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Abstract. – The many-body quasi-particle dynamics of the single-impurity Anderson model
is investigated by means of the equations of motion for the higher-order Green’s functions. It is
shown that an interpolating approximation, which simultaneously reproduces the weak-coupling
limit up to second order in the interaction strength U and the strong-coupling limit up to
second order in the hybridization V (and thus also fulfils the atomic limit) can be formulated
self-consistently.

The study of strongly correlated electrons in solids is one of the most fascinating subjects in
solid-state physics [1]. The principal importance of this problem is related to the dual character
of electrons in transition metal oxides, intermediate-valence solids, heavy fermions, high-Tc

superconductors, etc. In these materials electrons exhibit both localized and delocalized
features [2], [3]. The basic models to describe correlated electron systems are the single-
impurity Anderson model (SIAM) [4] and the Hubbard model (HM) [5], which exhibit the key
physical feature, i.e. the competition between kinetic-energy (itinerant) and potential-energy
(localized) effects (cf. ref. [6]). In spite of many theoretical efforts a satisfactory solution of the
dynamical problem is still missing. The Bethe-ansatz solution of the SIAM [7], [8] allows for the
determination of the ground-state and thermodynamic static properties, but it does not allow
for a determination of the dynamical properties. For their understanding the development of
improved and reliable approximations is still justified and necessary, and a new interpolating
approximation is proposed in the present paper. We will show that a self-consistent (SC)
approximation for the SIAM can be formulated which reproduces all relevant exactly solvable
limits and interpolates between the strong- and the weak-coupling limit. The Hamiltonian of
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the SIAM can be written in the form

H =
∑
kσ

εkc
†
kσckσ +

∑
σ

Eσnσ +
U

2

∑
σ

nσn−σ +
∑
kσ

Vσ

(
c†kσfσ + f†σckσ

)
, (1)

where c†kσ and f†σ are the creation operators for conduction and localized electrons and
nσ = f†σfσ. εk is the conduction electron dispersion, Eσ is the localized f electron energy
level and U is the intra-atomic Coulomb interaction at the impurity site. Vσ represents the
s-f hybridization.

We start by considering the equations of motion (EQM) for the Fourier-transformed Green’s
function (GF),

Gσ(z) = 〈〈fσ|f†σ〉〉z = −i
∫ ∞

0

dt exp[izt]〈{fσ(t), f†σ(0)}〉 : ,

(z − Eσ −∆σ)〈〈fσ|f†σ〉〉z = 1 + U〈〈fσn−σ|f†σ〉〉z = 1 +Σσ(z)〈〈fσ|f†σ〉〉z,

where Σσ(z) is the one-particle self-energy and ∆σ(z) =
∑

k |Vσ|2/(z − εk).
We want to develop an “interpolating” solution for the SIAM, i.e. a solution which is

applicable in both the weak-coupling limit (and thus the exactly solvable band limit) and the
strong-coupling limit (and thus the atomic limit). The simplest approximative “interpolating”
solution has the form [9], [10]

Gσ(z) =
1− n̄−σ

z − Eσ −∆σ(z)
+

n̄−σ
z − Eσ −∆σ(z)− U . (2)

Here n̄σ denotes the occupation number of f electrons with spin σ. This is just the analogue
of the Hubbard-III approximation [11] for the SIAM. As for the HM, however, Fermi-liquid
(FL) properties and the Friedel sum rule, which hold for the SIAM [12] at least order by order
within the U -perturbation theory, are violated within this simple approximation.

An approximation, which automatically fulfils FL properties and sum rules, is provided by
the SC second-order U -perturbation treatment (SOPT) and is given by

Σσ(iωn) = Un̄−σ −
(
U

β

)2 ∑
ω1,ν

Gσ(iωn + iν)G−σ(iω1 − iν)G−σ(iω1). (3)

