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The concept of magnetic polaron is analyzed and developed to elucidate the nature of
itinerant charge carrier states in magnetic semiconductors and similar complex magnetic
materials. By contrasting the scattering and bound states of carriers within the s–d ex-
change model, the nature of bound states at finite temperatures is clarified. The free
magnetic polaron at certain conditions is realized as a bound state of the carrier (elec-
tron or hole) with the spin wave. Quite generally, a self-consistent theory of a magnetic
polaron is formulated within a nonperturbative many-body approach, the Irreducible
Green Functions (IGF) method which is used to describe the quasiparticle many-body
dynamics at finite temperatures. Within the above many-body approach we elaborate
a self-consistent picture of dynamic behavior of two interacting subsystems, the local-
ized spins and the itinerant charge carriers. In particular, we show that the relevant
generalized mean fields emerges naturally within our formalism. At the same time, the
correct separation of elastic scattering corrections permits one to consider the damping
effects (inelastic scattering corrections) in the unified and coherent fashion. The damping
of magnetic polaron state, which is quite different from the damping of the scattering
states, finds a natural interpretation within the present self-consistent scheme.

Keywords: Spin-fermion model; itinerant charge carriers; bound and scattering states;
magnetic polaron.

1. Introduction

The properties of itinerant charge carriers in complex magnetic materials are at

the present time of much interest. The magnetic polaron problem is of particular

interest because one can study how a magnetic ion subsystem influences electronic

properties of complex magnetic materials. Recently, semiconducting ferro- and anti-

ferromagnetic compounds have been studied very extensively.1–5 Substances which

we refer to as magnetic semiconductors, occupy an intermediate position between

magnetic metals and magnetic dielectrics. Magnetic semiconductors are charac-

terized by the existence of two well defined subsystems, the system of magnetic

moments which are localized at lattice sites, and a band of itinerant or conduction

carriers (conduction electrons or holes). Typical examples are the Eu-chalcogenides,
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where the local moments arise from 4f electrons of the Eu ion, and the spinell

chalcogenides containing Cr3+ as a magnetic ion. There is experimental evidence

of a substantial mutual influence of spin and charge subsystems in these compounds.

This is possible due to the sp–d(f) exchange interaction of the localized spins and

itinerant charge carriers. An itinerant carrier perturbs the magnetic lattice and

is perturbed by the spin waves. It was shown that the effects of the sp–d or s–f

exchange,6–10 as well as the sp–d(f) hybridization,11 the electron-phonon interac-

tion and disorder effects contributed to essential physics of these compounds and

various anomalous properties are found. In these phenomena, the itinerant charge

carriers play an important role and many of these anomalous properties may be at-

tributed to the sp–d(f) exchange interaction.10,12 As a result, an electron travelling

through a ferromagnetic crystal will in general couple to the magnetic subsystem.

From the quantum mechanics point of view this means that the wave function of

the electron would depend not only upon the electron coordinate but upon the state

of the spin system as well. Recently, further attempts have been made to study and

exploit carriers which are exchange-coupled to the localized spins.13–17 The effect

of carriers on the magnetic ordering temperature is now found to be very strong

in diluted magnetic semiconductors (DMS).4,13 Diluted magnetic semiconductors

are mixed crystals in which magnetic ions (usually Mn++) are incorporated in a

substitutional position of the host (typically a II-VI or III-V) crystal lattice. The

diluted magnetic semiconductors offer a unique possibility for a gradual change of

the magnitude and sign of exchange interaction by means of technological control

of carrier concentration and band parameters.

It was Kasuya8,10,18–20 who first clarified that the s–f interaction works dif-

ferently in magnetic semiconductors and in metals.21 The effects of the sp–d(f)

exchange on the ferromagnetic state of a magnetic semiconductor were discussed

in Refs. 22–26. It was shown that the effects of the sp–d(f) exchange interac-

tion are of a more variety in the magnetic semiconductors10 than in the magnetic

metals,21 because in the former there are more parameters which can change over

wide ranges.10,18–20 The state of itinerant charge carriers may be greatly modified

due to the scattering on the localized spins.27–30 Interaction with the subsystem

of localized spins leads to renormalization of bare states and the scattering and

bound state regimes may occur.31,32 Along with the scattering states, an additional

dressing effect due to the sp–d(f) exchange interaction can exist in some of these

materials.29,33,34 To some extent, the interaction of an itinerant carrier in a ferro-

magnet with spin waves is analogous to the polaron problem in polar crystals if we

can consider the electron and spin waves to be separate subsystems.22 Note, how-

ever, that the magnetic polaron differs from the ordinary polaron in a few important

points.25,26,34–36

To describe this situation a careful analysis of the state of itinerant carriers

in complex magnetic materials37 is highly desirable. For this aim a few model

approaches have been proposed. A basic model is a combined spin-fermion model

(SFM) which includes interacting spin and charge subsystems.25,27,38–40
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The problem of adequate physical description of itinerant carriers (including

a self-trapped state) within various types of generalized spin-fermion models has

intensively been studied during the last decades.27,39–42 The dynamic interaction

of an itinerant electron with the spin-wave system in a magnet has been studied by

many authors,8,10,22,25 including the effects of external fields. It was shown within

the perturbation theory that the state of an itinerant charge carrier is renormal-

ized due to the spin disorder scattering. The second order perturbation treatment

leads to the lifetime of conduction electron and explains qualitatively the anoma-

lous temperature dependence of the electrical resistivity.43,44,31,32,25 The polaron

formation in the concentrated systems leads to giant magneto-resistive effects in

the Eu chalcogenides.1,33

The concept of magnetic polaron in the magnetic material was discussed

and analyzed in Refs. 33, 38, 45, 25, 26. The future development of this con-

cept was stimulated by many experimental results and observations on magnetic

semiconductors.3,46–48 A paramagnetic polaron in magnetic semiconductors was

studied by Kasuya,25 who argued on the basis of thermodynamics, that once elec-

tron is trapped into the spin cluster, the spin alignment within the spin cluster

increases and thus the potential to trap an electron increases. The bound states

around impurity ions of opposite charge and self-trapped carriers were discussed by

de Gennes.41 Emin34 defined the self-trapped state and formulated that

“the unit comprising the self-trapped carrier and the associated atomic

deformation pattern is referred to as a polaron, with the adjective small

or large denoting whether the spatial extent of the wave function of the

self-trapped carrier is small or large compared with the dimensions of a

unit cell”.

In papers [Refs. 45, 49–52], a set of self-consistent equations for the self-trapped

(magnetic polaron) state was derived and it was shown that the paramagnetic

polaron appeared discontinuously with decreasing temperature. These studies were

carried out for wide band materials and the thermodynamic arguments were mainly

used in order to determine a stable configuration. Some specific points of spin-

polaron and exiton magnetic polaron were discussed further in papers [Refs. 52–56].

Properties of the magnetic polaron in a paramagnetic semiconductor were stud-

ied by Yanase,57 Kubler58 and by Auslender and Katsnelson.59 The later authors60

developed a detailed theory of the states of itinerant charge carriers in ferromag-

netic semiconductors in the spin-wave (low temperature) region within the frame-

work of variational approach. The effect of the electron-phonon interaction on the

self-trapped magnetic polaron state was investigated by Umehara.61,62 A theory

for self-trapped magnetic polaron in ferromagnetic semiconductor with a narrow

band was formulated by Takeda and Kasuya.63 The electron crystallization in

antiferromagnetic semiconductors was studied by Umehara,64,65 and a dense mag-

netic polaron state was conjectured to describe the physics of Gd3−xvS4.
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A model of the bound magnetic polaron, i.e. electron trapped on impurity or

by vacancy48 was developed in papers [Refs. 66, 67]. The general thermodynamic

model of the bound magnetic polaron and its stability was considered in Refs. 68–70.

Then similar models were studied by several authors.3,71,72

The state of a conduction electron in a ferromagnetic crystal (magnetic polaron)

was investigated by Richmond73 who deduced an expression for one-electron Green

function. Shastry and Mattis74 presented a detailed analysis of the one-electron

Green function at zero temperature. They constructed an exact Green function for

a single electron in a ferromagnetic semiconductor and highlighted the crucial dif-

ferences between bound- and scattering-state contributions to the electron spectral

weight. A finite temperature self-consistent theory of magnetic polaron within the

Green functions approach was developed in Ref. 75.

