
J. Phys. C: Solid State Phys. 18 (1985) 2871-2885. Printed in Great Britain 

The self-consistent theory of elementary excitations in systems 
with many-branch quasiparticle spectra (ferromagnetic 
semiconductors) 

D I Marvakovi, J P Vlahovi and A L Kuzemsky$ 
t Faculty of Physics, University of Sofia, Sofia 1126, Bulgaria 
$ Laboratory of Theoretical Physics, JINR, Dubna, USSR 

Received 18 March 1984, in final form 3 October 1984 

Abstract. A unified self-consistent theory of the mutual influence of the electronic and spin 
subsystems in the s-f model approximation for ferromagnetic semiconductors is developed. 
The calculations are based on the novel approach of the two-time Green function method. 
It consists in the introduction of irreducible Green functions (IGF) and the derivation of the 
exact Dyson equation and the exact self-energy operator. It is shown that the IGF method 
gives a unified and natural approach for the calculation of the elementary excitation spectrum 
and damping. The full electronic and magnetic quasiparticle spectra of the s-f model are 
derived by taking explicitly into account magnon-magnon, electron-magnon and electron- 
electron scattering processes. The recent Babcenco and Cottam results follow from this 
theory in the lowest-order approximation. 

1. Introduction 

In this paper we present a unified and complete self-consistent consideration of the 
mutual influence of the electron and the spin subsystems in ferromagnetic semi- 
conductors by taking explicitly into account damping effects and finite lifetimes. A great 
deal of effort has been made to gain an understanding of the physics of magnetic 
semiconductors. An important problem is to make clear the relationship between their 
magnetic and electrical properties. The corresponding theoretical model is known in 
literature as the s-f model (Krisement 1976, Nolting 1979a). 

The s-f model has been intensively discussed in many previous papers on ferro- 
magnetic semiconductors. Nolting (1978,1979b) and Nolting and Oles (1980a, b, c, d) 
calculated the electronic excitation spectrum of a ferromagnetic semiconductor in the 
strong-coupling limit using an improved moment method. Sinkkonen (1979) developed 
an intermediate-coupling theory of the s-f model in terms of the functional-derivative 
method. Nolting and Oles (1981a, b) calculated the magnon spectrum, quasiparticle 
density of states and edge shifts of doped ferromagnetic semiconductors. The exact 
nature of the conduction band states was investigated in a very elegant way by Allan and 
Edwards (1982). They retained the predominant d character of the conduction electrons 
and found the most important effect of the electron-magnon interaction on the electronic 
states at T = 0. Recently, a significant contribution to the explanation of the observed 
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electron spin polarisation in the magnetic semiconductor EuS has been made by Edwards 
(1983) who clarified the true situation in this compound. 

A very detailed investigation of the magnetic excitation spectra in the s-f model 
approximation has been developed by Babcenco and Cottam (1981). These authors give 
a more detailed description than Woolsey and White (1970), including an optical branch 
of the magnon spectrum and a Stoner-like continuum of excitations as well as the usual 
acoustic magnons. Unfortunately the damping effects and the finite lifetimes were not 
taken into account. The only damping mechanism that has been considered is the decay 
of a magnon into an electron-hole pair with a spin flip. 

The purpose of our paper is to develop a complete self-consistent theory of electronic 
and magnetic elementary excitations in ferromagnetic semiconductors by taking 
explicitly into account magnon-magnon, electron-electron and electron-magnon 
inelastic scattering processes. For this purpose we use the novel irreducible Green 
functions (IGF) method developed by Plakida (1971,1973), for the self-consistent phonon 
theory and for the Heisenberg ferromagnet, and by Kuzemsky (1978), for the Hubbard 
model. The IGF method allows one completely to describe the quasiparticle inelastic 
scattering processes in a many-body system and to find quasiparticle spectra with damp- 
ing in a very general way. From the technical point of view the IGFmethod is a special kind 
of projection operator approach in the theory of two-time Green functions (Ichiyanagi 
1972). 

