the decoupling: 

(a;,+P,&) %&) a:-,&,,) = (a:,+,,(t) %)(a,&) &VJ . (4.6) 

Using (4.6), the mass operator for phonon GF obtained from (4.4) is 

(4.7) 

5. Renormalization of the electron and phonon spectra 

The electron and phonon GFs are to be determined self-consistently from the following set of 
equations: 

G&J) = [o - EOI~ - W&J)I-’ 7 (5.1) 

D&I = [w’- w&v - K&)1-’ , (5.2) 

(5.3) 

(5.4) 

We solve (5.1~(5.4) using “quasiparticle pole” approximation for the evaluation of M and n (i.e. 

neglecting Im M, 8/h Re M, Im IT and ~S’/aw Re 17 in eqs. (5.1) (5.2) for G and D): 

Im G,,(w) = -?rS(w - eCo), (5.5) 

Im D,“(w) = -TT& [a(0 - %“) - 6(w + %“)I , (5.6) 
qv 

where renormalized electron and phonon energies Ed, oqV are self-consistent solutions of the equations: 
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U* - 0120~~ - Re n,,(w) = 0 

together with 

M,(o) = c 1 VJ;, q, k)l* 1+ A’(wq,)- n&w)+ N(WQY) + ~(EL-P.u) ’ w qu C-d - oqv- &k-q,o 0.I + @qv - & k-q,u 1 
n,,(w) = z I Vv(k - 4, k)i* [‘F;-;!, $;;;‘] . 

175 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

In this way energy shifts of electrons and phonons are to be calculated from the set of nonlinear integral 
equations (5.7-10) numerically, while electron and phonon damping is obtained from (5.1) and (5.2), 
using already calculated Ed,, wqV, M, II. 

Theoretical calculations of the phonon linewidth in transition metals like Pd and Nb and comparison 
of the results with experimental values obtained by means of inelastic scattering of slow neutrons 
[19-231, have been of great interest in recent years. Following [15] we get from (5.2) the expressions for 
the phonon linewidth: 

Fqv = Im ~,&JJ> 

20 - & Re n,,(o) O=Op” 

Contrary to the papers [21, 221 where the matrix element of the electron phonon interaction (for 

calculation of the phonon damping) was evaluated using RMTA [24], in a present paper, owing to the 

(5.11) 

BLF model applied here, this matrix element is expressed in terms of the characteristic parameters of 
the transition metal: A4, qo, T(R,). The last two, together with the Coulomb repulsion U, are 
phenomenological parameters of the model. Note that the anisotropy of the system is fully accounted in 
(5.9), (5.10), contrary to the Friihlich model, where spherical Fermi surface is supposed. Owing to N(w) 
and n(w) occurring in (5.9) (5.10) the temperature dependence of M and n may be investigated. In 
particular, for low temperatures one gets from (5.9): 

[Mk&‘J; T)- Mk&; O>l- T4 (5.12) 

which follows immediately from the estimation 

I Vv(k - 4, k)12 - q* (5.13) 

for small lq(. 

6. Renormalized spectrum of the Mott-Hubbard isolator 

In many oxides and sulfides [25] of transition metal the Coulomb repulsion is much greater than the 
band width, U + W. In this case (opposite to the one assumed in the section 3) it is reasonable to work 
in the Wannier representation for all operators, as it was introduced in section 2. The one-electron GF: 

Gjjfn(C t’) = ((aju( a)r(t’)>> (6.1) 
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obeys the following equation of motion 

Again, by means of time differentiation, the equation of motion for rjgz(w) may be obtained as 

+ AqY(jJ3)((Qq,u,:-,uj3-~uj~~Iu~~))w - Aqv(jMQ + qvajj-ua jl-& jl-0 a. &~)-1) . (6.5) 1,~ 

The electron subsystem in eqs. (6.2-5) is described according to Hubbard-I approximation. In the spirit 
of it, the following decouplings are performed: 

(6.6) 

Using (6.6) eq. (6.2) may be rewritten as 

+ c Aqv(jl, il + K) @qu,j~+x,j2,v (6.7) 
W 

In a similar way, by time differentiation equation of motion for Q, is obtained, higher correlators are 
decoupled in the spirit of (6.6), and then, from (6.7) the final equation for Gjr, obtained, which after 
Fourier transformation is 

