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A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general statistical-mechan-
ical way. The method of the nonequilibrium statistical operator (NSO)
developed by Zubarev is employed to analyze a relaxation dynamics of a
spin subsystem. Perturbation of this subsystem in solids may produce a
nonequilibrium state which is then relaxed to an equilibrium state due to
the interaction between the particles or with a thermal bath (lattice). The
generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxa-
tion processes. In this paper, these results are used to describe the relaxa-
tion and diffusion of nuclear spins in solids. The aim is to formulate a suc-
cessive and coherent microscopic description of the nuclear magnetic relaxa-
tion and diffusion in solids. The nuclear spin–lattice relaxation is considered
and the Gorter relation is derived. As an example, a theory of spin diffusion
of the nuclear magnetic moment in dilute alloys (like Cu–Mn) is developed.
It is shown that due to the dipolar interaction between host nuclear spins
and impurity spins, a nonuniform distribution in the host nuclear spin system
will occur and consequently the macroscopic relaxation time will be strongly
determined by the spin diffusion. The explicit expressions for the relaxation
time in certain physically relevant cases are given.

KEY WORDS: Transport processes; nonequilibrium statistical operator;
kinetic equation; spin temperature; nuclear spin relaxation and diffusion;
dilute alloys.

1. INTRODUCTION

For many years there has been considerable interest, experimental
and theoretical, in relaxation processes occurring in various spin systems,
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especially the nuclear spin systems in solids and liquids.1–38 In ordinary spin
resonance experiments, spins are subject to an applied magnetic field h0 and
make a precessional motion around it. Local fields produced by interactions
of the spins with their environments act as relatively weak perturbations to
the unperturbed precessional motion. In quantum-mechanical language, the
external field gives rise to the Zeeman levels for each spin and the interac-
tions are perturbations to these quantum states. In a nuclear-magnetic reso-
nance (NMR) experiment, the nuclear spin system absorbs energy from the
externally applied radio-frequency field and transfers it to the thermal bath
or reservoir provided by the lattice through the spin lattice interaction. The
coupled nuclear spins in a solid with very slow spin–lattice relaxation time T1
comprise a quasi-isolated system which for many purposes can be treated
by thermodynamic methods. The spin–spin relaxation time is denoted by
T2. The other system, called the lattice, contains all other degrees of free-
dom, phonons, translational motion of conduction electrons, etc. It is at a
temperature T that it is considered stable. A macroscopic approach to the
description of magnetic relaxation was proposed by Bloch.3 He proposed
a phenomenological equation describing the motion of nuclear-spin system
subjected to both a static and a time varying magnetic field

d �M
dt

=γ �M× �h−Mx

T2
�i−My

T2
�j +M0 −Mz

T1
�k,

where the external field �h is taken to be of the form �h=h0�k+2h1(t)cosωt�i.
This equation successfully describes a wide variety of magnetic resonance
experiments, although to obtain a valid description of low-frequency phe-
nomena, it is necessary to modify the original equation so that relaxation
takes place toward the instantaneous magnetic field. In an NMR experi-
ment, the absorption of energy from the applied rf field produces either
an increase in the energy of the spin system or a transfer of energy from
the spin system to the lattice. The latter process requires a time interval
of the order of spin–lattice relaxation time T1. The characteristic time T2
determines the relaxation of the transversal spin components due to the
spin–spin interactions.

The relaxation processes in spin systems have been investigated by a num-
ber of authors8,14,20–23,25–28,33,37 to obtain qualitative and quantitative infor-
mation about irreversible spin–spin and spin-lattice processes in spin systems.
The method of many of these papers was to develop an equation of motion
for the reduced density matrix12,13,16,17 describing the spin system, and was
found to be most useful when the perturbation responsible for the relaxation
of the spin system had a very short correlation time. In the equation-of-motion
approach, the specification of the initial conditions involves the assumption of
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some explicit form for the density matrix describing the system (the system
includes both the spin and its surroundings, which in the case studied below
will be the conduction electrons in a metal). This problem is very attractive from
the point of view of irreversible statistical mechanics since a general model of
magnetic resonance consists of a driven system of interest in interaction with a
heat bath. Stenholm and ter Haar18 have analyzed the basic assumptions which
are necessary for statistical-mechanical derivation of the Bloch equation and
the role of the thermal bath.

An important concept in the interpretation of spin-lattice relaxation phe-
nomena was provided by the thermodynamic theory of Ref. 1. They consid-
ered the magnetic crystal to be composed of two subsystems, which could be
assigned two different temperatures. One subsystem contained the magnetic
degrees of freedom. The other subsystem, called the lattice, contains all other
degrees of freedom. Then, the idea of spin temperature was extended and sev-
eral distinct temperatures for magnetic subsystems (Zeeman, dipole–dipole,
etc.) were introduced.32 (Note, however, some special exclusions.39) In gen-
eral, the state of the total system to be composed of a few subsystems may be
described approximately by a density matrix of the form

ρ∼ exp[−(H1/kT1)− (H2/kT2)− (H3/kT3) . . . ]

with a number of quasi-invariant energiesT r(Hi) and a number of distribution
parameters T −1

i . Nuclear relaxation in weak applied fields was first treated by
Redfield9 and Hebel and Slichter,10 using the idea of spin temperature. Redfield
theory is the semiclassical density operator theory of spin relaxation.

It was Bloembergen5 who first formulated that the magnetization of
spins in a rigid lattice could be spatially transported by means of the mutual
flipping of neighboring spins due to dipole–dipole interaction. This idea
permitted one to explain the significant influence of a small concentration
of paramagnetic impurities on spin–lattice relaxation in ionic crystals. He
used a quantum-mechanical treatment ( first-order perturbation theory) and
showed that the transport equation for magnetization was a diffusion equa-
tion. In this simple approximation he calculated the diffusion constant D.
In other words, we can roughly represent the relaxation dynamics as

∂〈I z(�r)〉
∂t

= −A(�r)[〈I z(�r)〉−〈I z(�r)〉0]+D(�r)∇2〈I z(�r)〉 (1)

∂〈I z(�r)〉
∂t

= −〈I z(�r)〉−〈I z(�r)〉0

T1
1
T1

∝ 1

T SL1

+ 1

T D1

,

where I z is the z-component of the nuclear spin operator.
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Since then, many authors have formulated the general theory of the spin
relaxation processes in solids from the standpoint of statistical mechanics or
irreversible thermodynamics. An improvement in the general formulation of
the theory was achieved by Kubo and Tomita6 in their treatment of magnetic
resonance absorption via a linear theory of irreversible processes. In this the-
ory the important quantities are frequency-dependent susceptibilities, which
are expressed in terms of spin correlation functions. Buishvili40 developed a
quantum-statistical theory of the dynamic polarization of nuclei by taking
into account diffusion of nuclear spins as well as dipole interaction of elec-
tron spins. Buishvili and Zubarev23 developed a successive theory of spin
diffusion in crystals. The nuclear diffusion in diamagnetic solids with para-
magnetic impurities was analyzed by the method of the statistical operator
for nonequilibrium systems. The Bloembergen equation,5 whose coefficients
are explicitly expressed through certain correlation functions, was obtained.
The theory of nuclear spin diffusion in the ferromagnets of certain type was
considered in Ref. 41. The theory of the dynamic polarization of nuclei and
nuclear relaxation for the case of strong saturation was analyzed in Ref. 42.
The influence of a strong NMR saturation on spin diffusion was consid-
ered in Ref. 43. The time of spin–lattice relaxation was calculated for nuclei
when spin diffusion was taken into account under conditions of a strong
NMR saturation. The influence of exchange interactions between nuclear
spins on the dynamic polarization of nuclei was considered in Ref. 44.
Borckmans and Walgraef45 formulated a theory of Zeeman and dipolar
energy diffusion in paramagnetic spin systems in the frame the general the-
ory of irreversible processes developed by Prigogine and co-workers. Buish-
vili and Giorgadze46 investigated general theory of spin diffusion within the
nonequilibrium statistical operator (NSO) approach. A consistent quantum
statistical investigation of saturation of a nonuniformly broadened EPR line
was carried out in Ref. 47 by taking into account spectral diffusion and the
dipole–dipole reservoir. Role of the flip–flip and flip–flop transitions for the
dynamic polarization of nuclei was analyzed in Ref. 48. The theory of spin–
lattice relaxation in crystals with paramagnetic impurities was discussed in
paper of Ref. 49. The analysis of the role of the interaction between a few
subsystems for the construction of the nonequilibrium density matrix was
discussed from a general point of view by Buishvili and Zviadadze.50 The
application of the NSO method to the case of relaxation in dilute alloys has
been considered by Fazleev.51,52 The influence of relation between thermal
capacities of nuclear spin subsystem and the reservoir of electron spin–spin
interaction on spin kinetics, especially in the low-temperature case when the
spin polarization of subsystems are high enough was analyzed in detail by
Tayurskii53 for the case of insulators.
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Robertson27 derived an equation of motion for the total magnetic
moment of a system containing a single species of nuclear spins in an
arbitrarily time-dependent external magnetic field. He derived a general-
ization of Bloch’s phenomenological equation for a magnetic resonance.
In papers,21,22 the general quantum-statistical-mechanical approach to the
problem of spin resonance and relaxation, which utilized a projection
operator technique was developed. From the Liouville equation for the
combined system of the spin subsystem and the thermal bath a nonMar-
koffian equation for the time development of the statistical density oper-
ator for the spin system alone was derived. The memory effects were
taken into account in the application of the method of the statistical
operator for nonequilibrium systems to magnetic relaxation problem by
Nigmatullin and Tayurskii.54 Romero-Ronchin et al.55 used a projection
operator technique for derivation of the Redfield equations.8 In their
paper,55 the relaxation properties of a spin system weakly coupled to lat-
tice degrees of freedom were described using an equation of motion for
the spin density matrix. This equation was derived using a general weak
coupling theory, which was previously developed. To second-order in the
weak coupling parameter, the results are in agreement with those obtained
by Bloch, Wangsness and Redfield, but the derivation does not make use
of second-order perturbation theory for short times. The authors claim
that the derivation can be extended beyond second-order and ensures that
the spin density matrix relaxes to its exact equilibrium form to the appro-
priate order in the weak coupling parameter.