If one introduces irreducible parts of the Green functions (or irreducible parts of the 
operators from which the GF is constructed) the equation of motion for the GF can be 
exactly transformed into Dyson equation. The representation of the self-energy operator 
in terms of high-order GF is exact too. In order to perform the self-consistent calculation 
of the self-energy operator we have to express it approximately in terms of low-order 
GF. Recently, the IGF method has been applied in a number of solid state problems (see 
Kuzemsky et a1 1983). Christoph et a1 (1982) used this method for the calculation of 
elementary excitation spectra in the generalised RKKY model of magnetism, which shows 
that all branches should be taken into account in performing damping calculations. 

The paper is organised as follows: in the next section we introduce the s-f Hamil- 
tonian. In B 3 we derive the exact Dyson equation for one-electron GF by means of the 
IGF method. The self-consistent approximative formalism for the calculation of the 
electron self-energy operator is presented in § 4. In § 5 we derive the exact Dyson 
equation for the spin subsystem. The self-energy operator for this case is calculated in 
§ 6. In § 7 we present our conclusions and possibilities for further development. In the 
Appendix we give a simple but useful analysis of our truncation procedure on the basis 
of the moment conservation treatment. 

2. The Hamiltonian of the s-f model 

The total Hamiltonian of the s-f model is represented by the following sum (Krisement 
1976, Nolting 1979a): 

(1) 

(2) 

H = He + Hee + H f  + H*f. 

The kinetic energy operator He of the itinerant band electrons is given by the expression 

~e = Z tzjahju = E ~ l g t o  
iio ka 
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is the band energy. Although the itinerant electrons are predominantly d electrons they 
are usually treated as s electrons for mathematical simplicity. However, retaining the 
predominant d character of the itinerant electrons may be very important for describing 
the heavy rare-earth metals and magnetic semiconductors (Cooke 1979, Christoph er a1 
1982, Allan and Edwards 1982). For tight-binding electrons in the lattice with an inver- 
sion centre the band energy reads 

&k = t(Rn) COS(k * Rn) ,  
n 

He, describes the Coulomb iteraction of the itinerant d-like electrons: 

(3) 

where U is the Hubbard correlation energy. In the case of a pure semiconductor at low 
temperatures the conduction electron band is empty and the Coulomb term (4) is 
therefore not so important. A partial occupation of the band leads to an increase in the 
role of the Coulomb correlation. 

The localised moments with the Hamiltonian Hf are treated in terms of the 
Heisenberg model: 

These two subsystems are coupled by a local spin-spin exchange interaction Hef 

H,f = -21 2 (SI * u ) ~ ~ ~ u ~ ~ u ~ ~ ~  
IUO’ 

= { S Z q U l J  ak+qt f S I q U i t  a k + q T  
4 

+ S c q ( a ~ t a k + q ~  - u i , a k + q J > )  ( 6 )  
where operator (6) describes the RKKY iteraction of the localised spins of the 4f shell 
with the spin density of the itinerant electrons. In general the exchange integral Z(k, 
k + q )  depends on the quasimomentum (Freeman 1972). (A generalisation for the non- 
local case can be made directly.) 

3. The Dyson equation for the one-electron Green function 

For calculation of the electronic quasiparticle spectrum of the described model with 
Hamiltonian (1) let us consider the equation of motion for the one-electron GF (Zubarev 
1960): 

Gku(r  - r ’ >  = -ie(r - t’> ( [aku( t ) ,  a : ~ ( ~ ’ > ] + )  = ((ku(t)  laiu(t ’)))* (7) 
Performing first time (t) differentiation of (7) for the Fourier transform Gku(o)  we get 
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the equation 
. T  

where 

Following Plakida (1971) and Kuzemsky (1978) one can introduce the irreducible GF 

( ( (SZ-qak+q,u) ir14u~ = ( ( S ~ q a k + q , u l a : o ) )  - ~ q , o ( ~ ~ , > ( ( ~ ~ + , , , l ~ ~ u ~ ~  

in which the mean-field contributions are removed. The choice of the IGFS is determined 
by the conditions 

([(SZ-qak+q,.)lr, aLl+,>  = 0 ( l o a )  