Gkv(~) = GO,(w)+ GO,(w) P&J) GO,(w) 7 

where 

GkC(ti) = k & e-ik’R~l-R~z’GjJzrr(W) , 
Ill2 

G&(w) = [F:(w) - (Et - to)]-’ , 

(68 

(6.9) 

(6.10) 
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p(w) = [kJ=&+ n-u 
w-to-u 

1-l (6.11) 

and the scattering operator 

In terms of the mass operator M,,(o), neglecting vertex renormalization, we get the following 

solution 

Gko(~) = {[GP,(w)l-’ - Md~)l-~ , (6.13) 

where 

M,(w) = c 1 Vy(k - q, k)]* 1 1 v ’ - ‘(%)+ N(wz) Im Gk_,,(ol) Im DqV(02) . 
v w-w~-w* 

(6.14) 

From ,the fact, that the mass operator (3.16) obtained in the region U 4 W coincides with (6.14) 
obtained in the opposite case US W, one can expect that the expression (6.14) is valid for any U, W. 
Of course, when calculating GF G&w) in a self-consistent way by (3.13), (6.13), appropriate free- 

particle GF G$&(w) must be used (e.g. (3.11) or (6.10) in the limiting cases). 
Now let us solve the set of eqs. (6.13), (6.14) with (6.10) (6.11) (4.5) and (4.7) again in the 

quasiparticle pole approximation. Neglecting Im M in (6.13) and inserting (6.10) and (6.11) we get 

Gdw) = cw _ to)(w _ to - &f:X,(o,ro - E$"] = [w - Ef&?o’~ E&to)] ’ 

where 

E(O)= t,+(l-n_ D ) U D , (6.16) 

L(w) = [.Q - Re M&u)- t&U, 

EE(o) = E$‘)+ y {[Xkm(w) + 2n-, - l] 

+ (2a - 3)[(X&w) + 2n_, - ly + 4n-,(l - n-,)1”*}, (Y=1,2. 

In terms of renormalized band energy BP), defined as the solution of the equation 

w - EE(o) = 0 ; (Y=1,2 

we get the following imaginary part of GF (compare with the Hubbard-I solution [6]): 

(6.15) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 
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where 

(6.21) 

In the limit of small X (i.e. W 4 U), the energies (6.18) and amplitudes (6.21) may be expanded into a 
power series: 

El?(w) = to + (1 - n-,)[ Q - Re M&o) - t01[l+ O(X)1 , 
(6.22) 

Et)(w) = to + U + n-J.ck - Re i&(o) - tO][l + O(X)] , 

A@ = (1 - n_,) 

I 

1 - 2n_,X&J)[l+ O(X)] 

1- (1- n_,)&M&)[l+ O(X)] 
1 

+;) , 

(6.23) 
1+ 

Ag = n-, 
2(1- n-,) X&J)[l + 0(X1 

’ 1 - n-, -& M&w)[l + O(X)] -0) o=Eko 

The phonon GF in the pole approximation was already found (5.6). When (6.20) and (5.6) are inserted 
into (6.14) and (4.7), integrations over w1 and w2 may be immediately performed and expressions 
analogous to (5.9) and (5.10) (although two-times longer) are obtained. 

From the expression (6.18) it is evident that E@(o) > E$‘) and Eg(o) < E$) for any value of X,(w). 
This means that the finite gap between the two bands @ and ,??(z exists despite of the fact that the 
electron-phonon interaction is included. Therefore our model is not capable of reproducing the 
metal-insulator transition for Hubbard-I solution. 

7. Superconductivity in transition metals 

The equations for superconductivity in transition metals were obtained in the Wannier represen- 
tation in paper [14], for the following general form of the electron-phonon interaction: 

He-i = C T$u$a&aim, 
ijua 

(7.1) 

where 

ug = up - up. (7.2) 

These equations may be applied to the BLF model, considered in the present paper, for which (camp. 
‘(2.11)) 

T$ = qorij(RF - RT)/)Rj - Ri\ . (7.3) 

The GF appropriate for this problem has the matrix form: 
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(7.4) 

It obeys the Dyson equation [14]: 

(7.5) 

A?fjQ4(0)= A2~h(0)+A2~(bJ) 

is the mass As obtained in a of the vertex 

be rewritten in 

X th(w,@T) + 
- WI - w2) 

f3 Im bk-q(ol) f3 Im Dq,(02) . 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

When deriving (7.11) the following relation (see (2.14) and (3.6)) was used: 

(7.12) 

Note that electron-phonon contribution to the mass operator (7.11) in the superconducting state has the 
same form as that obtained earlier (3.16), (6.14) for the normal state, except that the spin dependent GF 
Gb(w) is now replaced by the matrix [&(w) f3], the distribution functions n(o), N(o) are written in 
terms of th and cth functions, as usual. 

