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The problem of diagonalization of a quadratic linear form on the set of second 
quantization fermion operators is discussed and two different cases of diagonalization 
are indicated. It is shown that the quadratic linear fermion form in the second case may 
behave as a many-particle operator contrary to the Bose statistics. A particular case 
of diagonalization of the quadratic linear form on two types of fermion operators is 
analysed using the Dirac matrix algebra. 

1. Introduction 

. 

In paper [lo] the diagonalization of the quadratic linear (q.1.) form on the set of 

second quantization operators ak and a: 

L=C(F,a:ak+yl,a,+a:~:), L=L+, (1.1) 

was considered. Here Fk, qk, q$ are certain coefficients, Fk being a c-number. Attention 

has been drawn to the fact that when a, and a: satisfy the Bose commutation relations 

the 9.1. form (1.1) is diagonalized simply by the canonical shift transformation. If the 

operators ak and a: satisfy &he Fermi commutation relations, the diagonalizing problem 

requires special consideration which is just the matter of the present paper. 

The expression (1.1) is a Hermitian form and, consequently, it may be diagonalized. 

However, as will be shown below, since the 9.1. form may behave as a many-particle 

operator, the diagonalization is different for the two following cases. 

The Jirst case occurs when the linear fermion sources (i.e. the terms yka,+a: q$) 

are introduced with the aid of anticommutation relations with the initial fields and, si- 

multaneously, by self-anticommuting spinor fields v)~ and p:. Then the form (1.1) is, 

in gist, a bilinear fermion form and consequently may be diagonalized by the linear ca- 

r2011 
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nonical transformation [2]. The linear sources in this case may be interpreted as inter- 

action terms between the initial fermion field and the external spinor field. We note that 

recently a problem similar in some respect was investigated in paper [5]. It consists in 

diagonalizing the interaction Hamiltonian between a one-mode boson field and one-mode 

fermion. 

The second case occurs when the quantities qk and p: in equation (1 .l) are supposed 

to be c-numbers. 

In the present note we shall discuss the diagonalization in both cases and investigate 

the possibility of its practical realization. It should be noted that these questions have 

not been considered in the monographs available (see e.g. [2]). 

2. Diagonalization in the first case 

Consider the 9.1. form (l.l), where ak and a: satisfy the fermion commutation rela- 

tions and 

where vr 

mutation 

suppose that v)~ and IJY: are equal to 

%=Ilkf;;Y !P: =Ilk*f+ 3 (2.1) 

and r: are c-numbers and fk and fk+ are spinors satisfying the following com- 

relations: 

(2.2) 

Here (.. .} is an anticommutator. Besides that we need the commutation relations for 

the fermion fields ak and fk. We find them by requiring the terms in the sum (1.1) with 

distinct indices k to commute: 

[Fkakfak+~kak+a:~,:,F,a:a,+~,a,+a:~,:]=O for kfl, (2.3) 

and hence 

(ak,fif)=O, {ak+,f:)=O for kfl. (2.4) 

In addition, we require the fulfilment of the conditions (2.4) for k=l. This is a reasonable 

physical requirement because ak and fk ere related to the distinct fermion fields. 

A bilinear hermitian form on the set of second quantization fermion operators can 

be diagonalized by the linear canonical transformation [2]. We note that the conditions 

(2.4) permit to consider the operator 

Fa+a+tjfa+q*a+f+ (2.5) 

only. In order to diagonalize it we use a linear canonical transformation of the fermion 

operators a and .f to the new operators b and g, regpectively 

a=xIb+x,gf, a+=xTb++xtg, 
I 

(2.6) 

f+=y,b+y,g+> f=y:b+ +y;g. 
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Here the coefficients xl,2 and y1,2 have the form 
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where 

are the eigenvalues of the matrix which is formed from 

of motion for the operators a and f +. The quantities 

[::1 and El 

(2.7) 
+4,2 

(2.8) 

the coefficients of the equations 

(2.9) 

are the eigenvectors of this matrix. If one applies the canonical transformation (2.6) to 

(2.5) the q.1. form (2.5) reduces to the following expression 

A, b+b+&gg+. (2.10) 

Thus, the problem of diagonalizing the q.1. form is solved for this case. 

3. Diagonalization in the secondl case 

This case is more difficult and therefore, to begin with, we assume that the index k 
in the sum (1.1) takes only one value. The physical meaning of this assumption is that 

no dispersion occurs. We note that the problem of diagonalizing the q.1. form (1.1) without 

dispersion has been considered for this case in paper [4] with the aid of both the canonical 

transformation and the tn o-time, temperature-dependent Green functions [8], [9]. 

The operators a+ and a are defined by the manner in which they act on the vectors 

IO) and j I>: 
a[o>=o, a+p>=p>, (3.1) 

a[l>=(O>, a+ll>=o, 

and any operator in this space can be expressed as a linear combination of the four linear 

independent operators a, a+, a+a, 1. Let us introduce a unitary operator U which diago- 

nalizes the 9.1. form and such that UaU’=b, Ua’U+ =b+. Then we have 

b=z,a+a+z,a+r,a+, 

b+=z,a*a+z:a+~ga+, (3.2) 

b+b=(~~+(e2\2+(~,\2)a+a+z,z:a+~,z,a+, 

where rl, z2, z3 are certain coefficients and 77 = rl. The resolution of the system (3.2) 

with respect to a+ and a enables to express zl, z2, z3 in terms of the parameters F, q~ and 

q* of the problem. The characteristic equation in this case is 

A2-lf]2=0, A= *IfI. (3.3) 
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If the characteristic roots are known, one can evaluate the eigenvectors of the matrix 
(1.1) in the basis (3.1) and, consequently, find the diagonalizing matrix [l]. We note that 
the fermion operators without index are, in principle, the Pauli operators [6]. 