In this work, we present a complementary theory which examines the
relaxation dynamics of a spin system in the approach of the NSO. It uses
a general formalizm from a previous study for a system that is in con-
tact with a thermal bath (a “lattice”) and relax to the equilibrium state.
The aim of this paper is to show how the general theory of irreversible
processes allows a theoretical study of such phenomena without postu-
lated equations of phenomenological assumptions. One of our purposes in
this paper is to present a unified statistical mechanical treatment of spin
relaxation and spin diffusion phenomena. The transport of nuclear spin
energy in a lattice of paramagnetic spins with magnetic dipolar interac-
tion plays an important role in many relaxation processes. In this paper
the microscopic derivation of an expression for the longitudinal relaxation
time of bulk metal nuclear spins by dilute local moments is performed
taking into account spin diffusion processes within the NSO statistical
operator approach.

In the next section, we establish the notation and briefly present the main
ideas of the NSO approach. This section includes a short summary of the der-
ivation of the generalized kinetic and rate equations with the NSO method.
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Sec. 2 serves as an extended introduction to the present paper. In Sec. 3, the
dynamics of the nuclear spin system is analyzed. We consider the application
of the established equations to the derivation of the relaxation equations for
spin systems. Special attention is given to the problem of spin relaxation and
diffusion in Sec. 4. The case of nuclear spin diffusion in dilute magnetic alloys is
discussed in some detail in Sec. 4.2. The final Section contains some concluding
remarks concerning the results obtained.

2. BASIC NOTIONS

The statistical mechanics of irreversible processes in solids, liquids,
and complex materials like a soft matter are at the present time of much
interest.56–59 The central problem of nonequilibrium statistical mechanics
is to derive a set of equations, which describe irreversible processes from
the reversible equations of motion.57,59 The consistent calculation of
transport coefficients is of particular interest because one can get infor-
mation on the microscopic structure of the condensed matter. During the
last decades, a number of schemes have been concerned with a more gen-
eral and consistent approach to transport theory.57,60–62 These approaches,
each in its own way, lead us to substantial advances in the understand-
ing of the nonequilibrium behavior of many-particle classical and quantum
systems. This field is very active and there are many aspects to the prob-
lem.63 Our purpose here is to discuss the derivation, within the formalism
of the NSO,60 of the generalized transport and kinetic equations. On this
basis we have derived, by statistical mechanics methods, the kinetic equa-
tions for a system weakly coupled to a thermal bath.64 Our motivation for
presenting this alternative derivation is based on the conviction that the
NSO method provides some advantages in displaying the physics of the
relaxation processes.

2.1. Outline of the Nonequilibrium Statistical Operator Method

In this section, we briefly recapitulate the main ideas of the NSO
approach60,64 for the sake of a self-contained formulation. The precise
definition of the nonequilibrium state is quite difficult and complicated,
and is not uniquely specified. Since it is virtually impossible and imprac-
tical to try to describe in detail the state of a complex macroscopic sys-
tem in the nonequilibrium state, the method of reducing the number of
relevant variables was widely used. A large and important class of trans-
port processes can reasonably be modeled in terms of a reduced num-
ber of macroscopic relevant variables. There are different time scales and
different sets of the relevant variables,65,66 e.g. hydrodynamic, kinetic,
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etc. The most satisfactory and workable approach to the construction of
Gibbs-type ensembles for the nonequilibrium systems, as it appears to the
writer, is the method of NSO developed by Zubarev.60 The NSO method
permits one to generalize the Gibbs ensemble method to the nonequilib-
rium case and construct a NSO, which enables one to obtain the trans-
port equations and calculate the kinetic coefficients in terms of correlation
functions, and which, in the case of equilibrium, goes over to the Gibbs
distribution. Although this method is well known, we shall briefly recall
it, mostly in order to introduce the notation needed in the following.

The NSO method sets out as follows. The irreversible processes, which
can be considered as a reaction of a system on mechanical perturbations can
be analyzed by means of the method of linear reaction on the external per-
turbation.59 However, there is also a class of irreversible processes induced by
thermal perturbations due to the internal inhomogeneity of a system. Among
them we have, e.g., diffusion, thermal conductivity, and viscosity. In certain
approximate schemes it is possible to express such processes by mechanical
perturbations which artificially induce similar nonequilibrium processes. How-
ever, the fact is that the division of perturbations into mechanical and thermal
ones is reasonable in the linear approximation only. In the higher approxima-
tions in the perturbation, mechanical perturbations can effectively lead to the
appearance of thermal perturbations.

The NSO method permits one to formulate a workable scheme for
description of the statistical mechanics of irreversible processes, which
include the thermal perturbation in a unified and coherent fashion. To
perform this, it is necessary to construct statistical ensembles representing
the macroscopic conditions determining the system. Such a formulation is
quite reasonable if we consider our system for a suitable large time. For
these large times the particular properties of the initial state of the system
are irrelevant and the relevant number of variables necessary for descrip-
tion of the system reduces substantially.65

The basic hypothesis is that after small time-interval τ the nonequilib-
rium distribution is established. Moreover, it is supposed that it is weakly
time-dependent by means of its parameter only. Then the statistical oper-
ator ρ for t�τ can be considered as an “integral of motion” of the quan-
tum Liouville equation

∂ρ

∂t
+ 1
i–h

[ρ,H ]=0. (2)

Here ∂ρ/∂t denotes time differentiation with respect to the time variable
on which the relevant parameters Fm depend. It is important to note once
again that ρ depends on t by means of Fm(t) only. We may consider that
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the system is in thermal, material, and mechanical contact with a com-
bination of thermal baths and reservoirs maintaining the given distribu-
tion of parameters Fm. For example, it can be the densities of energy,
momentum, and particle number for the system which is macroscopically
defined by given fields of temperature, chemical potential, and velocity. It
is assumed that the chosen set of parameters is sufficient to characterize
macroscopically the state of the system. The set of the relevant parame-
ters are dictated by the external conditions for the system under consider-
ation and, therefore, the term ∂ρ/∂t appears as the result of the external
influence upon the system. Due to this influence precisely, the behavior of
the system is nonstationary. In order to describe the nonequilibrium pro-
cess, it is necessary also to choose the reduced set of relevant operators
Pm, where m is the index (continuous or discrete). In the quantum case,
all operators are considered to be in the Heisenberg representation

Pm(t)= exp
(
iH t

–h

)
Pm exp

(−iH t
–h

)
, (3)

where H does not depend on the time. The relevant operators may be sca-
lars or vectors. The equations of motions for Pm will lead to the suitable
“evolution equations”.60 In the quantum case

∂Pm(t)

∂t
− 1
i–h

[Pm(t),H ]=0. (4)

The time argument of the operator Pm(t) denotes the Heisenberg repre-
sentation with the Hamiltonian H independent of time. Then, we suppose
that the state of the ensemble is described by a NSO, which is a functional
of Pm(t)

ρ(t)=ρ{. . . Pm(t) . . . }. (5)

Then ρ(t) satisfies the Liouville equation (2). Hence the quasi-equilibrium
(“local-equilibrium”) Gibbs-type distribution will have the form

ρq =Q−1
q exp

(
−
∑
m

Fm(t)Pm

)
, (6)

where the parameters Fm(t) have the meaning of time-dependent thermo-
dynamic parameters, e.g., of temperature, chemical potential, and velocity
(for the hydrodynamic stage), or the occupation numbers of one-particle
states (for the kinetic stage). The statistical functional Qq is defined by
demanding that the operator ρq be normalized and equal to

Qq =T r exp

(
−
∑
m

Fm(t)Pm

)
. (7)
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This description is still very simplified. There are various effects, which can
make the picture more complicated. The quasi-equilibrium distribution is
not necessarily close to the stationary stable state. There exists another,
completely independent method for choosing a suitable quasi-equilibrium
distribution.56,57,61,67 For the state with the extremal value of the informa-
tional entropy57,61

S=−T r(ρ lnρ), (8)

provided that

T r(ρPm)=〈Pm〉q, T rρ=1 (9)

it is possible to construct a suitable quasi-equilibrium ensemble. Then the
corresponding quasi-equilibrium (or local equilibrium ) distribution has
the form

ρq = exp

(
�−

∑
m

Fm(t)Pm

)
≡ exp(−S(t,0)),

�= lnT r exp

(
−
∑
m

Fm(t)Pm

)
,

(10)

where S(t,0) can be called the entropy operator. The form of the quasi-
equilibrium statistical operator was constructed so as to ensure that the
thermodynamic equalities for the relevant parameters Fm(t)

δ lnQq

δFm(t)
= δ�

δFm(t)
=−〈Pm〉q, δS

δ〈Pm〉q =Fm(t) (11)

are satisfied. It is clear that the variables Fm(t) and 〈Pm〉q are thermody-
namically conjugate. Here the notation used is 〈. . . 〉q =T r(ρq . . . ).

By definition a special set of operators should be constructed which
depends on the time through the parameters Fm(t) by taking the invari-
ant part of the operators Fm(t)Pm occurring in the logarithm of the
quasi-equilibrium distribution, i.e.,

Bm(t) = Fm(t)Pm= ε
∫ 0

−∞
eεt1Fm(t+ t1)Pm(t1)dt1

= Fm(t)Pm−
∫ 0

−∞
dt1e

εt1
(
Fm(t+ t1)Ṗm(t1)

+Ḟm(t+ t1)Pm(t1)
)
, (12)

where (ε→0) and

Ṗm= 1
i–h

[Pm,H ], Ḟm(t)= dFm(t)

dt
.
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The parameter ε>0 will be set equal to zero, but only after the thermody-
namic limit has been taken. Thus, the invariant part is taken with respect
to the motion with Hamiltonian H . The operation of taking the invari-
ant part, of smoothing the oscillating terms, is used in the formal theory
of scattering68 to set the boundary conditions, which exclude the advanced
solutions of the Schrodinger equation. The Pm(t) will be called the inte-
grals (or quasi-integrals) of motion, although they are conserved only in
the limit (ε→0). It is clear that for the Schrodinger equation such a pro-
cedure excludes the advanced solutions by choosing the initial conditions.
In the present context this procedure leads to the selection of the retarded
solutions of the Liouville equation.
It should be noted that the same calculations can also be made with a
deeper concept, the methods of quasi-averages.60,69

∂ lnρε
∂t

+ 1
i–h

[lnρε,H ]=−ε(lnρε− lnρq), (13)

where (ε→0) after the thermodynamic limit. The required NSO is defined as

ρε=ρε(t,0)=ρq(t,0)= ε
∫ 0

−∞
dt1e

εt1ρq(t+ t1, t1). (14)

Hence the NSO can then be written in the form

ρ = Q−1 exp

(
−
∑
m

Bm

)

= Q−1 exp
{

−
∑
m

Fm(t)Pm+
∑
m

∫ 0

−∞
dt1e

εt1 [Ḟm(t+ t1)Pm(t1)

+ Fm(t+ t1)Ṗm(t1)]
}
. (15)

Now we can rewrite the NSO in the following useful form:

ρ(t,0) = exp

(
−ε

∫ 0

−∞
dt1e

εt1 lnρq(t+ t1, t1)
)

= exp
(
lnρq(t,0)

)≡ exp (−S(t,0)). (16)

The average value of any dynamic variable A is given by

〈A〉= lim
ε→0+

T r(ρ(t,0)A) (17)
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and is, in fact, the quasi-average. The normalization of the quasi-equilib-
rium distribution ρq will persists after taking the invariant part if the fol-
lowing conditions are required

T r(ρ(t,0)Pm)=〈Pm〉=〈Pm〉q, T rρ=1. (18)

Before closing this section, we shall mention some modification of the
“canonical” NSO method which was proposed in Ref. 67 and which one
has to take into account in a more accurate treatment of transport pro-
cesses.