Recently, new interest in the problem of magnetic polaron was stimulated by the

studies of magnetic and transport properties of the low-density carrier ferromag-

nets, diluted magnetic semiconductors (DMS).76–78,4,5 The concept of the magnetic

polaron, the self-trapped state of a carrier and spin wave, attracts increasing at-

tention because of the anomalous magnetic, transport, and optical properties of

DMS77,79–83 and the perovskite manganites.37,84,85 For example, a two-component

phenomenological model, describing polaron formation in colossal magnetoresistive

compounds, has been devised recently.86 The paper [Ref. 78] includes a detailed

analysis of the polaron-polaron interaction effects in DMS.

The purpose of the present work is to elucidate further the nature of itinerant

carrier states in magnetic semiconductors and similar complex magnetic materials.

An added motivation for performing new consideration and a careful analysis of

the magnetic polaron problem arise from the circumstance that the various new

materials were fabricated and tested, and a lot of new experimental facts were

accumulated. This paper deals with the effects of the local exchange due to inter-

action of carrier spins with the ionic spins or the sp–d or s–f exchange interaction

on the state of itinerant charge carriers. We develop in some detail a many-body

approach to the calculation of the quasiparticle energy spectra of itinerant

carriers so as to understand their quasiparticle many-body dynamics. The con-

cept of the magnetic polaron is reconsidered and developed and the scattering and

bound states are thoroughly analyzed. In the previous papers, we set up the formal-

ism of the method of Irreducible Green Functions (IGF).87 This IGF method allows

one to describe quasiparticle spectra with damping for many-particle systems on a

lattice with complex spectra and a strong correlation in a very general and natural

way. This scheme differs from the traditional method of decoupling of an infinite

chain of equations88 and permits a construction of the relevant dynamic solutions

in a self-consistent way at the level of the Dyson equation without decoupling the

chain of equations of motion for the GFs.

In this paper, we apply the IGF formalism to consider quasiparticle spectra of

charge carriers for the lattice spin-fermion model consisting of two interacting sub-

systems. The concepts of magnetic polaron and the scattering and bound states are
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analyzed and developed in some detail. We consider thoroughly a self-consistent

calculation of quasiparticle energy spectra of the itinerant carriers. We are particu-

larly interested in how the scattering state appears differently from the bound state

in magnetic semiconductor.

The key problem of most of this work is the formation of magnetic polaron under

various conditions on the parameters of the spin-fermion model. It is the purpose

of this paper to explore more fully the effects of the sp–d(f) exchange interaction

on the state of itinerant charge carriers in magnetic semiconductors and similar

complex magnetic materials.

2. The Spin-Fermion Model

The concept of the sp–d (or d–f) model plays an important role in the quantum

theory of magnetism.9,10,18,12,40 In this section, we consider the generalized sp–d

model which describes the localized 3d(4f)-spins interacting with s(p)-like con-

duction (itinerant) electrons (or holes) and takes into consideration the electron-

electron interaction.

The total Hamiltonian of the model (for simplicity we shall call it the s–dmodel)

is given by

H = Hs +Hs−d +Hd . (1)

The Hamiltonian of band electrons (or holes) is given by

Hs =
∑

ij

∑

σ

tija
†
iσajσ +

1

2

∑

iσ

Uniσni−σ . (2)

This is the Hubbard model. We adopt the notation

aiσ = N−1/2
∑

~k

akσ exp(i~k ~Ri) , a†iσ = N−1/2
∑

~k

a†kσ exp(−i~k ~Ri) .

In the case of a pure semiconductor, at low temperatures the conduction electron

band is empty and the Coulomb term U is therefore not so important. A partial

occupation of the band leads to an increase in the role of the Coulomb correla-

tion. It is clear that we treat conduction electrons as s-electrons in the Wannier

representation. In doped DMS the carrier system is the valence band p-holes.

The band energy of Bloch electrons ε~k is defined as follows:

tij = N−1
∑

~k

ε~k exp[i~k(~Ri − ~Rj)] ,

where N is the number of lattice sites. For the tight-binding electrons in a cubic

lattice we use the standard expression for the dispersion

ε~k = 2
∑

α

t(~aα) cos(~k~aα) (3)
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where ~aα denotes the lattice vectors in a simple lattice with the inversion centre.

The term Hs−d describes the interaction of the total 3d(4f)-spin with the spin

density of the itinerant carriers11

Hs−d = −2
∑

i

I~σi
~Si = −IN−1/2

∑

kq

∑

σ

[S−σ
−q a

†
kσak+q−σ + zσS

z
−qa

†
kσak+qσ ] (4)

where sign factor zσ is given by

zσ = (+,−) for σ = (↑, ↓)

and

S−σ
−q =

{

S−
−q if σ = +

S+
−q if σ = −

.

For example, in DMS4 the local exchange coupling resulted from the p–d hybridiza-

tion between the Mn d levels and the p valence band I ∼ V 2
p−d. In magnetic semi-

conductors this interaction can lead to the formation of the bound electron-magnon

(polaron-like) bound state due to the effective attraction of the electron and magnon

in the case of antiferromagnetic coupling (I < 0).

For the subsystem of localized spins we have

Hd = −
1

2

∑

ij

Jij
~Si
~Sj = −

1

2

∑

q

Jq
~Sq
~S−q . (5)

Here we use the notation

Sα
i = N−1/2

∑

~k

Sα
k exp(i~k ~Ri) , Sα

k = N−1/2
∑

~i

Sα
i exp(−i~k ~Ri)

[S±
k , S

z
q ] =

1

N1/2
∓ S±

k+q , [S+
k , S

−
q ] =

2

N1/2
Sz

k+q

Jij = N−1
∑

~k

J~k exp[i~k(~Ri − ~Rj)] .

This term describes a direct exchange interaction between the localized 3d(4f) mag-

netic moments at the lattice sites i and j. In the DMS system this interaction is

rather small. The ferromagnetic interaction between the local moments is mediated

by the real itinerant carriers in the valence band of the host semiconductor ma-

terial. The carrier polarization produces the RKKY exchange interaction of local

moments7,8,21,12

HRKKY = −
∑

i6=j

Kij
~Si
~Sj . (6)

We emphasize that Kij ∼ |I2| ∼ V 4
p−d. To explain this, let us remind that the

microscopic model,11 which contains basic physics, is the Anderson–Kondo model12

H =
∑

ij

∑

σ

tija
†
iσajσ − V

∑

ij

∑

σ

(a+
iσdjσ + h.c.)

−Ed

∑

i

∑

σ

nd
iσ +

1

2

∑

iσ

Und
iσn

d
i−σ . (7)
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For the symmetric case U = 2Ed and for U � V Eq. (7) can be mapped onto the

Kondo lattice model12 (KLM)

H =
∑

ij

∑

σ

tija
†
iσajσ −

∑

i

2I~σi
~Si . (8)

Here I ∼ 4V 2

Ed
. The KLM may be viewed as the low-energy sector of the initial

model Eq. (7).

We follow the previous treatments and take as our model Hamiltonian ex-

pression (1). For the sake of brevity we omit in this paper the U-term (low-

concentration limit). This U-term can be included into consideration straightfor-

wardly (see Ref. 40). As stated above, the model will represent an assembly of

itinerant charge carriers in a periodic atomic lattice. The carriers are represented

by quantized Fermi operators. The lattice sites are occupied by the localized spins.

Thus, this model can really be called the spin-fermion model.

3. Outline of the IGF Method

In this section, we discuss the main ideas of the IGF approach that allows one to

describe completely quasiparticle spectra with damping in a very natural way.

We reformulated the two-time GF method87 to the form which is especially

adjusted to correlated fermion systems on a lattice and systems with complex spec-

tra. A very important concept of the whole method is the Generalized Mean Fields

(GMFs), as it was formulated in Ref. 87. These GMFs have a complicated struc-

ture for a strongly correlated case and complex spectra, and are not reduced to the

functional of mean densities of the electrons or spins when one calculates excitation

spectra at finite temperatures.