(((ap++q.-oap.-aakiq,a)lr, 4 U I L )  = 0. (10b) 
The IGFS are defined so that they cannot be reduced to the low-order ones by any 

kind of decoupling. This reducing procedure leads to extracting all relevant (for the 
problem under consideration) mean-field renormalisations and putting them into the 
'zero-order' (generalised mean-field) GF. For example, in the case of weak electron 
correlation it will be enough to define a very simple mean-field extraction in the second 
part of (9), i.e. (ak+,ak,). In the general case the mean-field renormalisations can have 
very non-trivial structure, and a special projection procedure should be developed for 
the higher-order GFS as is done for the cases of the Heisenberg ferromagnet (Plakida 
1973), the Hubbard model in the strong-correlation limit (Kuzemsky 1978) and the 
magnetic polaron problem at finite temperatures and an arbitrary values of the s-f 
exchange. 

In order to calculate the IGFS (((A(r))ir\ B(t'))) in expressions (9) we have to write the 
equations of motion after differentiation with respect to the second time variable t'. 
Then conditions (10) remove the inhomogeneous terms in these equations. If one 
introduces irreducible parts for the right-hand side operators by analogy with expressions 
(9) and (lo),  the equation of motion (8) can be exactly rewritten in the following form: 

Gko(W)  = GO,,(@) + GOku(4&(4GOku(4 (11) 
where the mean-field GF G ~ , ( u )  reads 

G ~ , ( u )  = (U  - 
Here E:,  is 

E;, = Ek - Z, IN- ' iz (sz~)  + ( U / N ) n - , .  

The scattering operator Pko(w) is given by expression 

Pka(  U) = P',,( U) i- (U) 
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and 

+ ( ( s - ; a k + q ,  -u l  S:ra:+q',o))> (146) 
where the intersubsystem contributions are dropped, i.e. 

q. - u a p ,  -&k+ q. u)" I (s ;+ q ' ,  U)'' + s gal- 4' .  -U)> 

is equal to zero because of our simple projection procedure assumed in this paper. 
From the Dyson equation 

Gko( = GOku ( w> + ( M k o ( w )  Gku(  (15) 

P k o ( w )  = M k o ( W )  + Mku(w)Goku P k o ( W )  (16) 

we get the following equation for M k o ( W ) :  

from which it follows that we can say, in complete analogy to the diagrammatic technique, 
that the self-energy operator Mka(w)  is defined as a proper (connected) part of the 
scattering operator Pko( U ) :  

Mko(U) = ( P k u ( W ) ) C .  (17) 

It should be emphasised that for the retarded (and advanced) GFS the proper part has 
only a symbolic character. However, one can use the causal instead of retarded GF at 
any step in the calculations because the equation of motion has the same form for all 
three (retarded, advanced and causal) GFS. 

In a certain sense there is a possibility of controlling, in diagrammatic language, the 
relevant decoupling procedure in further approximative self-energy calculations. Thus, 
in contrast to the standard equation-of-motion approach the decoupling is only intro- 
duced in the self-energy operator. A concrete calculation will be given in the next section. 

4. A self-consistent approximative calculation of the electron self-energy operator 

To find useful explicit expressions for Mku( o) we have to evaluate the high-order GFS in 
equations (16) and (17). The electron-electron part (16) has been previously found by 
Kuzemsky (1978) by considering the electron correlation effects in Hubbard model in 
the band limit. In the pair approximation for M ~ ( u )  he obtained 

+ ~ ~ ~ * ~ ~ ~ ~ 3 ~ l ~ p + , , - u ~ ~ ~ ~ ~ k + p , u ~ ~ ~ ~ ~ p , - u ~ ~ 3 ~  (18) 

gko(0) = -(I/n) Im G k , ( O J  + i E )  = (1/2iT)(eB" l ) A k u ( C O ) .  (19) 

where 

Let us consider now the spin-electron inelastic scattering. It is convenient to write 
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(eaw' + 1) 
- - 5  

If one uses the following decoupling procedure: 

( ~ f ~ 4 + q , , u s ~ , ( t ) a k +  ,. .(t))(i*~c) = (s$s:,(t))  ( a ; + q ~ , u a k + q , u ( ~ ) )  (21) 
the corresponding approximative expression for ( U )  neglects the vertex corre- 
lations, i.e. the correlations between propagations of the electrons and the magnetic 
excitations. In another paper we will consider the magnetic polaron problem where such 
correlations are very important. Taking into account the spectral theorem (Zubarev 
1960) we obtain from equations (20) and (21) 