2.2. Transport and Kinetic Equations

It is well known that the kinetic equations are of great interest in the
theory of transport processes. Indeed, as it was shown in the preceding
section, the main quantities involved are the following thermodynamically
conjugate values:

〈Pm〉=− δ�

δFm(t)
, Fm(t)= δS

δ〈Pm〉 . (19)

The generalized transport equations, which describe the time evolution of
variables 〈Pm〉 and Fm follow from the equation of motion for the Pm,
averaged with the NSO (16). It reads

〈Ṗm〉=−
∑
n

δ2�

δFm(t)δFn(t)
Ḟn(t), Ḟm(t)=

∑
n

δ2S

δ〈Pm〉δ〈Pn〉 〈Ṗn〉. (20)

The entropy production has the form

Ṡ(t)=〈Ṡ(t,0)〉=−
∑
m

〈Ṗm〉Fm(t)=−
∑
n,m

δ2�

δFm(t)δFn(t)
Ḟn(t)Fm(t). (21)

These equations are the mutually conjugate and with Eq. (19) form a
complete system of equations for the calculation of values 〈Pm〉 and Fm.

2.3. System in Thermal Bath: Generalized Kinetic Equations

In paper,64 we derived the generalized kinetic equations for the sys-
tem weakly coupled to a thermal bath. Examples of such systems can be
an atomic (or molecular) system interacting with the electromagnetic field
it generates as with a thermal bath, a system of nuclear or electronic spins
interacting with the lattice, etc. The aim was to describe the relaxation
processes in two weakly interacting subsystems, one of which is in the
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nonequilibrium state and the other is considered as a thermal bath. The
concept of thermal bath or heat reservoir, i.e., a system that has effectively
an infinite number of degrees of freedom, was not formulated precisely. A
standard definition of the thermal bath is a heat reservoir defining a tem-
perature of the system environment. From a mathematical point of view,66

a heat bath is something that gives a stochastic influence on the system
under consideration. In this sense, the generalized master equation70 is a
tool for extracting the dynamics of a subsystem of a larger system by the
use of a special projection techniques71 or special expansion technique.72

The problem of a small system weakly interacting with a heat reservoir
has various aspects. Basic to the derivation of a transport equation for a
small system weakly interacting with a heat bath is a proper introduction
of model assumptions. We are interested here in the problem of deriva-
tion of the kinetic equations for a certain set of average values (occupa-
tion numbers, spins, etc.), which characterize the nonequilibrium state of
the system.

The Hamiltonian of the total system is taken in the following form:

H =H1 +H2 +V, (22)

where

H1 =
∑
α

Eαa
†
αaα, V =

∑
α,β

�αβa
†
αaβ, �αβ =�†

βα. (23)

Here H1 is the Hamiltonian of the small subsystem, and a
†
α and aα are

the creation and annihilation second quantized operators of quasiparti-
cles in the small subsystem with energies Eα, V is the operator of the
interaction between the small subsystem and the thermal bath, and H2 the
Hamiltonian of the thermal bath which we do not write explicitly. The
quantities �αβ are the operators acting on the thermal bath variables.

We assume that the state of this system is determined completely by
the set of averages 〈Pαβ〉 = 〈a†

αaβ〉 and the state of the thermal bath by
〈H2〉, where 〈. . . 〉 denotes the statistical average with the NSO, which will
be defined below.

We take the quasi-equilibrium statistical operator ρq in the form

ρq(t)= exp(−S(t,0)), S(t,0)=�(t)+
∑
αβ

PαβFαβ(t)+βH2

�= lnT r exp(−
∑
αβ

PαβFαβ(t)−βH2). (24)

Here Fαβ(t) are the thermodynamic parameters conjugated with Pαβ , and
β is the reciprocal temperature of the thermal bath. All the operators are



Statistical Theory of Spin Relaxation 225

considered in the Heisenberg representation. The NSO has the form

ρ(t)= exp(−S(t,0)), (25)

S(t,0)= ε
∫ 0

−∞
dt1e

εt1

⎛
⎝�(t+ t1)+∑

αβ

PαβFαβ(t)+βH2

⎞
⎠ . (26)

The parameters Fαβ(t) are determined from the condition 〈Pαβ〉=〈Pαβ〉q .
In the derivation of the kinetic equations we use the perturbation the-

ory in a “weakness of interaction” and assume that the equality 〈�αβ〉q=0
holds, while other terms can be added to the renormalized energy of the
subsystem. For further considerations it is convenient to rewrite ρq as

ρq =ρ1ρ2 =Q−1
q exp(−L0(t)), (27)

where

ρ1 = Q−1
1 exp

⎛
⎝−

∑
αβ

PαβFαβ(t)

⎞
⎠ ,

Q1 = T r exp

⎛
⎝−

∑
αβ

PαβFαβ(t)

⎞
⎠ , (28)

ρ2 = Q−1
2 e−βH2 , Q2 =T r exp(−βH2), (29)

Qq = Q1Q2, L0 =
∑
αβ

PαβFαβ(t)+βH2. (30)

We now turn to the derivation of the kinetic equations. The starting point
is the kinetic equations in the following implicit form:

d〈Pαβ〉
dt

= 1
i–h

〈[Pαβ,H ]〉= 1
i–h
(Eβ −Eα)〈Pαβ〉+ 1

i–h
〈[Pαβ,V ]〉. (31)

We restrict ourselves to the second-order in powers of V in calculating
the r.h.s. of (31). Finally, we obtain the kinetic equations for 〈Pαβ〉 in the
form64

d〈Pαβ〉
dt

= 1
i–h
(Eβ −Eα)〈Pαβ〉− 1

–h2

∫ 0

−∞
dt1e

εt1
〈[

[Pαβ,V ], V (t1)
]〉
q
. (32)

The last term of the right-hand side of Eq.(32) can be called the gen-
eralized “collision integral”. Thus, we can see that the collision term for
the system weakly coupled to the thermal bath has a convenient form of
the double commutator as for the generalized kinetic equations73 for the
system with small interaction. It should be emphasized that the assump-
tion about the model form of the Hamiltonian (22) is nonessential for
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the above derivation. We can start again with the Hamiltonian (22) in
which we shall not specify the explicit form of H1 and V . We assume
that the state of the nonequilibrium system is characterized completely by
some set of average values 〈Pk〉 and the state of the thermal bath by 〈H2〉.
We confine ourselves to such systems for which [H1, Pk] =

∑
l cklPl . Then

we assume that 〈V 〉q �0, where 〈. . . 〉q denotes the statistical average with
the quasi-equilibrium statistical operator of the form

ρq =Q−1
q exp

(
−
∑
k

PkFk(t)−βH2

)
(33)

and Fk(t) are the parameters conjugated with 〈Pk〉. Following the method
used above in the derivation of equation (32), we can obtain the general-
ized kinetic equations for 〈Pk〉 with an accuracy up to terms, which are
quadratic in interaction

d〈Pk〉
dt

= i
–h

∑
l

ckl〈Pl〉− 1
–h2

∫ 0

−∞
dt1e

εt1〈[[Pk,V ], V (t1)]〉q . (34)

Hence (32) is fulfilled for the general form of the Hamiltonian of a small
system weakly coupled to a thermal bath.

2.4. System in Thermal Bath: Rate and Master Equations

In Sec. 2.3, we have described the kinetic equations for 〈Pαβ〉 in the
general form. Let us write down Eq. (32) in an explicit form. We rewrite
the kinetic equations for 〈Pαβ〉 as

d〈Pαβ〉
dt

= 1
i–h
(Eβ−Eα)〈Pαβ〉−

∑
ν

(
Kβν〈Pαν〉+K†

αν〈Pνβ〉
)

+
∑
μν

Kαβ,μν〈Pμν〉.

(35)

The following notation were used

1
i–h

∑
μ

∫ 0

−∞
dt1e

εt1〈�βμφμν(t1)〉q

= 1
2π

∑
μ

∫ +∞

−∞
dω

Jμν,βμ(ω)
–hω−Eγ −Eδ + iε =Kβν, (36)

1
i–h

∫ 0

−∞
dt1e

εt1(〈�μαφβν(t1)〉q +〈φμα(t1)�βν〉q)
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= 1
2π

∫ +∞

−∞
dωJβν,μα(ω)

(
1

–hω−Eβ +Eν + iε − 1
–hω−Eα −Eμ− iε

)

=Kαβ,μν.

Let us now remind60 that the correlation functions 〈AB(t)〉 and
〈A(t)B〉 can be expressed via their spectral weight function (or spectral
intensity) J (ω)

FAB(t− t ′)=〈A(t)B(t ′)〉= 1
2π

∫ +∞

−∞
dω, exp[iω(t− t ′)]JAB(ω), (37)

FBA(t
′ − t)=〈B(t ′)A(t)〉= 1

2π

∫ +∞

−∞
dω exp[iω(t ′ − t)]JBA(ω). (38)

The correlation functions 〈�βμφμν(t1)〉q and 〈φνμ(t1)�μα〉q are connected
with their spectral intensities in the following way:

〈�μνφγ δ(t)〉q = 1
2π

∫ +∞

−∞
dωJγ δ,μν(ω) exp

[
−i
(
ω− Eγ −Eδ

–h

)
t

]
, (39)

〈φμν(t)�γ δ〉q = 1
2π

∫ +∞

−∞
dωJγ δ,μν(ω) exp

[
i

(
ω+ Eμ−Eν

–h

)
t

]
. (40)

The above result is similar in structure to the Redfield equation for the
spin density matrix8 when the external time-dependent field is absent.
Indeed, the Redfield equation of motion for the spin density matrix has
the form8

∂ραα
′

∂t
=−iωαα′ραα

′ +
∑
ββ ′

Rαα′ββ ′ρββ
′
.