To clarify the foregoing, let us consider a retarded GF of the form88

Gr = 〈〈A(t), A†(t′)〉〉 = −iθ(t− t′)〈[A(t)A†(t′)]η〉 , η = ± . (9)

As an introduction to the concept of IGFs, let us describe the main ideas of this

approach in a symbolic and simplified form. To calculate the retarded GF G(t− t′),
let us write down the equation of motion for it

ωG(ω) = 〈[A,A†]η〉 + 〈〈[A,H ]−|A
†〉〉ω . (10)

Here we use the notation 〈〈A(t), A†(t′)〉〉 for the time-dependent GF and 〈〈A|A†〉〉ω
for its Fourier transform.88 The notation [A,B]η refers to commutation and anti-

commutation depending on the value of η = ±.

The essence of the method is as follows87:

It is based on the notion of the “IRREDUCIBLE” parts of GFs (or the irre-

ducible parts of the operators, A and A†, out of which the GF is constructed) in

terms of which it is possible, without recourse to a truncation of the hierarchy of

equations for the GFs, to write down the exact Dyson equation and to obtain an ex-

act analytic representation for the self-energy operator. By definition, we introduce

the irreducible part (ir) of the GF

(ir)〈〈[A,H ]−|A
†〉〉 = 〈〈[A,H ]− − zA|A†〉〉 . (11)
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The unknown constant z is defined by the condition (or constraint)

〈[[A,H ]
(ir)
− , A†]η〉 = 0 (12)

which is an analogue of the orthogonality condition in the Mori formalism. Let us

emphasize that due to the complete equivalence of the definition of the irreducible

parts for the GFs ((ir)〈〈[A,H ]−|A†〉〉) and operators ((ir)[A,H ]−) ≡ ([A,H ]−)(ir)

we will use both the notation freely ((ir)〈〈A|B〉〉 is the same as 〈〈(A)(ir)|B〉〉). A

choice one notation over another is determined by the brevity and clarity of notation

only. From the condition (12) one can find

z =
〈[[A,H ]−, A†]η〉

〈[A,A†]η〉
=
M1

M0
. (13)

Here M0 and M1 are the zeroth and first order moments of the spectral density.

Therefore, the irreducible GFs are defined so that they cannot be reduced to the

lower-order ones by any kind of decoupling. It is worth noting that the term “ir-

reducible” in a group theory means a representation of a symmetry operation that

cannot be expressed in terms of lower dimensional representations. Irreducible (or

connected) correlation functions are known in statistical mechanics. In the diagram-

matic approach, the irreducible vertices are defined as graphs that do not contain

inner parts connected by the G0-line. With the aid of the definition (11) these con-

cepts are expressed in terms of retarded and advanced GFs. The procedure extracts

all relevant (for the problem under consideration) mean-field contributions and puts

them into the generalized mean-field GF which is defined here as

G0(ω) =
〈[A,A†]η〉

(ω − z)
. (14)

To calculate the IGF (ir)〈〈[A,H ]−(t), A†(t′)〉〉 in (10), we have to write the equation

of motion for it after differentiation with respect to the second time variable t′. The

condition of orthogonality (12) removes the inhomogeneous term from this equation

and is a very crucial point of the whole approach. If one introduces the irreducible

part for the right-hand side operator, as discussed above for the “left” operator,

the equation of motion (10) can be exactly rewritten in the following form:

G = G0 +G0PG0 . (15)

The scattering operator P is given by

P = (M0)
−1((ir)〈〈[A,H ]−|[A

†, H ]−〉〉
(ir))(M0)

−1 . (16)

The structure of Eq. (16) enables us to determine the self-energy operator M by

analogy with the diagram technique

P = M +MG0P . (17)

We use here the notationM for self-energy (mass operator in quantum field theory).

From the definition (17) it follows that the self-energy operator M is defined as a

proper (in the diagrammatic language, “connected”) part of the scattering operator
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M = (P )p. As a result, we obtain the exact Dyson equation for the thermodynamic

double-time Green functions

G = G0 +G0MG. (18)

The difference between P and M can be regarded as two different solutions of two

integral equations (15) and (18). However, from the Dyson equation (18) only the

full GF is seen to be expressed as a formal solution of the form

G = [(G0)−1 −M ]−1 . (19)

Equation (19) can be regarded as an alternative form of the Dyson equation (18) and

the definition of M provides that the generalized mean-field GF G0 is specified. On

the contrary, for the scattering operator P , instead of the property G0G−1+G0M =

1, one has the property

(G0)−1 −G−1 = PG0G−1 .

Thus, the very functional form of the formal solution (19) precisely determines the

difference between P and M .

Thus, by introducing irreducible parts of GF (or irreducible parts of the oper-

ators, out of which the GF is constructed) the equation of motion (10) for the GF

can exactly be (but using the orthogonality constraint (12)) transformed into the

Dyson equation for the double-time thermal GF (18). This result is very remarkable

because the traditional form of the GF method does not include this point. Notice

that all quantities thus considered are exact. Approximations can be generated not

by truncating the set of coupled equations of motions but by a specific approxima-

tion of the functional form of the mass operator M within a self-consistent scheme

expressing M in terms of the initial GF

M ≈ F [G] .

Different approximations are relevant to different physical situations.

The projection operator technique has essentially the same philosophy. But with

using the constraint (12) in our approach we emphasize the fundamental and central

role of the Dyson equation for calculation of single-particle properties of many-body

systems. The problem of reducing the whole hierarchy of equations involving higher-

order GFs by a coupled nonlinear set of integro-differential equations connecting the

single-particle GF to the self-energy operator is rather nontrivial. A characteristic

feature of these equations is that besides the single-particle GF they involve also

higher-order GF. The irreducible counterparts of the GFs, vertex functions, serve

to identify correctly the self-energy as

M = G−1
0 −G−1 .

The integral form of the Dyson equation (18) gives M the physical meaning of

a nonlocal and energy-dependent effective single-particle potential. This meaning

can be verified for the exact self-energy using the diagrammatic expansion for the

causal GF.
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It is important to note that for the retarded and advanced GFs, the notion

of the proper part M = (P )p is symbolic in nature.87 In a certain sense, it

is possible to say that it is defined here by analogy with the irreducible many-

particle T -matrix. Furthermore, by analogy with the diagrammatic technique, we

can also introduce the proper part defined as a solution to the integral equation

(17). These analogues allow us to better understand the formal structure of the

Dyson equation for the double-time thermal GF, but only in a symbolic form.

However, because of the identical form of the equations for GFs for all three types

(advanced, retarded, and causal), we can convert our calculations to causal GF

at each stage of calculations and, thereby, confirm the substantiated nature of

definition (17)! We therefore should speak of an analogy of the Dyson equation.

Hereafter, we drop this stipulating, since it does not cause any misunderstanding.

In a sense, the IGF method is a variant of the Gram–Schmidt orthogonalization

procedure.

It should be emphasized that the scheme presented above gives just a general

idea of the IGF method. A more exact explanation why one should not introduce

the approximation already in P , instead of having to work out M , is given below

when working out the application of the method to specific problems.

The general philosophy of the IGF method is in the separation and identifica-

tion of elastic scattering effects and inelastic ones. This latter point is quite often

underestimated, and both effects are mixed. However, as far as the right definition

of quasi-particle damping is concerned, the separation of elastic and inelastic scat-

tering processes is believed to be crucially important for many-body systems with

complicated spectra and strong interaction.

From a technical point of view, the elastic GMF renormalizations can exhibit

quite a nontrivial structure. To obtain this structure correctly, one should construct

the full GF from the complete algebra of relevant operators and develop a special

projection procedure for higher-order GFs, in accordance with a given algebra. Then

a natural question arises how to select the relevant set of operators {A1, A2, . . . , An}

describing the “relevant degrees of freedom”. The above consideration suggests an

intuitive and heuristic way to the suitable procedure as arising from an infinite

chain of equations of motion (10). Let us consider the column







A1

A2

...

An








where

A1 = A , A2 = [A,H ] , A3 = [[A,H ], H ], . . . , An = [[· · · [A,H ] · · ·H
︸ ︷︷ ︸

n

] .

Then the most general possible Green function can be expressed as a matrix
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Ĝ =

〈〈








A1

A2
...

An








|(A†
1A

†
2 · · ·A

†
n)

〉〉

.

This generalized Green function describes the one-, two-, and n-particle dynamics.