Here ω1(ν) denote odd (even) Matsubara frequencies and β = 1/kBT . One of our goals is
to find some way to incorporate this SOPT into an interpolating dynamical solution of the
SIAM. This means that the approximation for the self-energy shall be correct up to order U2

perturbationally around the band limit U = 0 and also the atomic limit V = 0 shall be fulfilled.
This is the case for the SOPT around the Hartree-Fock solution [13], but only for the symmetric
SIAM. For the general situation (position of the Fermi level relative to Eσ and Eσ + U) a
heuristic semi-empirical approach for constructing such an approximation has been presented
for the SIAM in ref. [14] and for the HM in ref. [15]-[17]; the Edwards-Hertz-approximation [15]
(EHA) can also easily be applied to the SIAM. Our intention is to take into account the
SC-SOPT. Furthermore, in contrast to ref. [13]-[15] the approximation shall not only fulfil the
atomic limit V = 0, but it shall be correct up to order V 2 in a strong-coupling expansion
around the atomic limit. The SC inclusion of contributions in second- (and fourth-) order
perturbation theory around the atomic limit is, in particular, important to properly account
for the Kondo effect within the SIAM (Kondo temperature scale) and to reproduce the correct
antiferromagnetic behaviour (equivalence to the t-J model) in the strong-coupling limit of the
HM [17].
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During the last decades several different refined many-body techniques have been applied to
the SIAM [18]-[33] and many of these approaches are strong-coupling treatments around the
atomic limit and can be classified as being correct up to a certain power in V . When applied to
the calculation of static properties many of these treatments, in particular the “non-crossing
approximation” (NCA) [20]-[22] and its improvements [23]-[25], give results in remarkably
good agreement with the exact Bethe-ansatz results [2]. But for the many-body dynamics
the results of most of these approximations are not fully satisfactory, in particular as FL
properties and sum rules are violated. Furthermore, when applied to the finite-U SIAM none
of these approximation schemes [18]-[33] reproduce the SOPT. Qualitatively the dynamical
properties of the SIAM are known from the NCA and from numerical results obtained by
the numerical renormalization group method [34] and by quantum Monte Carlo methods [35].
These available numerical results will allow for a comparison with the results of the improved
analytical approach so that the quality of the approximation may be judged.

To construct this interpolating approximation for the SIAM fulfilling all desired properties
mentioned above we start from the EQM for the higher-order GF 〈〈fσn−σ|f†σ〉〉z:

(z − Eσ −∆σ − U)〈〈fσn−σ|f†σ〉〉z = n̄−σ − U〈〈fσf−σf†−σ|f†σn−σ〉〉z .

With [G(0)
σ (z)]−1 = z −Eσ −∆σ and the SC summation [G(0)

σ (z)]−1Gσ(z) = 1 +Σσ(z)Gσ(z),
we derive from this EQM the following exact relation:

Σσ(z) =
Un̄−σ + U2S(z) Gσ(z)

1+Σσ(z)Gσ(z)

1− (U −Σσ(z))Gσ(z)
, (4)

with the definition 〈〈fσf−σf†−σ|f†σn−σ〉〉z = −S(z) Gσ(z)
1+Σσ(z)Gσ(z) .

Applying the EQM to the higher-order GF 〈〈fσf−σf†−σ|f†σn−σ〉〉z one obtains for the func-
tion S(z) the exact equation

S(z) = V−σ
∑
k

{
G1σ(k)−G2σ(k) +

Vσ
z − εk

[G3σ(k)−G4σ(k)]
}
, (5)

with k=(k, z) and G1σ(k)=〈〈fσf†−σck−σ|f†σn−σ〉〉z,G2σ(k)=〈〈fσc†k−σf−σ|f†σn−σ〉〉z,G3σ(k)=∑
q〈〈ckσf−σc

†
q−σ|f†σn−σ〉〉z, G4σ(k)=

∑
q〈〈ckσcq−σf

†
−σ|f†σn−σ〉〉z.

In general, there are several possibilities to incorporate SC, but most of these possibilities
lead once more to an approximation being exact up to order V 2 but not reproducing the
weak-coupling limit, i.e. one obtains solutions of a similar or equivalent structure as the
approximations of ref. [27], [33], for instance. To be exact up to order V 2 it is justified to replace
the higher-order GFs on the right-hand side of eq. (5) by their lowest-order contributions, which
are given by

G1σ(k) = V−σ
εk−E−σ−U

[
n̄σ [fk−f(E−σ+U)]+n̄−σ [1−fk]

z−εk−Eσ+E−σ
− n̄−σ [1−fk]

z−Eσ−U

]
+ O (V 3),

G2σ(k) = V−σ
εk−E−σ

[
(1−n̄σ)[fk−f(E−σ)]+[1−fk]n̄−σ

z+εk−Eσ−E−σ−U
− n̄−σ [1−fk]

z−Eσ−U

]
+ O (V 3),

G3σ(k) = O (V 2), G4σ(k) = O (V 2),

(6)

leading to a finite-order V 2 perturbation expansion of the self-energy (4).
f(E) = {exp[(E − µ)/kBT ] + 1}−1 is the Fermi function, µ the chemical potential and

fk = f(εk).
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For the higher-order Green’s functions Giσ(k) (i = 1, . . . , 4) one can find an approximation
which reproduces the exact relations (6) in lowest order in V and is simultaneously exact
in lowest order in U (when Wick’s theorem is applicable). One possibility for such an
approximation is given by