Here ραα
′

is the α,α′ matrix element of the spin density matrix, ωαα′ =
(Eα − Eα′)–h, where Eα is energy of the spin state α and Rαα′ββ ′ρββ

′
is

the “relaxation matrix”. A sophisticated analysis and derivation of the
Redfield equation for the density of a spin system immersed in a thermal
bath was given in Ref. 74. A brief discussion of the derivation of the Red-
field-type equations in an external field is given in Appendix A.

Returning to Eq.(35), it is easy to see that if one confines himself to
the diagonal averages 〈Pαα〉 only, this equation may be transformed to give
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d〈Pαα〉
dt

=
∑
ν

Kαα,νν〈Pνν〉−
(
Kαα +K†

αα

)
〈Pαα〉, (41)

Kαα,ββ = 1
–h2
Jαβ,βα

(
Eα −Eβ

–h

)
=Wβ→α, (42)

Kαα +K†
αα = 1

–h2

∑
β

Jβα,αβ

(
Eβ −Eα

–h

)
=Wα→β. (43)

Here Wβ→α and Wα→β are the transition probabilities expressed in the
spectral intensity terms. Using the properties of the spectral intensities,60

it is possible to verify that the transition probabilities satisfy the relation
of the detailed balance

Wβ→α

Wα→β

= exp(−βEα)
exp(−βEβ) . (44)

Finally, we have

d〈Pαα〉
dt

=
∑
ν

Wν→α〈Pνν〉−
∑
ν

Wα→ν〈Pαα〉. (45)

This equation has the usual form of the Pauli master equation.
It is well known that “the master equation is an ordinary differen-

tial equation describing the reduced evolution of the system obtained from
the full Heisenberg evolution by taking the partial expectation with respect
to the vacuum state of the reservoirs degrees of freedom”. The rigorous
mathematical derivation of the generalized master equation70–72 is rather
a complicated mathematical problem.

3. DYNAMICS OF NUCLEAR SPIN SYSTEM

In NMR one has a system of nuclei with magnetic moment �μ and
spins �I , which are placed in a magnetic field h0. The magnetic moment
�μ and momentum of nuclei �J = –h �I are related as �μ= γn �J = γn–h �I = gnη �I ,
where γn is the gyromagnetic nuclear factor, gn is the nuclear spectroscopic
factor, and η = e–h/2Mc is the nuclear magneton. If the spins are other-
wise independent, their interaction with the imposed field produces a set
of degenerate energy levels, which for a system of N spins are (2I + 1)N

in number with the energy spacing –hωn =μh0/I . It should be noted that
the method of NMR is most powerful and useful in diamagnetic materials.
Metals may be studied, although there are some technical specific prob-
lems.

In a NMR experiment, the nuclear spin system absorbs energy from
the externally applied radio–frequency field and transfers it to the ther-
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mal bath or reservoir provided by the lattice through the spin-lattice inter-
actions. The latter process requires a time interval of the order of the
spin-lattice relaxation time T1. The term “lattice” is used here to denote
the equilibrium heat reservoir with temperature T associated with all
degrees of freedom of the system other than those associated with the
nuclear spins.

A great advantage of magnetic resonance method is that the nuclear
spin system is only very weakly coupled to the other degrees of free-
dom of the complex system in which it resides and its thermal capacity is
extremely small. It is, therefore, possible to cause the nuclear spin system
itself to depart severely from thermal equilibrium while leaving the rest of
the material essentially in thermal equilibrium. As a consequence, the dis-
turbance of the system other than the nuclear spins could be ignored.

If the nuclei are in thermodynamic equilibrium with the material at
temperature T in a field h0, a nuclear paramagnetic moment M0 is pro-
duced in the direction of h0 given by the Curie formula M0/h0 =nμ2/3kT ,
n is the number of nuclei per unit volume.

We can evidently disturb the system from equilibrium by applying
radiation from outside with quanta of size –hωn and with suitable polar-
ization. If the equilibrium distribution is disturbed and the population
changed, the magnetization in the z-direction, Mz, is different from M0,
say Mh

z . If then left alone, Mz reverts to M0 and usually does so exponen-
tially with time, i.e.

Mz(t)=M0 − (M0 −Mh
z ) exp

{
− t

T1

}
.

The last expression serves to define the spin–lattice relaxation time, T1,
and is so called because the process involves exchange of magnetic orienta-
tion energy with thermal energy of other degrees of freedom (known con-
ventionally as a lattice). All the interactions with the nucleus may contrib-
ute to the relaxation process so we must add all contributions to 1/T1

1
T1

∝ 1
T1α

+ 1
T1β

+ 1
T1γ

+ . . . ,

where various contributions to relaxation due to various interactions have
been added. The relaxation rates may be dominated by one or more differ-
ent physical interactions, so that the observable power spectrum may be
the Fourier transform of functions involving dipole–dipole correlations,
electric field gradient-nuclear quadrupole moment correlations, etc.

The dipole–dipole interaction Hamiltonian Hdd between the magnetic
moments of nuclei may contribute significantly to the nuclear magnetic
relaxation process.75 Consider an explicit interaction between the moments
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�μ1 and �μ2, which are distant by �r12, from each other. Then the interaction
is written as

Hdd = �μ1 �μ2

r3
12

− 3( �μ1�r12)( �μ2�r12)

r5
12

(46)

= −
√

4π
5

1

r3
12

[2μz1μ
z
2Y2,0 − (μ+

1 μ
−
2 +μ−

1 μ
+
2 )Y2,0

+
√

3(μ+
1 μ

z
2 +μz1μ+

2 )Y2,−1 +
√

3(μ−
1 μ

z
2 +μz1μ−

2 )Y2,1

+
√

6μ+
1 μ

+
2 Y2,−2 +

√
6μ−

1 μ
−
2 Y2,2],

where μ± = (μx ±μy)/√2 and Y2,m denote the normalized spherical har-
monics of the second degree expressed in the form

Y2,±2 =
√

15
32π

sin2 θ12 exp(±2iφ), Y2,±1 =
√

15
8π

sin θ12 cos θ12 exp(±iφ);

Y2,0 =
√

5
16π

(3 cos2 θ12 −1).

The dipole–dipole coupling provides the dissipation mechanisms in the
spin system. It acts as time dependent perturbations on the Zeeman
energy levels, which results in the relaxation of the nuclear magnetization.

Thus, such a spin system can be described as a superposition of a
number of subsystems. They are the Zeeman subsystem for each spin spe-
cies and the dipole–dipole subsystem. A weak applied rf field can be con-
sidered as an additional subsystem. The coupling inside each subsystem
is strong, whereas the coupling between subsystems is weak. As a conse-
quence, the subsystems reach internal thermal equilibrium independently
of each other and one can ascribe a temperature, an energy, an entropy,
etc., to each of them. Let us note that the usual prediction of statistical
mechanics that the temperatures of interacting subsystems become equal
in equilibrium is a direct consequence of the conjecture that the total
energy is the only analytic constant of the motion.

3.1. The Hierarchy of Time Scales

A case of considerable practical interest in connection with the phe-
nomenon of resonance and relaxation is that of the hierarchy of time
scales. In the standard situations the interaction between nuclear spins is
weak as well as the interaction with the lattice is weak. As a result, in
the NMR case the thermal bath variables change on the fast time scale
characterized by tLc while the spin variables change on the slow time scale
characterized by τsr. First of all, consider the most important concept of
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spin temperature.32 Actually, spin systems are never completely isolated
and the concept of spin temperature is meaningful only if the rate τ−1

0
of achievement of internal equilibrium is much faster than the spin–lattice
relaxation rate T −1

1 . For time intermediate between τ0 and τsr, the spin
temperature exists and can be different from the lattice temperature T .
The necessary condition for the applicability of spin temperature concept
is then inequality τ0 ∼T2 �T1.

Characteristic times are long in comparison with the time of achieve-
ment of internal equilibrium in the lattice tLc but short compared to
spin relaxation times tLc<t <τsr. In this case, the second-order perturba-
tion theory is valid in the weak spin–lattice coupling parameter. Usually,
it is assumed that the time tLc is very short and τ0 � tLc. The restric-
tion of ordinary perturbation theory generally applied is that it is valid
when within the time interval considered the density matrix cannot change
substantially. Argyres and Kelley22 removed the restriction tLc < τsr and
derived an equation of motion for the spin density that depends on the
history of the system.74

One of the essential virtues of the NSO method is that it focuses
attention, at the outset, on the existence of different time scales. Suppose
that the Hamiltonian of the spin system can be divided as H =H0 + V ,
where H0 is the dominant part, and V is a weak perturbation. The sepa-
ration of the Hamiltonian into H0 and V is not unique and depends on
the physical properties of the system under consideration. The choice of
the operator H0 determines a short time scale τ0. This choice is such that
for times t � τ0 the nonequilibrium state of the system can be described
with a reasonable accuracy by the average values of some finite set of the
operators Pm (3).

After the short time τ0, it is supposed that the system can achieve
the state of an incomplete or quasi-equilibrium state. The main assump-
tion about the quasi-equilibrium state is that it is determined completely
by the quasi-integrals of motion which are the internal parameters of the
system. The characteristic relaxation time of these internal parameters is
much longer than τ0. Clearly then, that even if these quasi-integrals at
the initial moment had no definitive equilibrium values, after the time
τ0, at the quasi-equilibrium state, those parameters, which altered quickly
became the functions of the external parameters and of the quasi-inte-
grals of motion. It is essential that this functional connection does not
depend on the initial values of the parameters. In other words, the oper-
ators Pm are chosen so that they should satisfy the condition : [Pk,H0]=∑
l cklPl . It is necessary to write down the transport equations (20) for this

set of “relevant” operators only. The equations of motion for the average
of other “irrelevant” operators ( other physical variables) will be in some
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sense consequences of these transport equations. As for the “irrelevant”
operators, which do not belong to the reduced set of the “relevant” opera-
tors Pm, relation [Pk,H0]=∑l cklPl leads to the infinite chain of operator
equalities. For times t� τ0 the nonequilibrium averages of these operators
oscillate fast, while for times t > τ0 they become functions of the average
values of the operators.

3.2. Nuclear Spin-Lattice Relaxation

At the earlier stage, the theory of spin relaxation was developed by
means of quantum mechanical perturbation methods. Here the spin relax-
ation is studied by making use of the method of NSO. We discuss in this
section an arbitrary nuclear spin system on a lattice in interaction with
external fields and another system,75 to be taken eventually to act as a
heat bath. The bath is considered as a quantum-mechanical system that
remained in thermodynamic equilibrium while its exchange of energy with
the spin system is taken into account. We consider the processes occur-
ring after switching off the external magnetic field in a nuclear spin sub-
system of a crystal. Let us consider the behavior of a spin system with the
Hamiltonian Hn weakly coupled by a time-independent perturbation V to
a thermal bath (temperature reservoir) or a crystal lattice with the Hamil-
tonian HL.