The equation of motion for it includes, as a particular case, the Dyson equation

for single-particle Green function, and the Bethe–Salpeter equation which is the

equation of motion for the two-particle Green function and which is an analogue of

the Dyson equation, etc. The corresponding reduced equations should be extracted

from the equation of motion for the generalized GF with the aid of special techniques

such as the projection method and similar techniques. This must be a final goal

towards a real understanding of the true many-body dynamics. At this point, it is

worthwhile to underline that the above discussion is a heuristic scheme only, but

not a straightforward recipe. The specific method of introducing the IGFs depends

on the form of operators An, the type of the Hamiltonian, and conditions of the

problem.

Here a sketchy form of the IGF method is presented. The aim is to introduce the

general scheme and to lay the groundwork for generalizations. We demonstrated in

Ref. 87 that the IGF method is a powerful tool for describing the quasiparticle exci-

tation spectra, allowing a deeper understanding of elastic and inelastic quasiparticle

scattering effects and the corresponding aspects of damping and finite lifetimes. In

the present context, it provides a clear link between the equation-of-motion ap-

proach and the diagrammatic methods due to derivation of the Dyson equation.

Moreover, due to the fact that it allows the approximate treatment of the self-

energy effects on a final stage, it yields a systematic way of the construction of

approximate solutions.

4. Charge and Spin Degrees of Freedom

Our attention will be focused on the quasiparticle many-body dynamics of the

s–d model. To describe self-consistently the charge dynamics of the s–d model,

one should take into account the full algebra of relevant operators of the suitable

“charge modes” which are appropriate when the goal is to describe self-consistently

the quasi-particle spectra of two interacting subsystems.

The simplest case is to consider a situation when a single electron is injected into

an otherwise perfectly pure and insulating magnetic semiconductor. The behavior

of charge carriers can be divided into two distinct limits based on interrelation

between the band width W and the exchange interaction I :

|2IS| �W ; |2IS| �W .

Exact solution for the s–d model is known only in the strong-coupling limit, where

the band width is small compared to the exchange interaction. This case can be
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considered as a starting point for the description of narrow band materials. The

case of intermediate coupling, when |2IS| 'W , makes serious difficulties.

To understand how the itinerant charge carriers behave in a wide range of

values of model parameters, consider the equations of motion for the charge and

spin variables.

[akσ , Hs]− = εkakσ (20)

[akσ , Hs−d]− = −IN−1/2
∑

q

(S−σ
−q aq+k−σ + zσS

z
−qaq+kσ) (21)

[S+
k , Hs−d]− = −IN−1

∑

pq

[2Sz
k−qa

†
p↑ap+q↓ − S+

k−q(a
†
p↑ap+q↑ − a†p↓ap+q↓)] (22)

[S−
−k, Hs−d]− = −IN−1

∑

pq

[2Sz
k−qa

†
p↓ap+q↑ − S−

k−q(a
†
p↑ap+q↑ − a†p↓ap+q↓)] (23)

[Sz
k , Hs−d]− = −IN−1

∑

pq

(S+
k−qa

†
p↓ap+q↑ − S−

k−qa
†
p↑ap+q↓) (24)

[S+
k , Hd]− = N−1/2

∑

q

Jq(S
z
qS

+
k−q − Sz

k−qS
+
q ) (25)

[S−
−k, Hs−d]− = −IN−1

∑

pq

[2Sz
k−qa

†
p↓ap+q↑ − S−

k−q(a
†
p↑ap+q↑ − a†p↓ap+q↓)] (26)

From Eqs. (20)–(26) it follows that the localized spin and itinerant charge variables

are coupled.

We have the following kinds of charge

akσ , a†kσ , nkσ = a†kσakσ

and spin operators

S+
k , S−

−k = (S+
k )† ,

σ+
k =

∑

q

a†k↑ak+q↓ ; σ−
k =

∑

q

a†k↓ak+q↑ .

There are additional combined operators

bkσ =
∑

q

(S−σ
−q aq+k−σ + zσS

z
−qaq+kσ) .

In the lattice (Wannier) representation the operator bkσ reads

biσ = (S−σ
i ai−σ + zσS

z
i aiσ) . (27)

It was clearly shown in Refs. 8, 9, 22, 27, 43 that the calculation of the energy of

itinerant carriers involves the dynamics of the ion spin system. In the approximation

of rigid ion spins,27 i.e.:

Sx
j = Sy

j = 0 , Sz
j = S
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the energy shift of electron was estimated as

∆ε(kσ) ∼ −I
σ

2
S +

S2

4

∑

q 6=0

|Iq |
2

ε(k) − ε(k − q)
.

The dynamic term was estimated as

∆ε(k ↑)

∼
S2

4

∑

Q6=0

|IQ|2

ε(k) − ε(k −Q)
+

S

2N

1

(2π)3

∫

d3q
|Iq |

2N(ω(q))

ε(k) − ε(k − q) − I〈Sz〉 +Dq2
.

For the case of rare-earth metals, the electron-magnon interaction in the s–d model

within a second-order perturbation theory was studied by Liu and Davis89 and by

Kim90,91 within the Bogoliubov–Tyablikov88 GFs method.

To describe self-consistently the charge carrier dynamics of the s–d model within

a sophisticated many-body approach, one should take into account the full algebra

of relevant operators of the suitable “modes” (degrees of freedom) which are ap-

propriate when the goal is to describe self-consistently quasiparticle spectra of two

interacting subsystems. An important question in this context is the self-consistent

picture of the quasiparticle many-body dynamics which takes into account the com-

plex structure of the spectra due to the interaction of the “modes”. Since our goal

is to calculate the quasiparticle spectra of the itinerant charge carriers, including

bound carrier-spin states, a suitable algebra of the relevant operators should be con-

structed. In principle, the complete algebra of the relevant “modes” should include

the spin variables too. The most full relevant set of the operators is

{aiσ , S
z
i , S

−σ
i , Sz

i aiσ , S
−σ
i ai−σ} .

That means that the corresponding relevant GF for interacting charge and spin

degrees of freedom should have the form









〈〈aiσ|a
†
jσ′ 〉〉 〈〈aiσ|Sz

j
〉〉 〈〈aiσ|Sσ′

j
〉〉 〈〈aiσ|a

†
jσ′ Sz

j
〉〉 〈〈aiσ |a

†
j−σ′ Sσ

j
〉〉

〈〈Sz
i
|a

†
jσ′ 〉〉 〈〈Sz

i
|Sz

j
〉〉 〈〈Sz

i
|Sσ′

j
〉〉 〈〈Sz

i
|a

†
jσ′ Sz

j
〉〉 〈〈Sz

i
|a

†
j−σ′ Sσ′

j
〉〉

〈〈S
−σ
i

|a
†
jσ′ 〉〉 〈〈S

−σ
i

|Sz
j
〉〉 〈〈S

−σ
i

|Sσ′

j
〉〉 〈〈S

−σ
i

|a
†
jσ′ Sz

j
〉〉 〈〈S

−σ
i

|a
†
j−σ′ Sσ′

j
〉〉

〈〈Sz
i

aiσ |a
†
jσ′ 〉〉 〈〈Sz

i
aiσ|Sz

j
〉〉 〈〈Sz

i
aiσ |Sσ′

j
〉〉 〈〈Sz

i
aiσ |a

†
jσ′ Sz

j
〉〉 〈〈Sz

i
aiσ |a

†
j−σ′ Sσ

j
〉〉

〈〈S
−σ
i

ai−σ|a
†
jσ′ 〉〉 〈〈S

−σ
i

ai−σ |Sz
j
〉〉 〈〈S

−σ
i

ai−σ|Sσ′

j
〉〉 〈〈S

−σ
i

ai−σ |a
†
jσ′ Sz

j
〉〉 〈〈S

−σ
i

ai−σ |a
†
j−σ′ Sσ′

j
〉〉










.

(28)

However, to make the problem more easily tractable, we will consider below the

shortest algebra of the relevant operators (akσ , a
†
kσ , bkσ , b

†
kσ). However, this choice

requires a separate treatment of the spin dynamics.