+ m., . (w)g,-q,u(w2))  (22) 

where the following symbols are introduced: 

m;fi(w) = (I/n) Im ((S; IS!,)} = (1/2n>(eaw - 1)Kgfi ( U )  

K,"B(t) = (S!,Sga(t)}. (23) 

Here v ( w )  and n(w) denote the Bose and the Fermi distribution function, respectively. 
Equations (1 1 ) ,  (18) and (22) form a closed self-consistent system of equations for 

the one-electron GF of a ferromagnetic semiconductor. There the electron-electron 
scattering is accounted for in the pair approximation and the spin-electron scattering is 
described by neglecting the vertex correlations. In principle we can substitute in the RHS 
of the equations (18)  and (22) any relevant initial GF and find a solution by repeated 
integration. 

For first step in the iteration we choose the following simple one-pole expression: 

gko(W)  = - Eke). 
Then from the equations (18) and (22) we obtain 

(24) 
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The expression (25) was found by Kuzemsky (1978). It describes electron-electron pair 
scattering in the paramagnetic state of the electron subsystem. The expression (26) 
contains some results found by Krisement (1976), Nolting (1977), Kuivalainen et a1 
(1979), Sinkkonen (1979) and Woolsey and White (1970). In order to obtain the results 
of Woolsey and White (1970) it is necessary to neglect m ; ( w )  (which is reasonable at 
low temperatures) and to use as a first iteration the expression 

-(I/JT) Im ( (S ;~S : ; ) )  = Z . ( ~ ( S Z , ) / N ” ~ ) ~ ( ~  - zuwq) (27) 
where w(q)  = Dq2 is the magnon energy. Then we obtain the Woolsey and White (1970) 
perturbative result: 

In the state limit for K f p ( t )  = Ktp(0)  one can immediately obtain the Sinkkonen (1979) 
result 

from which the Kuivalainen et al(l979) result can be found as a special case. 
The renormalised electron energy appears as a self-consistent solution of the equation 

w - - Re Mku( U )  = 0 (30) 
together with equations (18) and (22) or with equations (25) and (26). In this way the 
energy shifts of the electrons can be calculated from the set of non-linear integral 
equations (30), (25) and (26). So the electron linewidth is given by 

rk&) = l / t  = -1m MkU(w + iE) 

pku = ImMku(Eku)/(l - a ReMdw) /awl  (31) 

and the one-electron density of states is defined as 

(cf Allan and Edwards 1982). On the basis of equations (31) and (32) we can consider 
modified (due to electron-electron correlation effect) expressions for the electron effec- 
tive mass, electron mobility and electron specific heat obtained by Woolsey and White 
(1970). 

5. The Dyson equation for the spin Green functions 

To study the magnetic excitation spectrum of the localised spin subsystem we need the 
GF 

R ( t  - r ’ )  = -i6( t - t ’ ) ( [S i ;  ( t ) ,   SI^(^')]-.) = ( ( S ; ( t ) l S ~ ~ ( t ’ ) ) ) .  (33) 
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Christoph er a1 (1982), however, show that for the many-branch quasiparticle excitation 
spectrum it is necessary to evaluate the matrix GF (cf Babcenco and Cottam 1981) 

where 

By differentiation of the GF ( (S i  1 B)) with respect to the first time t and introducing the 
IGF following Plakida (1973) and Christoph et aZ(1982) it is convenient to introduce the 
irreducible operators 

} (35) 
(S$ = Sz, - (S;)G,.,  
(Si-q(Si)'r - S:(S;-4)ir)ir = S:-4(S~)ir - S:(Si-4)ir - (A,  - Ak-q)Sf; 

A ,  = ( 2 K y  + K ; + ) / 2 ( S $ )  

we find the equation of motion 

Here 

I 
- z ( n 7 - n ; )  

Q2 = 2(S6)I /N (39) 
and B denotes the operators or 0 7 , .  The many-particle operator A reads 

- 2(S;-Jra:t ap+4J>  

and it satisfies the conditions 

( [ A ,  S I k ] - )  = ( [ A ,  a i ] - )  = 0. 