The total Hamiltonian has the form

H =Hn+HL+V, (47)

where

Hn=−a
∑
i

I zi , a=γnh0. (48)

Here I zi is the operator of the z-component of the spin at the site i, h0
the time-independent external field applied in the z-direction, and γn the
gyromagnetic coefficient.

Now we introduce b†
iλ and biλ the creation and annihilation opera-

tors of the spin in the site i with the z-component of the spin equal to λ,
where −I �λ� I . Then we have

I zi =
∑
λ

λb
†
iλbiλ=

∑
λ

λniλ (49)

and, consequently,

Hn=
∑
iλ

Eλniλ, Eλ=−aλ. (50)
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Following Sec. 2.3, we write the Hamiltonian of the interaction as

V =
∑
i

∑
μ,ν

�iν,iμb
†
iνbiμ, �iν,iμ=�†

iμ,iν (51)

Here �iν,iμ are the operators acting only on the “lattice” variables. The
term “lattice” is used here to denote the equilibrium heat reservoir with
temperature T associated with all degrees of freedom of the system other
than those associated with the nuclear spins. Then, in agreement with Eq.
(27), we construct the quasi-equilibrium statistical operator

ρq =ρL
⊗

ρn, (52)

where

ρL=Q−1
L e−βHL, QL=T r exp(−βHL), (53)

ρn=Q−N
n exp (−βn(t)Hn) , Qn= sinh βn(t)

2 a(2I+1)

sinh βn(t)
2 a

. (54)

Here βn is the reciprocal spin temperature and N is the total number of
spins in the system.

We now turn to writing down the kinetic equations for average values
〈niλ〉=〈b†

iλbiλ〉. We use the kinetic equation in the form (45)

d〈niλ〉
dt

=
∑
ν

Wν→λ(ii)〈niν〉−
∑
ν

Wλ→ν(ii)〈niλ〉, (55)

where

Wλ→ν(ii)= 1
–h2
J�iν,iλ�iλ,iν

(
Eν −Eλ

–h

)
,

Wν→λ(ii)= 1
–h2
J�iλ,iν�iν,iλ

(
Eλ−Eν

–h

)
. (56)

It can be shown that

〈niλ〉=〈nλ〉=Q−1
n exp[−βnEλ].

Then we obtain

d〈nλ〉
dt

=
∑
ν

Wν→λ〈nν〉−
∑
ν

Wλ→ν〈nλ〉, (57)

where

Wλ→ν = 1
N

∑
i

Wλ→ν(ii), Wν→λ= 1
N

∑
i

Wν→λ(ii). (58)
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It is easily seen that

Wν→λ= exp[β(Eν −Eλ)]Wλ→ν .

Hence, for βn we find the equation

dβn

dt
= 1

2

∑
νλ(λ−ν)Wλ→ν (1− exp[−(β−βn)(Eλ−Eν)]) exp[−βnEλ]

Qn
a
∂2 lnQn
∂β2
n

.

(59)

In the derivation of Eq. (59) we took into account that 〈I z〉 =∑
ν ν〈nν〉

and

d〈I z〉
dt

=−1
a

dβn

dt

∂2 lnQn

∂β2
n

=−1
a

dβn

dt

(
〈(I z)2〉−〈I z〉2

)
. (60)

In the high-temperature approximation (–hωn�kT )we obtain

dβn

dt
= β−βn

T1
, (61)

where T1 is the longitudinal time of the spin–lattice relaxation

1
T1

= 1
2

∑
νλ(λ−ν)2Wλ→ν∑

ν(ν)
2

(62)

The above expression is the well-known Gorter relation.4,14,33,35

4. SPIN DIFFUSION OF NUCLEAR MAGNETIC MOMENT

The concept of spin diffusion was invoked by Bloembergen5 to
explain the magnetic relaxation of nuclei in diamagnetic solids, which is
due to the interaction of the nuclear spins with spin of a paramagnetic
impurity ion. This theoretical approach was further developed in many
works.9,23,26,33,76,77 In the previous section, we have discussed a simple cal-
culation of the longitudinal nuclear spin relaxation time within the NSO
approach. Here we shall extend this treatment in order to obtain a more
sophisticated description of the spin dynamics. Let us, therefore, work out
a general formula, using these ideas.

Consider a subsystem of interacting nuclear spins �I of a crystal which
interact with the external magnetic field h0 and with other subsystems of a
crystal. Our aim is to derive the evolution equation for the reciprocal spin
temperature of the Zeeman spin subsystem βn(�r, t) which is relaxed to the
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equilibrium after switching off the external rf field. The total Hamiltonian
has the form

H =Hn+Hdd +HL+V, (63)

where the Zeeman operator Hn is given by

Hn=−a
∑
i

I zi , a=γnh0. (64)

It is convenient to rewrite Hn in the following form:

Hn(�r)=
∑
i

I zi
–h(ωn+�i)δ(�r− �ri). (65)

Here �i � ωn is effective renormalization of the “bare” nuclear spin
energy –hωn due to the surrounding medium and will be written explicitly
below; Hdd is the operator of dipole–dipole interaction (46)

Hdd = g1g2η
2

r3

∑
ij

{
�Ii �Ij −3( �Ii r̂)( �Ij r̂)

}
,

where r is the distance between the two spins and r̂ = �r[|�r|]−1 is the unit
vector in the direction joining them. It was shown32,33 that the so-called
secular part of this operator was essential, and in the rest of the paper we
will use the notation Hdd for the secular part of the operator of dipole–
dipole interaction. It has the form 32,33

Hdd =
∑
i �=j

Aij

(
I zi I

z
j − 1

4
(I+
i I

−
j + I−

i I
+
j )

)
(66)

=
∑
i �=j

Aij (I
z
i I
z
j − 1

2
I+
i I

−
j ).

Here

Aij = γ 2
n

–h

2r3
ij

(1−3 cos2 θij )

and θij is the angle between �h0 and �rij ;
HL is the Hamiltonian of the a thermal bath and V the operator

of interaction between the nuclear spins and the lattice. Since our aim is
to derive the equation for the relaxation of the Zeeman energy, we take
the operators Hn(�r) and Hdd as the relevant variables which describe the
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nonequilibrium state. According to the NSO formalism, we now write the
entropy operator (24) in the form

S(t,0) = �(t)+βHL+βdHdd +
∫
βn(�r, t)Hn(�r)d3r, (67)

ρq(t) = exp(−S(t,0)),

where βd and β are the reciprocal temperature of dipole–dipole subsystem
and the thermal bath, respectively. Then, within the formalism of NSO,
as described above in Sec. 2.3, it is possible to derive the corresponding
transport equations for the nonequilibrium averages 〈Hn(�r)〉 and 〈Hdd〉.
Here we confine ourselves to the equation for the 〈Hn(�r)〉 since the equa-
tions for βn(�r, t) and βd are decoupled when the external rf field is equal
to zero.
We need the relations

dHn(�r)
dt

= 1
i–h

[Hn(�r),V ]+ 1
i–h

[Hn(�r),Hdd ]=Kn(�r)−div �J (�r). (68)

Here Kn(�r) is the source term and �J (�r) is the effective nuclear spin energy
current

�J (�r)= 1
2i

∑
k �=l

Akl�rkl(ωn+�l)δ(�r− �rk)I+
k I

−
l . (69)

Since �i �ωn, the approximate form of the current is

�J (�r)≈ ωn

2i

∑
k �=l

Akl�rklδ(�r− �rk)I+
k I

−
l . (70)

The law of conservation of energy in the differential form can be written
as (c.f. Ref. 23)

d〈Hn(�r)〉
dt

=−div〈 �J (�r)〉+〈Kn(�r)〉. (71)

Following the method of calculation of Buishvili and Zubarev,23 we get

∂〈Hn(�r)〉
∂t

=−
∑

μν=1,2,3

∂

∂xμ
Lμν(�r) ∂

∂xν
βn(�r, t)+ (βn(�r, t)−β)L1(�r). (72)

According to Eq. (65), we have treated 〈I z(t)〉 as a continuum function of
spatial variables so that when evaluated at the lattice site j , it is equal to
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〈I zj (t)〉. Carrying out a Taylor series expansion20 of 〈I z(t)〉 about the kth
lattice site and then evaluating the results at position j yield

〈I zj (t)〉 ≈ 〈I zk (t)〉+
3∑
α=1

∂

∂xα
〈I z(t)〉|kxkjα

+ 1
2

3∑
α,β=1

∂2

∂xα∂xβ
〈I z(t)〉|kxkjαxkjβ + . . . , (73)

where xkjα is the α coordinate (α=1,2,3 ) in an arbitrary Cartesian coor-
dinate system for �rkj , and ∂/∂xα〈I z(t)〉|k is the partial derivative of 〈I z(t)〉
with respect to xα, evaluated at the lattice site k.

The generalized kinetic coefficients Lμν(�r) and L1(�r) have the form

Lμν(�r)=
∫ 0

−∞
dt1

∫ 1

0
dλ

∫
d3q〈Jμ(�r) exp(−λS(t,0))Jν(�q, t1) exp(λS(t,0))〉q,

(74)

L1(�r)=
∫ 0

−∞
dt1

∫ 1

0
dλ

∫
d3q〈Kn(�r) exp(−λS(t,0))Kn(�q, t1) exp(λS(t,0))〉q .

(75)

The condition 〈Hn(�r)〉 = 〈Hn(�r)〉q determines the connection of βn(�r, t)
and 〈Hn(�r)〉. Equation (72) is the diffusion type equation.[78–80] This equa-
tion describes more fully the local changes of the Zeeman energy due to
the relaxation and transport processes in the system with the Hamiltonian
(63). In its general form Eq. (72) is very complicated[78–80] and to get a
solution, various approximate schemes should be used.