Here we reproduce very briefly the description of the spin dynamics of the s–d

model for the sake of self-contained formulation. The spin quasiparticle dynamics

of the s–d model was considered in detail in papers.39,40,92 We consider the double-

time thermal GF of localized spins88 which is defined as
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G+−(k; t− t′) = 〈〈S+
k (t), S−

−k(t′)〉〉 = −iθ(t− t′)〈[S+
k (t), S−

−k(t′)]−〉

= 1/2π

∫ +∞

−∞
dω exp(−iωt)G+−(k;ω) . (29)

The next step is to write down the equation of motion for the GF. To describe

self-consistently the spin dynamics of the s–d model, one should take into account

the full algebra of relevant operators of the suitable “spin modes” which are ap-

propriate when the goal is to describe self-consistently the quasiparticle spectra of

two interacting subsystems. We used the following generalized matrix GF of the

form39,40,92:
(
〈〈S+

k |S−
−k〉〉 〈〈S+

k |σ−
−k〉〉

〈〈σ+
k |S−

−k〉〉 〈〈σ+
k |σ−

−k〉〉

)

= Ĝ(k;ω) . (30)

Let us consider the equation of motion for the GF Ĝ(k;ω). By differentiation of the

GF 〈〈S+
k (t)|B(t′)〉〉 with respect to the first time, t, we find

ω〈〈S+
k |B〉〉ω =

{

2N−1/2〈Sz
0 〉

0

}

+
I

N

∑

pq

〈〈S+
k−q(a

†
p↑ap+q↑ − a†p↓ap+q↓) − 2Sz

k−qa
†
p↑ap+q↓|B〉〉ω

+N−1/2
∑

q

Jq〈〈(S
z
qS

+
k−q − Sz

k−qS
+
q )|B〉〉ω (31)

where

B =

{
S−
−k

σ−
−k

}

.

Let us introduce by definition irreducible (ir) operators as

(Sz
q )ir = Sz

q − 〈Sz
0 〉δq,0 ;

(a†p+qσapσ)ir = a†p+qσapσ − 〈a†pσapσ〉δq,0 (32)

((Sz
q )irS+

k−q − (Sz
k−q)

irS+
q )ir

= ((Sz
q )irS+

k−q − (Sz
k−q)

irS+
q ) − (φq − φk−q)S

+
k . (33)

From the condition (12)

〈[((Sz
q )irS+

k−q − (Sz
k−q)

irS+
q − (φq − φk−q)S

+
k ), S−

−k]−〉 = 0

one can find

φq =
2Kzz

q +K−+
q

2〈Sz
0 〉

(34)

Kzz
q = 〈(Sz

q )ir(Sz
q )ir〉 ; K−+

q = 〈S−
−qS

+
q 〉 . (35)
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Using the definition of the mass operator Eq. (17) the equation of motion, Eq. (31),

can be exactly transformed to the Dyson equation, Eq. (18)

Ĝ = Ĝ0 + Ĝ0M̂ Ĝ . (36)

Hence, the determination of the full GF Ĝ has been reduced to that of Ĝ0 and M̂ .

The GF matrix G0 in the generalized mean field approximation reads

Ĝ0 = R−1

(
I−1N1/2Ω2 Ω2Nχ

s
0

Ω2Nχ
s
0 −Ω1Nχ

s
0

)

(37)

where

R = Ω1 + Ω2IN
1/2χs

0 . (38)

The diagonal matrix elements G11
0 read

〈〈S+
k |S−

−k〉〉
0 =

2Sz

Ω1 + 2I2Szχs
0(k, ω)

(39)

where

Ω1 = ω −
〈Sz

0 〉

N1/2
(J0 − Jk) −N−1/2

×
∑

q

(Jq − Jq−k)
2Kzz

q +K−+
q

2〈Sz
0 〉

− I(n↑ − n↓) (40)

Ω2 =
2〈Sz

0 〉I

N
(41)

χs
0(k, ω) = N−1

∑

p

(fp+k↓ − fp↑)

ωs
p,k

. (42)

Here the notation was used

ωs
p,k = (ω + εp − εp+k − ∆I)

∆I = 2ISz (43)

nσ =
1

N

∑

q

〈a†qσaqσ〉 =
1

N

∑

q

fqσ =
∑

q

(exp(βε(qσ)) + 1)−1

ε(qσ) = εq − zσISz

n̄ =
∑

(n↑ + n↓) ; 0 ≤ n̄ ≤ 2

Sz = N−1/2〈Sz
0 〉 .

We assume then that the local exchange parameter I = 0. In this limiting case we

have

〈〈S+
k |S−

−k〉〉
0 =

2Sz

ω − Sz(J0 − Jk) − 1
2NSz

∑

q(Jq − Jq−k)(2Kzz
q +K−+

q )
. (44)
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The spectrum of quasiparticle excitations of localized spins without damping follows

from the poles of the generalized mean-field GF (44)

ω(k) = Sz(J0 − Jk) +
1

2NSz

∑

q

(Jq − Jq−k)(2Kzz
q +K−+

q ) . (45)

It is seen that due to the correct definition of generalized mean fields we get the

result for the localized spin Heisenberg subsystem which includes both the simplest

spin-wave result and the result of Tyablikov decoupling as limiting cases. In the

hydrodynamic limit k → 0, ω → 0 it leads to the dispersion law ω(k) = Dk2.

The exchange integral Jk can be written in the following way:

Jk =
∑

i

exp (−i~k ~Ri)J(|~Ri|) . (46)

The expansion in small ~k gives92

〈〈S+
k |S−

−k〉〉
0 =

2Sz

ω − ω(k)
(47)

ω(k → 0) =

(

Sz(J0 − Jk) +
1

2NSz

∑

q

(Jq − Jq−k)(2Kzz
q +K−+

q )

)

' Dk2

=

(

Sz

2
η0 +

N

2S2
z

∑

q

ηq(2K
zz
q +K−+

q )

)

k2

ηq =
∑

i

(~k ~Ri)
2J(|~Ri|) exp (−i~q ~Ri) .

It is easy to analyze the quasiparticle spectra of the (s–d) model in the case of

nonzero coupling I. The full generalized mean field GFs can be rewritten as

〈〈S+
k |S−

−k〉〉
0

=
2Sz

ω − Im− Sz(J0 − Jk) − 1
2NSz

∑

q(Jq − Jq−k)(2Kzz
q +K−+

q ) + 2I2Szχs
0(k, ω)

(48)

〈〈σ+
k |σ−

−k〉〉
0 =

χs
0(k, ω)

1 − Ieff (ω)χs
0(k, ω)

. (49)

Here the notation was used

Ieff =
2I2Sz

ω − Im
; m = (n↑ − n↓) .

The precise significance of this description of spin quasiparticle dynamics appears

in the next sections.
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5. Charge Dynamics of the s–d Model. Scattering Regime

In order to discuss the charge quasiparticle dynamics of the s–d model, we can

use the whole development in Sec. 3. The concept of a magnetic polaron requires

that we should have also precise knowledge about the scattering charge states.

By contrasting the bound and scattering state regime, the properties of itinerant

charge carriers and their quasiparticle many-body dynamics can be substantially

clarified. We consider again the double-time thermal GF of charge operators88 which

is defined as

gkσ(t− t′) = 〈〈akσ(t), a†kσ(t′)〉〉 = −iθ(t− t′)〈[akσ(t), a†kσ(t′)]+〉

= 1/2π

∫ +∞

−∞
dω exp(−iωt)gkσ(ω) . (50)

To describe the quasiparticle charge dynamics or dynamics of carriers of the s–d

model self-consistently, we should consider the equation of motion for the GF g:

ω〈〈akσ |a
†
kσ〉〉ω = 1 + εk〈〈akσ |a

†
kσ〉〉ω

− IN−1/2
∑

q

〈〈(S−σ
−q aq+k−σ + zσS

z
−qaq+kσ)|a†kσ〉〉ω

= IN−1/2〈〈bkσ |a
†
kσ〉〉ω . (51)

Let us introduce by definition irreducible (ir) spin operators as

(Sz
q )ir = Sz

q − 〈Sz
0 〉δq,0

(Sσ
q )ir = Sσ

q − 〈Sσ
0 〉δq,0 = Sσ

q .
(52)

By this definition we suppose that there is a long-range magnetic order in the system

under consideration with the order parameter 〈Sz
0 〉. The irreducible operator for the

transversal spin components coincides with the initial operator.