G1σ(k) =
−β−2

n̄σ〈nσn−σ〉
∑
ω1,ν

〈〈fσ|n−σf†σ〉〉iωn+iν〈〈ck−σ|nσf†−σ〉〉iω1−iν ×

× 〈〈f−σnσ|f†−σ〉〉iω1 +
〈f†−σck−σnσ〉

n̄σ
〈〈fσn−σ|f†σ〉〉iωn , (7)

G2σ(k) =
−β−2

(1− n̄σ)〈nσn−σ〉
∑
ω1,ν

(
n̄σ

n̄σ − 〈nσn−σ〉
〈〈fσ|f−σf†−σf†σ〉〉iωn+iν ×

× 〈〈f−σ|nσf†−σ〉〉iω1−iν − 〈〈fσ|n−σf†σ〉〉iωn+iν〈〈f−σ|fσf†σf
†
−σ〉〉iω1−iν

)
×

× 〈〈f−σfσf†σ|c
†
k−σ〉〉iω1 +

〈fσf†σc
†
k−σf−σ〉

1− n̄σ
〈〈fσn−σ|f†σ〉〉iωn , (8)

and the GF G3σ, G4σ are decoupled according to the theorem of Wick. Since the approximation
does not violate the theorem of Wick for small U , it automatically satisfies the SOPT,
i.e. expanding eq. (4) for small U up to second order in U leads to the SOPT for the self-energy.
Also the V 2-limit is not violated since the GF G3σ, G4σ are themselves proportional to V 2,
leading in eq. (5) to V 4 terms. Therefore, our approximation leads to an expression for the
self-energy of the SIAM, which is exact at least up to order U2 in a weak-coupling expansion
and up to order V 2 in a strong-coupling expansion. The structure of the chosen approximation
(7), (8) and of the decoupling for the GF G3σ, G4σ according to the theorem of Wick has a
similar analytical structure as the SOPT (which can be calculated numerically very fast and
accurately, [36]). Hence the explicit numerical calculations within this treatment are of the
same order of complexity as those of the SC-SOPT calculations.

Notice that in principle it is possible to systematically improve the above approximation.
Since the SC summation (4), (5) is formally exact, the next step would be the similar
construction of an approximation for the GFs G3σ, G4σ (and for GFs of a similar structure
occurring in a further application of the EQM to the GFs G1σ, G2σ) being exact in order
V 2 and simultaneously satisfying the theorem of Wick; as the GFs G3σ etc. have already
a prefactor V 2 in (5), this leads to an approximation for S and thus the self-energy Σσ(z)
being exact up to order V 4 in the strong-coupling limit and simultaneously in order U2 in
the weak-coupling limit. Furthermore, already from the structure of the exact equation (4)
it is clear that our new approximation can be considered as a systematic improvement of the
Hubbard-III-approximation (2), which is known to be reasonable concerning the high-frequency
behaviour of the dynamical quantities and concerning the reproduction of the metal-insulator
transition in the HM. The new approach goes beyond the Hubbard-III-approximation including
all self-energy contributions in order U2 and thus reproducing the SOPT. This is important to
fulfil the FL properties at least for small U , and in this respect the approach should be as good
as the recently investigated EHA [15], [16] and related attempts [14], [37]. On the other hand,
the new approach is also exact up to order V 2 and is, therefore, as good as standard EQM
decouling procedures [26]-[28] are, which qualitatively describe important items like Kondo
peak, Kondo temperature scale, etc. Finally the approach is not a completely uncontrolled
approximation, as it is exact up to certain orders (V 2, U2) of systematic perturbation theory.
It is, however, as any SC approximate treatment is, uncontrolled in the way it takes into
account infinite-order resummations of arbitrary order in U and V by the SC requirement,



 

G. CZYCHOLL et al.: NEW INTERPOLATIVE TREATMENT OF THE SINGLE-IMPURITY ETC. 137

which is unavoidable to reproduce both limits.
In summary, a new interpolating approximation for the SIAM has been developed, which

recovers the exactly solvable limits V = 0 and U = 0 and which is even more at least
correct up to order V 2 in a strong-coupling expansion and simultaneously up to order U2 in a
weak-coupling expansion. A more detailed discussion and consideration of this new approach
for the construction of a SC solution for the SIAM as well as results of numerical calculations
will be presented elsewhere soon.