4.1. Evaluation of Spin Diffusion Coefficient

Let us consider the calculation of the diffusion coefficient. The most
obvious approximation to express the average 〈Hn(�r)〉 in terms of βn(�r, t)
is the high-temperature approximation βFn(t)�1 or –hωn�kT . As a rule,
this approximation is well fulfilled in the NMR experiment. Making use
of high-temperature expansion in Eq. (72) and taking into account that in
this approximation

exp(−S(t,0))≈ 1
TrI1

(
1−

∫
d3rβn(�r, t)Hn(�r)

)
ρL,
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we get

∂βn(�r)
∂t

=
∑
μν

∂

∂xμ
Dμν(�r) ∂

∂xν
βn(�r, t)− (βn(�r)−β)R(�r) (76)

or in a different form
∂βn(�r)
∂t

=D(�r)�βn(�r)− (βn(�r)−β)R(�r). (77)

Here D(�r) is the diffusion coefficient

D(�r)=− 1

2–h2ω2
nN(r)

∫ 0

−∞
eεt1dt1

∫
d3r1

TrI 〈J (�r)J ( �r1, t1)〉L
TrI (I z)2

, (78)

N(r)=∑k δ(�r − �rk) being the nuclear spin density. The quantity R(�r)> 0
has the following form:

R(�r)=− 1
–h2ω2

nN(r)

∫ 0

−∞
eεt1dt1

∫
d3r1

TrI 〈Kn(�r)Kn( �r1, t1)〉L
TrI (I z)2

. (79)

Here the symbol 〈. . .〉L = Tr(. . . ρL) implies the average over the equilib-
rium ensemble for lattice degrees of freedom.

4.2. Host Nuclear Spin Diffusion in Dilute Alloys

Spin diffusion is the transport of Zeeman energy or magnetization
via the dipole–dipole interactions and it proved important both theoret-
ically5,9,25,45,46 and experimentally9,81 in diamagnetic solids. We consider
here another class of substances, the dilute alloys.82–84 The spin dynam-
ics and relaxation of bulk metal nuclei by relatively dilute local moments
in dilute alloys (e.g. Cu–Mn) was studied quite extensively, both theoreti-
cally85–93 and experimentally.94–110. The description of spin relaxation in
dilute alloys has certain specific features as compared with the homoge-
neous systems. For brevity we confine ourselves to the consideration of the
bulk metal nuclei relaxation in dilute alloy. Due to the dipole–dipole inter-
action between a nuclear spin and an impurity spin, the relaxation rate
may become nonuniform. It is more rapid for the spins that are close to
impurity and is much slower for the distant nuclear spins. As a result, a
nonuniform distribution in the bulk nuclear spin subsystem will occur and
to describe spin relaxation consistently, the nuclear spin diffusion should
be taken into account.

The Hamiltonian for nuclear and electronic interacting spin subsys-
tems is

H =Hn+He+HM +Hne+HMe+Hdip. (80)
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Here index n denotes the host nuclear spins, M denotes spin of the mag-
netic impurities, and e denotes the electron subsystem. In this section,
when we refer to the host nuclear spin subsystem Hn we put

Hn=
∑
i

I zi
–hωn+

∑
i �=j

Aij (I
z
i I
z
j − 1

2
I+
i I

−
j ). (81)

The Hamiltonian of electron subsystem is

He=
∑
kσ

εkσ a
†
kσ akσ (82)

and

HM =
∑
m

–hωMSzm (83)

is the Hamiltonian of the impurity spins in the external magnetic field.
The Hamiltonian of the interaction110 of nuclear spins and the spin den-
sity �σ( �Ri) of the conduction electrons is

Hne=Jne
∑
i

�Ii �σ( �Ri), Jne=− 8π
–h2γnγe

, (84)

where

σ+
k =

∑
q

a
†
q↑ak+q↓, σ−

−k = (σ+
k )

† =
∑
q

a
†
k+q↓aq↑.

Interaction of the impurity spins �Sm and the spin density of the itinerant
carriers is given by the spin-fermion111,112 (sp−d(f ))model Hamiltonian

HMe=Jsd
∑
m

�Sm �σ( �Rm). (85)

The last part of the total Hamiltonian (80)

Hdip=–h
∑
im

∑
μν=x,y,z

�
μν
imI

μ
i S

ν
m (86)

is the Hamiltonian of the dipole-dipole and pseudo–dipolar interaction
of nuclear and impurity spins. This interaction was described in detail in
Refs. 94,95,113. The pseudo–dipolar interaction does not originate in crys-
talline anisotropy but in the tensor character of the dipolar interaction.95

Their expression for the pseudo-dipolar interaction is

HPD
nn =

∑
ij

[
�Ii �Ij −3r−2

ij (
�Ii �rij )( �Ij �rij )

]
Bij . (87)
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The Van Vleck Hamiltonian for a system with two magnetic ingredi-
ents95,113 includes the term

Hdip =
∑
i>j

(
g2
nη

2

r3
ij

+ B̃ij
){

�Ii �Ij −3r−2
ij (

�Ii �rij )( �Ij �rij )
}

+
∑
im

(
gngeη

2

r3
im

+ B̃im
){

�Ii �Sm−3r−2
ij (

�Ii �rim)(�Sm �rim)
}

+
∑
m>n

(
g2
e η

2

r3
mn

+ B̃mn
){

�Sm �Sn−3r−2
mn(

�Si �rmn)(�Sj �rmn)
}
. (88)

The B̃’s represent the pseudo-dipolar interaction

Bij = 3
2

(
B̃ij + g2

nη
2

r3
ij

)
(1−3 cos2 θij ).

The later consists of three components of which we use in Eq.(86) the fol-
lowing one as the most essential113,95

HPD
Mn =

∑
im

Bim �Ii(�Sm− r̂im(r̂im �Sm)). (89)

It was shown in Ref. 95 that for the large distance between the nuclear
spin and the electron spin Bim has the form

Bim≈B cos(kF rim+φB)
(2kF rim)3

. (90)

Thus, in structure, the coefficient Bim is similar to the production of the
contact potential and the spatial part of the RKKY interaction.114 As a
rule, the pseudo-dipolar interaction is less than the contact interaction.
The estimations give B∼ 1/3Jne for 205T l. It will be even more valid for
copper since its mass is much less than for T l.

Now the expression for the Hamiltonian Hdip can be rewritten as

Hdip = γnγM
–h
∑
im

1

r3
im

{
I zi δS

z
m(1−3 cos2 θim) (91)

−3
2

sin θim cos θim[exp(−iφim)I+
i δS

z
m+ exp(iφim)I

−
i δS

z
m]
}

{
1+B cos(2kF rim+φB)

8k3
F

}
.
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Here we have introduced the mean field 〈Szm〉 and the fluctuating part of
the impurity spin, namely δSzm=Szm−〈Szm〉. By substituting this definition
of Szm into (84) rewritten in terms of the variable δSzm we obtain

Hne = − 8π
–h2γnγe

∑
ip

( �Ii �σp)δ( �Ri − �rp) (92)

= Jne
∑
ip

[
(I+
i σ

−
p + I−

i σ
+
p )δ(

�Ri − �rp)

+(σ zpδ( �Ri − �rp)−〈σzpδ( �Ri − �rp)〉)I zi
]
,

where ∑
p

�σ(�rp)δ( �Ri − �rp)=
∑
kk′

∑
ss′

〈s|�σ |s′〉ψ∗
k′(0)ψk(0)a

†
ksak′s′ .

Now it is possible to write down explicitly the shift of the Zeeman fre-
quency ωn in (65) due to the mean-field renormalization �i as

�i = γnγM
–h
∑
m

1

r3
im

{
1+B cos(2kF rim+φB)

8k3
F

}
〈Sz〉

Jne
∑
p

〈σzpδ( �Ri − �rp)〉=
∑
m

�zzim〈Szm〉−Jne
∑
p

〈σzpδ( �Ri − �rp)〉. (93)

This shift of the Zeeman frequency (�i �ωn) is the most essential for the
evaluation of the coefficient of spin diffusion.33,37,76

4.3. Spin Diffusion Coefficient in Dilute Alloys

Here, we evaluate concrete expressions for the spin diffusion coefficient
(78) for the dilute alloys system which is described by the Hamiltonian
(80). Consider again the approximate equation (76) where the diffusion
coefficient can be written as

Dμν ≈ ωd
–h2√π

∑
l

A2
rl(r

μ− rμl )(rν − rνl ) exp[−(�r −�l)2/4 (ωd)2]. (94)

In the derivation of the above expression, to permit explicit calculations,
the Gaussian approximation for the nuclear spin correlation function was
used (see Appendix B). From Eqs. (76) and (94) it follows that in the pro-
cess of the longitudinal nuclear spin relaxation, which is a function of
position, there is a possibility to transport the nuclear magnetization (i.e.
excess of nuclear spin density) due to the dipole–dipole interaction. It is
clearly seen that the nuclei themselves do not move in the spin diffusion



242 A. L. Kuzemsky

process. There is diffusion of the excess of the projection of the nuclear
spin only.

To proceed further, consider the case when the concentration of the
impurity spins is very low. In this case, for one impurity spin there is a big
number of host nuclear spins which interact with it. In other words, this
case corresponds to the effective single-impurity situation. Thus, we can
place one impurity spin to the origin of the coordinate frame (0,0,0). The
vector �r in Eq. (94) is then counted from this position. For a simple cubic
crystalline system with the inversion center the symmetric tensor Dμν(�r) is
reduced to the scalar D(�r). The coefficient D(�r) decreases with decreasing
the distance r when r is small. This is related with the fact that Zeeman
nuclear frequencies of the nuclei, which are close to the impurity, have
substantially different values due to the influence of the local magnetic
fields induced by the impurity spin. This circumstance hinders the flip–flop
(�=ωM −ωn) transitions of neighboring nuclei since this transition does
not conserve the total Zeeman energy of nuclear spins. (Let us remind that
if we suppose that the spins S are completely polarized and the nuclear
spins I are completely unpolarized, then the dipolar interaction permits
simultaneous reversals of S and I in the opposite directions, or flip–flops,
and also reversals in the same direction which is usually called flip–flips
with �= ωM + ωn). In expression (94) this tendency is described by the
exponential factor. This exponential factor leads to the appearance of the
so-called “diffusion barrier” around each impurity. Inside this diffusion
barrier the diffusion of nuclear spin is hindered strongly.33,76

It can be seen that for the large distance from the impurity the fre-
quency difference in Eq. (94) behaves as (�r − �l) � ωd , where ωd ≈
6γ 2
n

–ha−3 is the dipolar line-width and D(r) does not depend on r. In the
opposite case, of small distance scale (near impurity) the frequency differ-
ence is big and the coefficient D(r) decreases quickly with the distance to
the impurity. Thus, it is convenient to introduce the effective radius of the
diffusion barrier δ, namely, a distance from the impurity for which the fol-
lowing definition holds:

D(r)=
{
D, if r >δ,
0, if r <δ.

(95)

The constant D is equal to D=ωd/3–h2√π∑A2
klr

2
kl .