Equivalently, one can write down by definition irreducible GFs:

(ir〈〈S−σ
−q aq+k−σ |a

†
kσ〉〉ω) = 〈〈S−σ

−q aq+k−σ |a
†
kσ〉〉ω

(ir〈〈Sz
−qaq+kσ |a

†
kσ〉〉ω) = 〈〈Sz

−qaq+kσ |a
†
kσ〉〉ω

−〈Sz
0 〉δq,0〈〈akσ |a

†
kσ〉〉ω .

(53)

Then the equation of motion for the GF gkσ(ω) can be exactly transformed to the

following form:

(ω − ε(kσ))〈〈akσ |a
†
kσ〉〉ω + IN−1/2〈〈Ckσ |a

†
kσ〉〉 = 1 . (54)

Here the notation was used

Ckσ = birkσ =
∑

q

(S−σ
−q aq+k−σ + zσ(Sz

−q)
iraq+kσ) . (55)

Following the IGF strategy we should perform the differentiation of the higher-order

GFs on the second time t′ and introduce the irreducible GFs (operators) for the
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“right” side. Using this approach the equation of motion, Eq. (34), can be exactly

transformed into the Dyson equation Eq. (18)

gkσ(ω) = g0
kσ(ω) + g0

kσ(ω)Mkσ(ω)gkσ(ω) (56)

where

g0
kσ(ω) = 〈〈akσ |a

†
kσ〉〉

0 = (ω − ε(kσ))−1 . (57)

The mean-field GF Eq. (57) contains all the mean-field renormalizations or elastic

scattering corrections. The inelastic scattering corrections, according to Eq. (56),

are separated to the mass operator Mkσ(ω). Here the mass operator has the

following exact representation (scattering regime):

Mkσ(ω) = Me−m
kσ (ω)

=
I2

N

∑

qs

(((ir)〈〈S−σ
−q ak+q−σ |S

σ
s a

+
k+s−σ〉〉

(ir),p)

+ ((ir)〈〈Sz
−qak+qσ |S

z
sa

+
k+sσ〉〉

(ir),p)) . (58)

To calculate the mass operator Mkσ(ω), we express the GF in terms of the corre-

lation functions. In order to calculate the mass operator self-consistently, we shall

use approximation of two interacting modes for M e−m. Then the corresponding

expression can be written as

Me−m
kσ (ω) =

I2

N

∑

q

∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2)

×

(
−1

π
Imgk+q,−σ(ω2)

(
−1

π
Im〈〈Sσ

−q |S
−σ
q 〉〉ω1

)

+
−1

π
Imgk+q,σ(ω2)

(
−1

π
Im〈〈(Sz

q )ir|(Sz
−q)

ir〉〉ω1

))

(59)

where

F1(ω1, ω2) = (1 +N(ω1) − f(ω2))

N(ω(k)) = [exp(βω(k)) − 1]−1 .

Equations (56) and (59) form a closed self-consistent system of equations for one-

fermion GF of the carriers for the s–d model in the scattering regime. It clearly

shows that the charge quasiparticle dynamics couples intrinsically with the spin

quasiparticle dynamics in a self-consistent way.

To find explicit expressions for the mass operator, Eq. (43), we choose for the

first iteration step in its r.h.s. the following trial expressions:

−
1

π
Imgkσ(ω) = δ(ω − ε(kσ)) (60)
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−1

π
Im〈〈Sσ

q |S
−σ
−q 〉〉 ≈ zσ(2Sz)δ(ω − zσω(q)) . (61)

Here ω(q) is given by the expression Eq. (45). Then we obtain

Me−m
k↑ (ω) =

2I2〈Sz
0 〉

N3/2

∑

q

fk+q,↓ +N(ω(q))

ω − ε(k + q, ↓) − ω(q)
;

Me−m
k↓ (ω) =

2I2〈Sz
0 〉

N3/2

∑

q

1 − fk−q,↑ +N(ω(q))

ω − ε(k − q, ↑) − ω(q)
. (62)

This result was written for the low temperature region when one can drop the con-

tributions from the dynamics of longitudinal spin GF. The last is essential at high

temperatures and in some special cases. The obtained formulas generalize the zero-

temperature calculations of Davis and Liu89 and the approach of papers.27,90,91

The numerical calculations of the typical behaviour of the real and imaginary

parts of the self-energy in generalized Born approximation were carried out in

Refs. 28, 30.

6. Charge Quasiparticle Dynamics of the s−d Model. Bound

State Regime

In this section, we further discuss the spectrum of charge carrier excitations in the

s–d model and describe bound state regime. As previously, consider the double-time

thermal GF of charge operators 〈〈akσ(t), a†kσ(t′)〉〉. The next step is to write down

the equation of motion for the GF g:

(ω − ε(kσ))〈〈akσ |a
†
kσ〉〉ω + IN−1/2〈〈Ckσ |a

†
kσ〉〉ω = 1 . (63)

We also have

(ω − ε(kσ))〈〈akσ |C
†
kσ〉〉ω + IN−1/2〈〈Ckσ |C

†
kσ〉〉ω = 0 . (64)

It follows from Eqs. (63) and (64) that to take into account both the regimes,

scattering and bound state, properly, we should treat the operators akσ , a
†
kσ and

Ckσ , C
†
kσ on the equal footing. That means that one should consider the new relevant

operator, a kind of “spinor”
(

akσ

Ckσ

)
(“relevant degrees of freedom”) to construct a

suitable Green function. Thus, according to the IGF strategy, to describe the bound

state regime properly, contrary to the scattering regime, one should consider the

generalized matrix GF of the form
(

〈〈akσ |a
†
kσ〉〉ω 〈〈akσ |C

†
kσ〉〉ω

〈〈Ckσ |a
†
kσ〉〉ω 〈〈Ckσ |C

†
kσ〉〉ω

)

= Ĝ(k;ω) . (65)

Equivalently, we can do the calculations in the Wannier representation with the

matrix of the form
(

〈〈aiσ |a
†
jσ〉〉 〈〈aiσ |C

†
jσ〉〉

〈〈Ciσ |a
†
jσ〉〉 〈〈Ciσ |C

†
jσ〉〉

)

= Ĝ(ij;ω) . (66)
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The form of Eq. (66) is more convenient for considering the effects of disorder. Let

us consider now the equation of motion for the GF Ĝ(k;ω). To write down the

equation of motion for the Fourier transform of the GF Ĝ(k;ω), we need auxiliary

equations of motion for the following GFs of the form

(ω − ε(k + q − σ))〈〈S−σ
−q ak+q−σ |a

†
kσ〉〉ω

= −IN−1/2〈〈S−σ
−q Ck+q−σ |a

†
kσ〉〉ω

− zσN
−1/2

∑

p

Jp〈〈(S
−σ
−(p+q)S

z
p − S−σ

p Sz
−(p+q))aq+k−σ |a

†
kσ〉〉ω

= −IN−1/2
∑

p

〈〈S−σ
−q (Sσ

−pap+k+qσ + z−σ(Sz
−p)

irap+k+q−σ)|a†kσ〉〉ω

− zσN
−1/2

∑

p

Jp〈〈(S
−σ
−(p+q)S

z
p − S−σ

p Sz
−(p+q))aq+k−σ |a

†
kσ〉〉ω . (67)

To separate the elastic and inelastic scattering corrections, it is convenient to in-

troduce by definition the following set of irreducible operators:

(Sσ
−pS

−σ
−q )ir = Sσ

−pS
−σ
−q − 〈Sσ

q S
−σ
−q 〉δ−q,p

(S−σ
−(p+q)S

z
p − S−σ

p Sz
−(p+q))

ir = (S−σ
−(p+q)S

z
p − S−σ

p Sz
−(p+q))

− (〈Sz
0 〉(δp,0 − δp,−q)

+ (φ−p − φ−(p+q)))S
−σ
−q ) .