***

One of the authors (ALK) is grateful to Deutsche Forschungsgemeinschaft for financial
support and to University of Bremen for a kind hospitality.

REFERENCES

[1] Fulde P., Electron Correlations in Molecules and Solids, Springer Ser. Solid-State Sci. Vol. 100
1991.

[2] Czycholl G., Phys. Rep., 143 (1986) 277.

[3] Kuzemsky A. L., in Superconductivity and Strongly Correlated Electron Systems, edited by C.

Noce, A. Romano and G. Scarpetta (World Scientific, Singapore) 1994, p. 346.

[4] Anderson P. W., Phys. Rev., 124 (1961) 41.

[5] Hubbard J., Proc. R. Soc. London, Ser. A, 276 (1963) 238.

[6] Freericks J. K. and Monien H., Europhys. Lett., 26 (1994) 545.

[7] Tsvelick A. M. and Wiegmann P. B., Adv. Phys., 32 (1983) 453.

[8] Schlottmann P., Phys. Rep., 181 (1989) 1.

[9] Hewson A. C. and Zuckermann M., Phys. Lett., 20 (1966) 219; Hewson A. C., Phys. Rev.,
144 (1966) 420.

[10] Oh S. J. and Doniach S., Phys. Rev. B, 26 (1982) 2085.

[11] Hubbard J., Proc. R. Soc. London, Ser. A, 281 (1964) 401.

[12] Langreth D. C., Phys. Rev., 150 (1966) 516.

[13] Horvatic B. and Zlatic V., Phys. Rev. B, 30 (1984) 6717.

[14] Ferrer J., Martin-Rodero A. and Flores F., Phys. Rev. B, 36 (1987) 6149.

[15] Edwards D. M. and Hertz J. A., Physica B, 163 (1990) 527.

[16] Wermbter S. and Czycholl G., J. Phys. Condens. Matter, 6 (1994) 5439.

[17] Wermbter S. and Czycholl G., J. Phys. Condens. Matter, 7 (1995) 7335.

[18] Haldane F. D. M., J. Phys. C, 11 (1978) 5015.

[19] Keiter H. and Morandi G., Phys. Rep., 109 (1984) 227.

[20] Grewe N. and Keiter H., Phys. Rev. B, 24 (1981) 4420.

[21] Bickers N. E., Cox D. and Wilkins J. W., Phys. Rev. B, 36 (1987) 2036.

[22] Kuramoto Y., Z. Phys. B, 53 (1983) 37; Kuramoto Y. and Kojima H., Z. Phys. B, 57
(1984) 95.

[23] Qin Q. and Keiter H., Z. Phys. B, 84 (1991) 89.

[24] Pruschke T. and Grewe N., Z. Phys. B, 74 (1989) 439.

[25] Anders F. B. and Grewe N., Europhys. Lett., 26 (1994) 551.

[26] Theumann A., Phys. Rev., 178 (1969) 978.

[27] Lacroix C., J. Phys. F, 11 (1981) 2389.

[28] Czycholl G., Phys. Rev. B, 31 (1985) 2867.

[29] Andreani L. and Beck H., Solid State Commun., 79 (1991) 17; Phys. Rev. B, 48 (1993) 7322.

[30] Kuzemsky A. L., Phys. Lett. A, 153 (1991) 466.

[31] Santoro G. and Giuliani G., Phys. Rev. B, 44 (1991) 2209.

[32] Brinckmann J., Europhys. Lett., 28 (1994) 187.



138 EUROPHYSICS LETTERS

[33] Neal H. L., Phys. Rev. B, 32 (1985) 5002; Phys. Rev. Lett., 66 (1991) 818.

[34] Costi T. A., Hewson A. C. and Zlatic V., J. Phys. Condens. Matter, 6 (1994) 2519;
Costi T. A., Schmitteckert P., Kroha J. and Wölfle P., Phys. Rev. Lett., 73 (1994) 1275.
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