Let us estimate the “size” of the diffusion barrier. Consider two
neighboring nuclei which take up a position along the radius from the
impurity. The distance between them is equal to the lattice constant a.
In this case, the frequency shift is equal to (�δ − �δ+a) ≈ ωd and δ ≈
a 4
√

[γM/γn〈Sz〉] ( see Appendix B).
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Consider again the approximate Eq.(77) taking into account the diffu-
sion barrier approximation (95). It can be rewritten in the form

∂βn(�r, t)
∂t

=D�βn(�r, t)− (βn(�r, t)−β)(R0 +R1(�r)+R2(�r)), (96)

where

R0 = 2J 2
ne

–h22π

∑
kk′

∑
pp′

ψ∗
k ψk′ψ

∗
pψp′

∫ ∞

−∞
dωf (ω−ωn)G0

kk′pp′(ω),(97)

G0
kk′pp′(ω) =

∫ ∞

−∞
dt exp(itω)〈a†

k↓ak′↑a
†
p↑(t)ap′↓(t)〉, (98)

R1(�r) = −4Jne
–h2π

∑
kk′

∑
m

∫ ∞

−∞
dωf (ω−ωn)Re(ψ∗

k ψk′G
1
kk′m(ω)�

+z
rm),(99)

G1
kk′m(ω) =

∫ ∞

−∞
dt exp(itω)〈a†

k↑ak′↓S
z
m(t)〉 (100)

and

R2(�r) = 9
2(γnγM–h)2

1
2π

∑
m

∫ ∞

−∞
dωf (ω−ωn)Gimm(ω)Ym, (101)

Gimm(ω) =
∫ ∞

−∞
dt exp(itω)〈δSzmδSzm(t)〉, (102)

Ym =
{

1+ B cos(2kF |�r− �rm|+φB)
8k3
F

}2
sin2 θrm cos2 θrm

|�r− �rm|6 . (103)

Here the function f (ω−ωn) is the NMR line-shape. The line-shape of the
NMR spectrum115 arises from the variation of the local field at a given
nucleus because of the interaction with nearby neighbors. The inhomoge-
neity of the applied magnetic field may also increase the width of the line.

The contribution of the factor R−1
0 leads to the generalized Korringa

relaxation rate116

1
T1

∝ πkT
–h

[
8π
3
γn

–hχp
M

μe
〈|ψF (0)|2〉

]2

. (104)

Korringa116 calculated the spin–lattice relaxation time T1 in metals and
showed that T1 should be inversely proportional to temperature and
should be related to the Knight shift (see also Ref. 117). Korringa nuclear
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spin-lattice relaxation occurs in a metal through the nucleus-electron inter-
action of contact type 116

8π
3
(|γe|–h�s)(γn–h �I )|ψA(0)|2. (105)

The quantity R1 is determined by the correlation of the electron and
impurity spins and is highly anisotropic.

The quantity R2 is related to the scattering of nuclear spins on the
fluctuations of impurity spins. The last contribution is the most essential
factor in the present context. This is related to the fact that the main
characteristic features of the problem under consideration clearly manifest
itself in the isotropic case which is considered in the majority of works. In
the isotropic case R1 =0 and the contribution of R2 can be expressed as

R2(r)=
∑
m

C

{
1+ B cos(2kF |�r− �rm|+φB)

8k3
F

}2
1

|�r− �rm|6 , (106)

C= 3
5(γnγM–h)2

1
2π

∫ ∞

−∞
dωf (ω−ωn)Gimm(ω). (107)

Nevertheless, even after simplifications described above, a solution of the
diffusion equation is still a complicated problem. The main difficulty is
the presence of the highly oscillating factor cos(2kF |�r−�rm|+φB). The role
of this oscillating factor can be taken into account entirely by numerical
calculations. For a qualitative rough estimation we consider the simplified
case when B ≈ 0. Then we can proceed following the method of calcula-
tion of Ref. 76. According to these calculations76 we find

1
T1

= (R0)
−1 +4πDNF. (108)

Here N is the number of impurities and the quantity F has the form

F =
{

0.7b, if b>δ,
1/3(b/δ)3b, if b<δ,

(109)

where b= 4
√
(C/D).

It is clear from Eqs. (108) and (109) that the behavior of the relaxation
time and its value depend strongly on the interrelation of b which is deter-
mined by the correlation function Gimm(ω) and of δ which is determined
by 〈Sz〉, as well as on the temperature for each concrete alloy. Thus, the
problem of description of spin–lattice relaxation in dilute metallic alloys
was reduced to the problem of calculation of the value of F . When δ�b

the diffusion barrier is nonessential. In the opposite case, when b<δ, the
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diffusion barrier is essential and leads to the slowing down of the relax-
ation process. In other words, the distance b determines the scale up to
which the nuclear spin relaxation is effective. Finally, let us note that the
order of value of time which is necessary to transmit the magnetic moment
to the distance r in a solid is equal to τD � r2/D; for r=10−6 cm it gives
the value τD �1 sec.

5. CONCLUDING REMARKS

In the present paper, we have given a complementary method for
obtaining the rate and relaxation equations of nuclear spin system in sol-
ids. The main tool in this approach is the use of the method of NSO.[60]

We have presented a theory of spin relaxation which allows us to derive
general equations of spin dynamics. In addition, our theory allows us to
take into account the effects of spin diffusion in a very straightforward
manner. The calculations were kept general by restricting the form of spin-
lattice Hamiltonian as little as possible. It has permitted us to perform the
derivation under more general conditions and explicitly demonstrate some
key features of irreversible processes in solids.

It was shown that the spin systems provide a useful proving ground
for applying the sophisticated methods of statistical thermodynamics. The
method used is capable of systematic improvement and gives a deeper
insight into the meaning of the spin relaxation processes in solids. We have
shown that the transport of nuclear spin energy in a lattice of paramag-
netic spins with magnetic dipolar interaction plays an important role in
relaxation processes in solids. To test the general formalism presented here,
an example of a dilute metallic alloy system was considered to demon-
strate the usefulness of the equations derived.

In summary, the present paper examines the relaxation dynamics of a
spin system. It continues the investigation presented in the previous work
into the use of statistical mechanical methods for systems that are in con-
tact with a thermal bath. We used the method of the NSO developed
by Zubarev. In the present paper, we have developed the application of
this method to the spin-relaxation problem, so that some useful results
may be obtained from it. The calculation presented in this paper can be
said to show that the NSO method has provided a compact and efficient
tool for description of the spin relaxation dynamics. In this respect, the
present treatment may be regarded as a complement of the Buishvili and
Zubarev23 seminal treatment.

Though the analysis of this paper concentrates on the nuclear spin
systems in solids, the extension to other spin systems, e.g., paramagnetic
electron spin system, is straightforward. The other important task is to
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examine the effects of a periodically time-dependent field on the long-
time behavior of an otherwise isolated system of many coupled spins. This
question is a part of a more general problem of the evolution of a com-
plex system in an external field, especially in an intense external field. We
hope that the methods here developed may be applied in these cases with
the suitable modifications.

APPENDIX A. EVOLUTION OF A SYSTEM IN AN
ALTERNATING EXTERNAL FIELD

In Sec. the 2.2 we wrote the kinetic and evolution equations in the
approach of NSO. In this appendix, we show briefly the derivation of the
same equations in the presence of alternating external field. This problem
is essential for the nuclear and electron spin resonance. Both nuclear and
electron spins have associated magnetic dipole moments, which can absorb
radiation, usually at radio or microwave frequencies.

We consider the many-particle system with the Hamiltonian

H =H1 +H2 +V +Hf (t), (110)

where

H1 =
∑
α

Eαa
†
αaα (111)

is the single-particle second-quantized Hamiltonian of the quasiparticles
with energies Eα. This term corresponds to the kinetic energy of nonin-
teracting particles

H1 =
N∑
i=1

P 2
i

2m
=

N∑
i=1

H(i), H(i)=−
–h2

2m
∇2
i .

The index α≡ (�k, s) denotes the momentum and spin

ϕα(x)=ϕ�k(�r)�(s−σ)= exp(i�k�r)�(s−σ)/√v,

Eα =〈α|H1|α〉,

〈k|H(1)|k′〉= 1
v

∫
d3r exp(i�k�r)

(
−

–h2

2m
∇2

)
exp(i �k′�r)=

–h2k2

2m
�(k−k′)

and

V =
∑
α,β

�αβa
†
αaβ, �αβ =�†

βα. (112)
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Operator V is the operator of the interaction between the small subsystem
and the thermal bath, and H2 the Hamiltonian of the thermal bath which
we do not write explicitly. The quantities �αβ are the operators acting on
the thermal bath variables with the properties (�αβ)† =�∗

βα;�∗
βα =�αβ .

The interaction of the system with the external time dependent alternating
field is described by the operator

Hf (t)=
∑
α,β

hαβ(t)a
†
αaβ. (113)

For purposes of calculation, it is convenient to rewrite Hamiltonian
Hf (t) in a somewhat different form

Hf (t)= 1
v

∑
α,β

T (α,β, t)a†
αaβ, (114)

where

hαβ(t)= 1
v
T (α,β, t)

and

T =
N∑
i=1

T (�ri, t); T ( �p)=
∫
d3r exp(i �p�r)T (�r, t),

〈k|T (�r, t)|k′〉= 1
v

∫
d3r exp(i(�k− �k′)�r)T (�r, t)= 1

v
T (�k− �k′, t).

We are interested in the kinetic stage of the nonequilibrium process in the
system weakly coupled to the thermal bath. Therefore, we assume that the
state of this system is determined completely by the set of averages 〈Pαβ〉=
〈a†
αaβ〉 and the state of the thermal bath by 〈H2〉, where 〈. . . 〉 denotes the

statistical average with the NSO, which will be defined below.
Following Pokrowsky’s calculations we can write down the NSO in

the following form:

ρ(t)=Q−1 exp(−L(t)), (115)

where

L(t) =
∑
αβ

PαβFαβ(t)+βH2 −
∫ 0

−∞
dt1e

εt1

×
⎛
⎝∑
αβ

Ṗαβ(t1)Fαβ(t+ t1)+
∑
αβ

Pαβ(t1)
∂Fαβ(t+ t1)

∂t1
+βJ2

⎞
⎠ .