(68)

This is the standard way of introducing the “irreducible” parts of operators or

GFs.87 However, we are interested here in describing the bound electron-magnon

states correctly. Thus, the definition of the relevant generalized mean field is more

tricky for this case. It is important to note that before introducing the irreducible

parts, Eq. (68), one has to extract from the GF 〈〈S−σ
−q Ck+q−σ |a

†
kσ〉〉 the terms pro-

portional to the initial GF 〈〈S−σ
−q ak+q−σ |a

†
kσ〉〉. That means that we should project

the higher-order GF onto the initial one.87 This projection should be performed

using the spin commutation relations:

[S−σ
−q , S

z
−p] = zσN

−1/2S−σ
−(q+p) ;

[S−σ
−q , S

σ
−p] = z−σ2N−1/2Sz

−(q+p) .

In other words, this procedure introduces effectively the spin-operator ordering rule

into the calculations. Roughly speaking, we should construct the relevant mean field

not for spin or electron alone, but for the complex object, the “spin-electron”, or

for the operator (S−σ
−q ak+q−σ). This is the crucial point of the whole treatment,

which leads to the correct definition of the generalized mean field in which the free

magnetic polaron will propagate. We have then
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〈〈S−σ
−q S

z
−pak+q+p−σ |a

†
kσ〉〉ω = zσN

−1/2〈〈S−σ
−(q+p)ak+q+p−σ |a

†
kσ〉〉ω

+ 〈〈Sz
−pS

−σ
−q ak+q+p−σ |a

†
kσ〉〉ω (69)

〈〈Sz
−pS

−σ
−q ak+q+p−σ |a

†
kσ〉〉ω = 〈〈(Sz

−p)
irS−σ

−q ak+q+p−σ |a
†
kσ〉〉ω

+ 〈Sz
0 〉δp,0〈〈S

−σ
−q ak+q−σ |a

†
kσ〉〉ω (70)

〈〈S−σ
−q S

σ
−pak+q+pσ |a

†
kσ〉〉ω = 〈〈(S−σ

−q S
σ
−pak+q+pσ)ir|a†kσ〉〉ω

+ 〈S−σ
−q S

σ
q 〉δp,−q〈〈akσ |a

†
kσ〉〉 (71)

〈〈(S−σ
−(p+q)S

z
p − S−σ

p Sz
−(p+q))ak+q−σ |a

†
kσ〉〉ω

= 〈〈(S−σ
−(p+q)(S

z
p)ir − S−σ

p (Sz
−(p+q))

ir)ak+q−σ |a
†
kσ〉〉ω

+ 〈Sz
0 〉(δp,0 − δp,−q)〈〈S

−σ
−q ak+q−σ |a

†
kσ〉〉ω . (72)

Finally, by differentiation of the GF 〈〈S−σ
−q ak+q−σ(t), a†kσ(0)〉〉 with respect to the

first time, t, and using the definition of the irreducible parts, Eqs. (69)–(72), the

equation of motion, Eq. (67), can be exactly transformed to the following form:

(ω + zσω(q) − ε(k + q − σ))〈〈S−σ
−q ak+q−σ |a

†
kσ〉〉ω

+ IN−1/2〈S−σ
−q S

σ
q 〉〈〈akσ |a

†
kσ〉〉ω

= IN−1/2
∑

p

〈〈S−σ
−p ak+p−σ |a

†
kσ〉〉ω + 〈〈Aq |a

†
kσ〉〉ω (73)

where

Aq = −IN−1/2
∑

p

{(S−σ
−q S

−σ
−p ak+q+pσ)ir + z−σ(Sz

−p)
irS−σ

−q ak+q+p−σ}

− zσN
−1/2

∑

p

Jp(S
−σ
−(p+q)(S

z
p )ir − S−σ

p (Sz
q+p)

ir)irak+q−σ

= −IN−1/2Ck+q−σS
−σ
−q

− zσN
−1/2

∑

p

Jp(S
−σ
−(p+q)(S

z
p )ir − S−σ

p (Sz
q+p)

ir)irak+q−σ . (74)

It is easy to see that
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〈〈S−σ
−q ak+q−σ |a

†
kσ〉〉ω + IN−1/2

〈S−σ
−q S

σ
q 〉

(ω + zσω(q) − ε(k + q − σ))
〈〈akσ |a

†
kσ〉〉ω

= IN−1/2 1

(ω + zσω(q) − ε(k + q − σ))

∑

p

〈〈S−σ
−p ak+p−σ |a

†
kσ〉〉ω

+
1

(ω + zσω(q) − ε(k + q − σ))
〈〈Aq |a

†
kσ〉〉ω . (75)

After summation with respect to q we find
{

IN−1/2
∑

q

〈S−σ
−q S

σ
q 〉

(ω + zσω(q) − ε(k + q − σ))

}

〈〈akσ |a
†
kσ〉〉ω

+

{

1 − IN−1
∑

q

1

(ω + zσω(q) − ε(k + q − σ))

}
∑

p

〈〈S−σ
−p ak+p−σ |a

†
kσ〉〉ω

=
∑

q

1

(ω + zσω(q) − ε(k + q − σ))
〈〈Aq |a

†
kσ〉〉ω . (76)

Then Eq. (75) can be exactly rewritten in the following form:

∑

q

〈〈S−σ
−p ak+p−σ |a

†
kσ〉〉ω

= −

{

IN−1/2
∑

q

〈S−σ
−q S

σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

}

〈〈akσ |a
†
kσ〉〉ω

+
∑

q

1

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))
〈〈Aq |a

†
kσ〉〉ω (77)

where

Λkσ(ω) =
1

N

∑

q

1

(ω + zσω(q) − ε(k + q − σ))
. (78)

To write down the equation of motion for the matrix GF Ĝ(k;ω) Eq. (65) it is

necessary to return to the operators Ckσ . We find

IN−1/2
∑

q

{
〈S−σ

−q S
σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
〈(Sz

−q)
ir(Sz

q )ir〉

ω − ε(k + qσ)

}

〈〈akσ |a
†
kσ〉〉ω + 〈〈Ckσ |a

†
kσ〉〉ω

=
∑

q

{
〈〈Aq |a

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))
+

〈〈Bq |a
†
kσ〉〉ω

ω − ε(k + qσ)

}

(79)



November 18, 2004 13:41 WSPC/140-IJMPB 02639

Bound and Scattering States in Magnetic Materials 3249

IN−1/2
∑

q

{
〈S−σ

−q S
σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
〈(Sz

−q)
ir(Sz

q )ir〉

ω − ε(k + qσ)

}

〈〈akσ |C
†
kσ〉〉ω

+ 〈〈Ckσ |C
†
kσ〉〉ω =

∑

q

{
〈S−σ

−q S
σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
〈(Sz

−q)
ir(Sz

q )ir〉

ω − ε(k + qσ)

}

+
∑

q

{
〈〈Aq |C

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))
+

〈〈Bq |C
†
kσ〉〉ω

ω − ε(k + qσ)

}

(80)

where

Bq = −IN−1/2
∑

p

[(Sz
−qS

z
−pak+q+pσ)ir + zσ(Sz

−q)
irS−σ

−p ak+q+p−σ ]

= −zσIN
−1/2(Sz

−q)
irCk+qσ . (81)

The irreducible operators Eq. (68), Eqs. (69)–(72) have been introduced in such a

way that the the operators Aq and Bq satisfy the conditions

〈[Aq , a
†
kσ ]+〉 = 〈[Aq , C

†
kσ ]+〉 = 0

〈[Bq , a
†
kσ ]+〉 = 〈[Bq , C

†
kσ ]+〉 = 0 .

(82)

The equations of motion, Eqs. (79) and (80) can be rewritten in the following form:

IN−1/2χb
kσ(ω)〈〈akσ |a

†
kσ〉〉ω + 〈〈Ckσ |a

†
kσ〉〉ω

=
∑

q

{
〈〈Aq |a

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
(1 + IΛkσ(ω))〈〈Bq |a

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω − ε(k + qσ))

}

(83)

IN−1/2χb
kσ(ω)〈〈akσ |C

†
kσ〉〉ω + 〈〈Ckσ |C

†
kσ〉〉ω

=
∑

q

{
〈〈Aq |C

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
(1 + IΛkσ(ω))〈〈Bq |C

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω − ε(k + qσ))

}

(84)
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×
∑

q

{
〈〈Aq |C

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
(1 + IΛkσ(ω))〈〈Bq |C

†
kσ〉〉ω

(1 − IΛkσ(ω))(ω − ε(k + qσ))

}

where

χb
kσ(ω) =

∑

q

{
〈S−σ

−q S
σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ))

+
(1 + IΛkσ(ω))〈(Sz

−q)
ir(Sz

q )ir〉

(1 − IΛkσ(ω))(ω − ε(k + qσ))

}

. (85)

Here χb
kσ(ω) plays the role of the generalized “susceptibility” of the spin-electron

bound states instead of the electron susceptibility χs
0(k, ω) in the scattering-state

regime Eq. (40) (see also Refs. 39, 40). Analogously, one can write the equation for

the GF 〈〈Ckσ |C
†
kσ〉〉.