The electron-electron Coulomb part of M in the Hartree-Fock approximation is given by 
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&*= /-J (nkl>, -(a-klakl.) 
-(at~a’-kl), -6-k t> I I = u - d”;,Im &k(W)+3j3h 

_m 2r 
(7.13) 

(the general expression may be found in [14]). 
The self-consistent expressions (7.11) and (7.13) for the mass operator describe properties of the 

superconducting transition metal within the framework of the BLF [l] model. They are analogues of the 
Eliashberg equations [3] for simple metals. Owing to these one can investigate superconducting state 
within the same model as used for the description of the normal state, in terms of a few parameters of 
the transition metal, such as U, to, r(R,), qo, A4 and the n.n. distance Ro. Considering U to be a fitting 
parameter, the standard Eliashberg equations [3] may be derived: 

[I-Z(W)] w = -~_~d~K,h(z, 0) Re d/z’~A2(Z)sign(z) y (7.14) 

where 

Kpdz, 0) = jam d 
1 

o’&(w’) F(&J’)? [ 
th(z/2T) + cth(w’/2T) _ th(z/2T)- cth(w’/2T) 

z+w’-w+iS z-o’-w-l-is 1 
while the electron-phonon spectral function [2, 3] is 

(Y’(w) F(w) = I I s 
F 

e ,$c I V”W, w($) 
Y 

ImDk-k:& +iS)/[l,$] . 

(7.16) 

(7.17) 

Eqs. (7.14) and (7.15) may be reduced to the linearized Eliashberg equations [3], defining the 
temperature of the superconducting transition. Results of the numerical evaluation of the aZ(u)F(~) 
for Nb, W, MO, Ta, V, based on the expression (7.17), will be published elsewhere. 

8. Conclusions 

In the present paper a self-consistent theory of the electron-phonon interaction within the BLF [l] 
model was developed for the metallic case (U 4 W) as well for the Mott-Hubbard isolator case 
(U 9 W). The expressions (5.5 or 6.20) and (5.6) determine the renormalized one-particle densities of 
states for electrons and phonons: 

X”(w) = --$ c Im Gb(o) , 

to 
(8.1) 

Nph(w) = -3&r my 1 C Im D&w). 63.2) 
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Using (7.17) the electron-phonon enhancement parameter Ae+, may be expressed as [2, 31 

A 2 e-ph = m da’(w) F(o) dw . (8.3) 

The renormalized electron density is 

P(EF) = X&%)(1 + A e-ph) (8.4) 

and therefore the Stoner criterion of magnetization may be written as 

Uwh’$(E,)(l + he-h) ’ 1 . (8.5) 

Because of he.+, occurring in (8.5) one may conclude that the electron-phonon interaction facilitates 
magnetic ordering at low temperatures, due to the dressing of the electron by the phonon cloud. 

Superconducting properties of the model are handled by eqs. (7.14) (7.15), allowing investigation of 
the superconductivity in transition metals, their alloys and compounds within the framework of common 
system of equations [3, 141. The BLF model has proved to be useful also in the case of the theory of 
electroconductivity for the one-band system, including shift of the Fermi surface and its deformation 
[26]. Essentially new temperature dependence of the electroresistance in the low temperature region 
was obtained there, in agreement with the results of ref. [24]. Using electron-phonon interaction in the 

form (3.3) magnon damping was obtained in the generalized RKKY model. The low temperature 
behaviour of the damping in a heavy rare-earth metal (like gadolinium) was previously determined [27]. 
The generalization of the electron-phonon interaction Hamiltonian for disordered binary alloy A,B1_, of 
transition metals was earlier performed in [12]. Using methods of [12, 141 the theory for strong-coupling 
superconductivity in disordered transition metal alloys has been developed [31, 321. 

It must be noted, however, that BLF model is not free of shortcomings and that it includes a number 
of assumptions. Nevertheless, all recent investigations [2, 3, 8, 10, 28, 301 show that in many interesting 
physical situations these assumptions are justified and lead to reasonable conclusions. 

The results of the present paper demonstrate the effectiveness of the BLF model in the description of 
a variety of properties in the transtition metals and their alloys. 
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