(116)
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The notation H2 denotes H2 =H2 −μ2N2 where μ2 is the chemical
potential of the medium (thermal bath) and J2 = Ḣ2(t1). In this equation,
the time dependence of the operators in the right-hand side differs from
the time dependence in Eq. (25). Consider this question in detail. The Hei-
senberg representation

H(t)=U†(t)HU(t); U(t)= exp
(−iH t

–h

)
(117)

in the presence of the external field H =H0 +H ext takes the form

A(t1; t)=U†(t+ t1; t)AU(t+ t1; t), (118)

where

U(t+ t1; t)=T exp
(

− i
–h

∫ t+t1

t

H ext(τ )dτ

)
. (119)

We now generalize the evolution equations to the case in which the exter-
nal field is present. We have

Ṗαβ = 1
i–h

[Pαβ,H ]= 1
i–h
(Eβ −Eα)Pαβ

+ 1
i–h

∑
ν

(
Pανhβν(t)−hνα(t)Pνβ

)+ 1
i–h

[Pαβ,V ]. (120)

Then we can write down the balance equation

J1 +J2 = If , (121)

where

J1 = Ḣ1 = 1
i–h

[H1,H ]= 1
i–h

(
[H1, V ]+ [H1,H

ext]
)

(122)

and

If =J1 +J2 = 1
i–h

∑
αβ

{
(Eα −Eβ)hαβ(t)+hαβ(t)[Pαβ,V ]

}
. (123)

The last term describes the work of the external field.
The parameters Fαβ(t) are determined from the condition 〈Pαβ〉=〈Pαβ〉q .

The quasi-equilibrium statistical operator ρq has the form

ρq =ρ1ρ2, (124)
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where

ρ1=Q−1
1 exp

⎛
⎝−

∑
αβ

PαβFαβ(t)

⎞
⎠,Q1 =T rexp

⎛
⎝−

∑
αβ

PαβFαβ(t)

⎞
⎠ , (125)

ρ2 = Q−1
2 exp (−β(H2 −μ2N2)) ,Q2 =T r exp (−β(H2 −μ2N2)) . (126)

Thus, we can write

d〈Pαβ〉
dt

= 1
i–h

〈[Pαβ,H ]〉= 1
i–h
(Eβ −Eα)〈Pαβ〉

+ 1
i–h

∑
ν

(〈Pαν〉hβν(t)−hνα(t)〈Pνβ〉)+ 1
i–h

〈[Pαβ,V ]〉. (127)

To calculate explicitly the r.h.s. of Eq. (127) we use the formula

exp(−A−B)= exp(−A)−
∫ 1

0
exp(−A)(exp(−Aτ)B exp(Aτ)dτ), (128)

ρ�{1−
∫ 1

0
(exp(−Aτ)B exp(Aτ)−〈exp(−Aτ)B exp(Aτ)〉A)dτ)}ρ(A),

(129)

where

ρ(A) = exp(−A)
Tr exp(−A),

A =
∑
αβ

PαβFαβ(t)+β(H2 −μ2N2),

B = −
∫ 0

−∞
dt1e

εt1
1
i–h

∑
μν

[Pμν(t1, t), V (t1)]Xμν(t+ t1).

Making the same expansion procedure as described in Sec. 2.2 we find

d〈Pαβ〉
dt

= 1
i–h
(Eβ −Eα)〈Pαβ〉+ 1

i–h

∑
ν

(〈Pαν〉hβν(t)−hνα(t)〈Pνβ〉)

+ β

i–h

∫ 1

0
dλ〈[Pαβ,V ]e−λAV eλA〉q + 1

(i–h)2

∫ 1

0
dλ

∫ 0

−∞
dt1e

εt1

×
∑
α′β ′

〈[Pα′β ′ , V ]e−λA[Pα′β ′(t1, t), V (t1)]e
λA〉qXα′β ′(t+ t1), (130)

where

Xα′β ′(t)=Fα′β ′(t)−β[δα′β ′Ẽα′ +hα′β ′(t)]. (131)
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It can be rewritten as

d〈Pαβ〉
dt

= 1
i–h
(Eβ −Eα)〈Pαβ〉+ 1

i–h

∑
ν

(〈Pαν〉hβν(t)−hνα(t)〈Pνβ〉)

+
∑
α′β ′

Kh
αβ,α′β ′ 〈Pα′β ′ 〉, (132)

where the generalized relaxation matrix is given by

Kh
αβ,α′β ′ = β

i–h

∫ 1

0
dλ〈[Pαβ,V ]e−λAV eλA〉q + 1

(i–h)2

∫ 1

0
dλ

×
∫ 0

−∞
dt1e

εt1〈[Pα′β ′ , V ]e−λA[Pα′β ′(t1, t), V (t1)]e
λA〉qXα′β ′(t+ t1).

(133)

Equation (132) gives the generalization of the rate Eq (35) of the Redfield-
type for the case of the external alternating field. A more detailed inves-
tigation of this equation and the problem of the evolution of a system in
an external field will be carried out separately.

APPENDIX B. CORRELATION FUNCTIONS AND GAUSSIAN
APPROXIMATION

The eigenvalues of the Hamiltonian (80) correspond to well-defined
values of

∑
i I
z
i = I z =m. Their energy is the sum of a Zeeman energy

m–hωn and a spin–spin energy. A stochastic-theoretical treatment of the
spin relaxation phenomena is a useful complementary approach to the
consideration of spin evolution.118,119 By a stochastic theory it is termed
ordinary that kind of theoretical treatment of the problem in which one
assumes the random nature of the forces acting on a system. The phe-
nomenon of spin relaxation can be properly interpreted as some stochastic
process of spin motion. This stochastic process is determined by the equa-
tion of motion of the spin variable. It was formulated33,118 plausibly that
a Gaussian random process may be well applied for the evolution of the
magnetization in the presence of a static external field

d

dt
�μ=γ �μ× ( �h0 + �h), (134)

where γ denotes the gyromagnetic ratio, �h0 a static external field, and
�h the fluctuating internal field due to the magnetic moments in the sur-
rounding medium. The effect of the fluctuating internal field �h is to cause
nuclear spin transitions governed by the selection rule �m= ±1. If the



Statistical Theory of Spin Relaxation 251

Zeeman splitting is small, i.e., –hωn � kT , then the transition probability
for a �m=±1 transition will be proportional to the Fourier transform of
correlation functions of the form (h+(t)h−(t ′)), (h−(t)h+(t ′)), (hz(t)hz(t ′)).
If we assume the process of �h(t) to be a Gaussian random process, the
problem becomes more easy tractable. From this viewpoint it is reason-
able to assume that the equation of spin motion involves the local fluc-
tuating magnetic field whose process is assumed to be a Gaussian random
process.118

The Gaussian or normal probability distribution law is the limit of
the binomial distribution

P(m)=Cmn pm(1−p)n

in the limit of large n and pn (n→ ∞). Here n is the repetition of an
experiment, p is the probability of success, and Cmn = n!/m!(n−m)!. The
normal probability distribution has the form

P(m)= 1√
2πσ

exp

(
−1

2
ξ2

σ 2

)
, (135)

where σ =√
np(1−p) is a measure of the width of the distribution. It

is clear that the Gaussian distribution results when an experiment with a
finite probability of success is repeated a very large number of times. The
Gaussian random process is a random process (with discrete or continu-
ous time) which has the normal (Gaussian) probability distribution law for
any group of values of the process. The Gaussian random process is deter-
mined completely by its average value and correlation function. Thus, the
description of the class of Gaussian processes is reduced to the determina-
tion of the possible form of the corresponding correlation functions.

Consider now an isotropic distribution of nuclei and rewrite the pro-
duction of the current operator in Eq. (78) in explicit form

J (�r)J ( �r1, t1)= ω2
n

4

∑
k �=l

∑
m�=n

AklAmnrklrmn,

∫
d�rδ(�r− �rk)δ( �r1 − �rm)[Tr(I z)2]−1TrI+

k I
−
l I

+
m (t1)I

−
n (t1). (136)

To proceed further, the form of the correlation function of nuclear spins
in the above expression must be determined. In the theory of NMR the
reasonable assumption is that this correlation function can be represented



252 A. L. Kuzemsky

in an intuitively understandable way as23,118

T rI+
k I

−
l I

+
m (t)I

−
n (t)∝Tr(I+I−)2f (t)δknδlm exp

[
it
–h
(�l −�k)

]

= 1
4
f (t)δknδlm exp

[
it
–h
(�l −�k)

]
. (137)

Then the diffusion coefficient D(�r) (78) takes the form

D(�r) = 1

8–h2N(r)

∑
k �=l

A2
klr

2
klδ(�r− �rk)

∫ ∞

−∞
eεtdtf (t) exp

[
it
–h
(�k −�l)

]

= 1

8–h2

∑
l

A2
rlr

2
rl

∫ ∞

−∞
dtf (t) exp

[
it
–h
(�r −�l)

]
. (138)

The method of moments gives that f (t) is close to the normal probability
distribution

f (t)=A exp

(
− t

2ω2
d

2

)
, –h2ω2

d =
T rH 2

dip

T r(I z)2
. (139)

The constant A can be determined from the condition

∫ ∞

−∞
dtf (t)=1=A

√
2π

ω2
d

, A=
√
ω2
d

2π
. (140)

Thus, we obtain

f (t)= ωd√
2π

exp

(
− t

2ω2
d

2

)
. (141)

For the diffusion coefficient (138) we find

D(�r)≈ ωd
–h2√π

∑
l

A2
rlr

2
rl exp

[
−(�r −�l)2/4 (ωd)2

]
. (142)

In the case when r is close to l the frequency difference (�r −�l)�ωd
and D(�r)→ 0. In the opposite case, when (�r −�l)� ωd the diffusion
coefficient is nearly constant D(�r)∼D. Thus, we traced back to the notion
of the diffusion barrier δ (95). Consider two neighboring nuclei along the
radius from the impurity. The distance between them is equal to the lattice
constant a. For this case the frequency shift is equal to

(�δ −�δ+a)≈ωd,
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where ωd ≈6γ 2
n

–ha−3. Consider this constraint more carefully. We have

γnγM
–h〈Sz〉

{
1+B cos(δkF +φB)

δ3
− 1+B cos((δ+a)kF +φB)

(δ+a)3
}

=γnγM–h〈Sz〉
{

1+B cos(δkF +φB)
δ3

− 1−B sin(δkF +φB)akF
δ3

+B cos(δkF +φB)
δ3

+3
1+B cos(δkF +φB)

δ4
a

}

= a

δ3
γnγM

–h〈Sz〉
{

3
1+B cos(2δkF +φB)

δ
−B sin(δkF +φB)kF

}
=6γ 2

n
–ha−3

(143)

For the rough estimation we omit the cos and sin contributions. Then we
obtain

6γ 2
n

–ha−3 =γnγM–h〈Sz〉 a
δ4
, δ=a 4

√[
γM

γn
〈Sz〉

]
. (144)
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