One can consider the situation in the same way when the index k in equation (1.1) 
is equal to k= 1 and k=2. 

L=F~a:a~+~,a~+~,Ta:+F*a,+a~+~,zu~+~~uz+. 
In the basis 

~oo>=~o>~o>, Il0>=ll>j0>, ~01>=~0>~1>, Ill>=jl>ll> 

any operator can be expressed as a linear combination of the 16 operators 

b=UaUf=cla~u,+c,u,+c,a~+c,a~a,+c,u,+c,a~+ 

+c,a,u,+c,u,+a,+c,u~a,+c,,u~u,+c,,a,u,ta,+ 
f + 

+c12u~u~a,+c,,u~a~a,+c,,a,a~al+c,,alaluzaz+c,,. 

The matrix z in the basis (3.5) has the form 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

and then the characteristic equation is 

In the general case, one can see that for k> 1 the q.1. form defined on the set of fermion 
operators may not be a one-particle operator, i.e. may not have the form L’=~~,b~b,. 

In certain cases the terms a~a,a~u, may be excluded. The criterion for ;his will 
be given in the next section. A more general situation, when k>2, may be considered 
in a similar way [7]. 

4. The use of the Dirac matrix algebra 

The diagonalization of the q.1. forms (2.5) and (3.4) defined on two types of fermion 
operators can be simplified if one uses the Clifford algebra [3] of the Dirac matrices raa 
which are expressed through the Kronecker product of the Pauli matrices a, [l] 

10 
r~a=EZ*~s, a,B=0,1,2,3, CT()= 

[ 1 01’ 
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Any four-dimensional matrix c can be written as 

c= C&&p? where g,, = ;sSP (C’ &> * 
a* B 

Let us introduce the vacuum state and the basis in the following way 

a,~OO)=O, a,~OO)=O, (00~00) = 1) 

p>=p>, ’ 
~10)=a:~00)+), 

~0’)=u:~00)=~2>, 

~11)=a:u:~00)=~3). 3 

In this basis we have 

1 , a: =(a,)+ 

From (4.5) it follows that 

rol=al+a:) 

r,,=qa: -al) ) 

I-0, =(I -2&z,) ) 

r13=uz+a:, 

r,,=qu; -uJ, 

rl2=i(u:+a,)(u:+a,), 

r22= -(a: +q)(aZ -az) : 

u2= 

-001 0 

0 0 0 -1 
000 0 
000 0 I - , a:=(a,>2 

r,,=(1-2a:a,)(a: d-a,) ) 

T;o=i(1-2a:u,)(u; -aJ ) 

rso= 1-2u:a,, 

&,=(a: +ar)(l-2a:a,) ) 

r,,=i(a: -@(I-2&Q), 

r11 =(a: -am: +a,) 3 

T,,=i(u: -a,)(aZ -az) 3 

Tj,=(l-2a:u,)(l -2a,+az). 

In the basis (4.4) the 9.1. form (3.4) is represented by the matrix 

L 00 *** Lo3 

z= . . . . . . . 

[ 1 L 30 *.* L 33 

which is diagonalized by the unitary matrix U 
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(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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The transformed operator is 

bj= Ufaj U , bf=U+aTU, j=1,2. (4.9) 

Now, expressing the matrices of the operators U, L’, b, b+ in terms of r+, one can find 

how these operators are represented through the initial operators. After diagonaliza- 

tion, the q.1. form (3.4) is written as a linear combination of the values Too, Z-‘,, , rso, 

r 33. One can point out a simple rule indicating when terms of the type a:a, ala2 are 

excluded, by putting the coefficients for r,, equal to zero 

c,,=*sp(r,,L')=o. 

If the ground state is chosen properly, the equality E, -t- E3 = E, + E2 holds. 

5. Concluding remarks 

The diagonalization of the q.1. form defined on the second quantization fermion opera- 

tors is thus more complicated compared with the Bose statistics. In practice, the diagona- 

lization differs largely in the two cases mentioned. 

In the first case the linear terms may be interpreted as an interaction of the initial 

fermion field with an external spinor field and the 9.1. form is easily diagonalized by a 

linear canonical transformation. 

In the second case the diagonalization is more complicated since the fermion operators 

with different indices anticommute and, consequently, the whole sum must be diagonal- 

ized simultaneously. This fact can be interpreted as the presence of a certain interaction 

in the system. 

Such a distinction between the Bose and Fermi systems is associated with the symmetry 

properties of their wave functions. For a Bose system the addition of a particle leads 

to the displacement of the one-particle energies only, while in the case of Fermi statistics 

the whole system must be reconstructed. Moreover, the one-particle energies may be 

nonadditive. Thus, one can say that the q.1. fermion form may be a many-particle opera- 

tor unlike it is in the Bose statistics. It is also a lead in distinguishing between various 

types of diagonalizations. This results in different diagonalization procedures. 

We would like to thank Professor D. N. Zubarev for valuable discussions and Profes- 

sor E. Czerwonko, Dr. Yu. A. Tserkovnikov and Dr. M. Yu. Novikov for useful re- 

marks. 
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