Now we consider the GF ((a: I B)). Similarly to equation (37) ,  we have 

where 
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The irreducible operator Bp is defined by 

I B p = -  Nljz 7 [STq ' (a :T  a q + q  T a q . p + k  - 'i. a p + k C b p , q + q ' ) l r  

44 

- (S:q')Ir(apiT Q q r q ' *  d q . p + k  - a:; a p + k r  a p , q + q 4  

(43) 
U + N x  (all. a ~ + q T a q ~ u p + k + q ' i  - a ~ + q ' T a i - q ' ~ u q ~ a p + k * ) ' r  

46' 

and the equations of motion (37) and (41) can be summarised in the matrix form 

dR = i + $ p R p .  (44) 
P 

Here 

In order to obtain a Dyson equation we have to use the equation of motion for the matrix 
GF f i ( l ) ( t )  and introduce the irreducible parts as discussed above. Thus we get 

R = $0) + R(Ojpfi(O1 

and 

Using the definition (13) the equation (47) can be transformed into the exact Dyson 
equation 

(50)  R = f i ' 0 )  + R(O)fiR 
with the self-energy operator fi given as 

fi = {PY .  

R = [(R(O))-' - f i ] - 1 ,  

The solution of equation (50) can be written in the form 

Hence the determination of R has been reduced to the determination of the mean-field 
GF and the self-energy operator fi. 

In the explicit form the mean-field GF l ? ( O )  is expressed by 

(53) 
(1 - vX:f)(N1/2/4R2 

where 

det & = (1 - Ux~' )Ql  + N1/21~$fQ2.  (54) 
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Then for the localised spin GF ((S; 1 SI,)):) we find 

As follows from expression ( 5 5 ) ,  the two interacting subsystems (localised spins and 
itinerant electrons) are describedin the generalised Hartree-Fock approximation, which 
can be considered as a good starting point for studying wide-band ferromagnetic semi- 
conductors. The magnetic excitation spectrum following from the GF (55) consists of 
three branches: the acoustical spin waves, the optical spin waves and the Stoner-like 
continuum of excitations. Our considerations generalise the first-order theory given by 
Babcenco and Cottam (1981) (cf Bartell973, Christoph eta1 1982). 

In the limit k-, 0, U+ 0, the GF (55) can be written as 

((Sl /SI,))c,O) = (2(S$)/N1/*) ( U  - ~ ( k ) )  (56) 

where the acoustical spin wave energies o ( k )  = D,,k2 are determined by the stiffness 
constant Dac: 

Here 

VJq = ( f  ' Rd2J(IR, I) exp(-iq * R , )  
n 

and the sum is taken over the lattice sites denoted byR,;J(IR, 1 )  is the exchange integral 
and L = k / k .  The stiffness constant D,, can be expressed in terms of the Hamiltonian 
parameters if one evaluates the band splitting A by self-consistently solving the RPA 
equation 

6. Spin self-energy operator and the magnon damping 

The self-energy operator fi can be expressed approximately in terms of the low-order 
GFS. As an example let us consider the calculation of the GF ((AlA*)). Using the spectral 
theorem and neglecting the high-order correlation effects (vertex corrections) between 
the magnetic excitations and charge-density fluctuations we obtain 
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(59) 
x m?-,(wl) (- ~ I m ( ( a ~ ~ a p + q ~ ~ a ~ J a p , - q ~ ) ) , 2 ~ .  1 

According to the same arguments as given above, the GFS ((AlBb)),, ((B,IA+)), and 
((B,IB;)) can be represented in a similar form. This leads to the self-consistent system of 
equations for R and I?. 

For the first iteration we put 

- ( l / n )  Im((Sl-qlS-k+q))w = (2(S' ,> /N' /2)d(W - wk-q) (60) 

in the RHS of (59) and get (cf Christoph et a1 1982) 

x mlkz_Jw') (62) 

where the first term describes the magnon-magnon inelastic scattering and the others 
account for the magnon4ectron scattering. The concrete calculations need a suitable 
assumption for the longitudinal spin susceptibility. For this one can use the Cottam 
(1977) result. 

In order to calculate the damping of the magnetic excitations in the ferromagnetic 
semiconductor it is necessary to take into account all matrix elements of the self-energy 
operator 13 = 1 n, I : 

I l l ,  = (I2/NS2$)((A1A+))':' (63) 
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Then the matrix GF R becomes 
R = [(R(O,)-l - f i ] -1  

and the spin GF gets the form 

( (Si IS:k))w = I((@; lP:k)):)-' - w, 0 ) l - l  (67) 

where Z ( k ,  w )  is given by 

C ( k ,  w )  = n,, - (Z/N1/2 det - n12) (I/Nli2 det l ? ( O )  - l7 2 )  

x [(l - Ux$' ) /Nxf  det + 1122]-1 
x Z2xtf/(l - Ux$"> det R(O). (68) 

The GF (67) contains acoustical and optical magnon excitations as well as a Stoner-like 
continuum of excitations damped by magnon-magnon, electron-electron and electron- 
magnon inelastic scattering processes. For brevity we only present the calculation of the 
acoustical magnon damping. For small k and U the linear terms in n, are essential and 
we find 

((S,+lS:,)), = (2(S3/"'2)[0 - - (2(S"/N"2) C ( k ,  w)] - '  (69) 

Then the spectral density of the spin wave excitations with wave-vector k reads 

-( l /n)  Im((S: lS:k))u 

= 2N-"*(sI,)r(k, U)/[ (U - wk - A ( k ,  W ) ) 2  + r 2 ( k ,  W ) ]  (71) 

where the expressions 

A(k, U )  = (2(SZ,)/N'/2) Re Z(k ,  U )  

and 

r(k, w )  = -(2(Sf,)/N1'2) Im Z ( k ,  w )  (73) 
describe the shift and damping of the acoustical magnons respectively. 

magnon scattering at low temperatures. We have 
Finally we shall estimate the temperature dependence of T ( k ,  w )  due to electron- 
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and expands in powers of q ,  it follows that 

The other contributions to Z ( k ,  U )  can be treated in the same manner. So the electron- 
magnon low-temperature dependence of T ( k ,  U )  is 

r ( k ,  - rl T 

where rl + 0 in the limit k ,  o + 0. 
(77) 

7. Conclusions 
The Hamiltonian of the s-f model, as given in the text, is the simplest theoretical model 
for studying magnetically ordered semiconductors. In this paper we use the IGF method 
as a unified and self-consistent formalism for the full description of the electronic and 
magnetic spectra of wide-band semiconductors including electron-magnon, electron- 
electron and magnon-magnon scattering processes. The importance of the results pre- 
sented is certainly not in the application to any concrete substance-their interest is of 
amore fundamental nature. They contain a complete picture of the quasiparticle inelastic 
scattering in systems with many-branch spectra of excitations and can be applied to other 
models. Let us point out also that the s-f model with an additional Hubbard interaction 
term can be useful for some transition and rare-earth metals and their compounds (cf 
Christoph er a1 1982). The formalism developed in this paper can be extended to 
antiferromagnetic semiconductors and applied to the magnetic polaron problem. 

Appendix 

where the unknown constant ako is defined by the condition 

gko(W)  d o  = 1. 

Then within this approximation for the average electron occupation numbers we get 
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As follows from equation ( A 3 ) ,  they are determined in a self-consistent way. The first 
term in the RHS describes the effects of renormalising the particle energies and the 
subsequent terms account for the particle scattering by the fluctuations of the magnetic 
moment in the second order of I and explicitly include the damping of the electronic 
states. Equation (Al) conserves the first four moments in the second order of I and in 
the low-concentration limit we have 

where 

Ki"." = (2(S',)/N1"')  do^ + v ( w , ) )  (S') = N - q S ' , )  

1 
D o  = - 

D2 = S 2  - (SZ)' 

(K f '  + Ki0.,). 
N 4  

DIU = S - z,(S') R,  = ((s')2) 
Thus the first four moments calculated with the spectral density (A l )  coincide with the 
exact moments in the second order of Z in the low-concentration limit. 
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