Now we are ready to write down the equation of motion for the matrix GF

Ĝ(k;ω), Eq. (65), after differentiation with respect to the first time, t. Using the

equations of motion (80), (83), (84) and (63), we find

Ω̂Ĝ(k;ω) = Î +
∑

p

Φ̂(p)D̂(p;ω) (86)

where

Ω̂ =

(
ω − ε(kσ) IN1/2

IN1/2χb
kσ(ω) 1

)

, Î =

(

1 0

0 χb
kσ(ω)

)

(87)

D̂(p;ω) =

(
〈〈Ap|a

†
kσ〉〉ω 〈〈Ap|C

†
kσ〉〉ω

〈〈Bp|a
†
kσ〉〉ω 〈〈Bp|C

†
kσ〉〉ω

)

, Φ̂(p) =






0 0

1

ωb
k,p

1

Ωk,p




 (88)

with the notation

ωb
k,q = (1 − IΛkσ(ω))(ω + zσω(q) − ε(k + q − σ)) (89)

Ωk,q =
(1 − IΛkσ(ω))

(1 + IΛkσ(ω))
(ω − ε(k + qσ)) . (90)

To calculate the higher order GFs D̂(p;ω) in Eq. (86), we differentiate its r.h.s. with

respect to the second-time variable (t′). After introducing the irreducible parts as

discussed above, but this time for the “right” operators, and combining both (the

first- and second-time differentiated) equations of motion, we get the “exact” (no

approximation has been made till now) “scattering” equation

Ĝ(k;ω) = Ĝ0(k;ω) + Ĝ0(k;ω)P̂ Ĝ0(k;ω) . (91)
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Here the generalized mean-field GF was defined as

Ĝ0(k;ω) = Ω−1
k,pÎ . (92)

Note that it is possible to arrive at Eq. (91) using the symmetry properties too. We

have

Ĝ†Ω̂† = Î† +
∑

q

D̂†Φ̂†(q)

Ĝ = Î†(Ω̂†)−1 +
∑

q

D̂†Φ̂†(q)(Ω̂†)−1

ΩD̂† =
∑

p

Φ̂(p)P̂ (pq) Ĝ† = Ĝ = (Ω̂−1Î)

Ĝ = (Ω̂−1Î)† + (Ω̂−1Î)
∑

pq

Î−1Φ̂(p)P̂ (pq)Φ̂†(q)(Î−1)†(Ω̂−1Î)†

P̂ = Î−1

{
∑

pq

Φ̂(p)P̂ (pq)Φ̂†(q)

}

Î−1 (93)

P̂ (pq) =

(
〈〈Ap|A

†
q〉〉 〈〈Ap|B

†
q〉〉

〈〈Bp|A
†
q〉〉 〈〈Bp|B

†
q〉〉

)

. (94)

We shall now consider the magnetic polaron state in the generalized mean field

approximation and estimate the binding energy of the magnetic polaron.

7. Magnetic Polaron in Generalized Mean Field

From the definition, Eq. (92), the generalized mean-field GF matrix reads

Ĝ0(k;ω) =

(
〈〈akσ |a

†
kσ〉〉

0 〈〈akσ |C
†
kσ〉〉

0

〈〈Ckσ |a
†
kσ〉〉

0 〈〈Ckσ |C
†
kσ〉〉

0

)

=
1

det Ω̂

(

1 −IN−1/2χb
kσ(ω)

−IN−1/2χb
kσ(ω) (ω − ε(kσ))χb

kσ(ω)

)

(95)

where

det Ω̂ = ω − ε(kσ) − I2N−1χb
kσ(ω) .

Let us write down explicitly the diagonal matrix elements G11
0 and G22

0

〈〈akσ |a
†
kσ〉〉

0 = (det Ω̂)−1 = (ω − ε(kσ) − I2N−1χb
kσ(ω))−1 . (96)

The corresponding GF for the scattering regime are given by Eq. (57). As it follows

from Eqs. (57) and (96) the mean-field GF 〈〈akσ |a
†
kσ〉〉

0 in the bound-state regime

has a very nontrivial structure which is quite different from the scattering-state

regime form. This was achieved by a suitable reconstruction of the generalized
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mean field and by a sophisticated redefinition of the relevant irreducible Green

functions! We have also

〈〈Ckσ |C
†
kσ〉〉

0 = (det Ω̂)−1(ω − ε(kσ))(ω − ε(kσ) − det Ω̂))
N

I2
. (97)

It follows from Eq. (96) that the quasiparticle spectrum of the electron-magnon

bound states in the generalized mean field renormalization are determined by the

equation

Ekσ = ε(kσ) + I2N−1χb
kσ(Ekσ) . (98)

The bound polaron-like electron-magnon energy spectrum consists of two branches

for any electron spin projection. At the so-called “atomic limit” (when εk = 0) and

in the limit k → 0, ω → 0 we obtain the exact analytical representation for the

single-particle GF of the form

〈〈akσ |a
†
kσ〉〉

0 =
S + zσSz

2S + 1
(ω + IS)−1 +

S − zσSz

2S + 1
(ω − I(S + 1))−1 . (99)

Here the notation S and Sz =
〈Sz

0
〉√

N
means the spin-value and magnetization, re-

spectively. This result was derived previously in paper.60

However, our approach is the closest to the seminal paper of Shastry and

Mattis,74 where the Green function treatment of the magnetic polaron problem

was formulated for zero temperature. Our generalized mean-field solution is reduced

exactly to the Shastry–Mattis result if we put in our expression for the spectrum,

Eq. (97), the temperature T = 0

〈〈akσ |a
†
kσ〉〉

0|T=0 =

{

ω − ε(kσ) − δσ↓2I
2S

Λkσ(ω)

(1 − IΛkσ(ω))

}−1

. (100)

We can see that the magnetic polaron states are formed for antiferromagnetic

s–d coupling (I < 0) only when there is a lowering of the band of the uncoupled

itinerant charge carriers due to the effective attraction of the carrier and magnon.

The derivation of Eq. (100) was carried out for arbitrary interrelations between

the s–d model parameters. Let us consider now the two limiting cases where ana-

lytical calculations are possible.

(i) a wide-band semiconductor (|I |S �W )

Ek↓ ' εk + I
S(S + Sz + 1) + Sz(S − Sz + 1)

2S

+
(−I)

N

∑

q

(εk−q − εk + 2I(S − Sz))

(εk−q − εk + 2ISz)

〈S+
q S

−
−q〉

2S
; (101)

(ii) a narrow-band semiconductor (|I |S �W )
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Ek↓ ' I(S + 1) +
2(S + 1)(S + Sz)

(2S + 1)(S + Sz + 1)
εk

+
1

N

∑

q

(εk−q − εk)

(2S + 1)

〈S+
q S

−
−q〉

(S + Sz + 1)
. (102)

In the above formulae the correlation function of the longitudinal spin components

Kzz
q was omitted for the sake of simplicity. Here W is the bandwidth in the limit

I = 0.

Let us now consider in more detail the low-temperature spin-wave limit in

Eqs. (101) and (102). In that limit it is reasonable to suppose that Sz ' S. In

the spin-wave approximation we also have

〈S+
q S

−
−q〉 ' 2S(1 +N(ω(q))) .

Thus, we obtain (c.f. Refs. 27, 60).

(i) a wide-band semiconductor (|I |S � W )

Ek↓ ' εk + IS +
2I2S

N

∑

q

1

(εk − εk−q + 2IS)

+
(−I)

N

∑

q

(εk−q − εk)

(εk−q − εk − 2IS)
N(ω(q)) ; (103)

(ii) a narrow-band semiconductor (|I |S �W )

Ek↓ ' I(S + 1) +
2S

(2S + 1)
εk +

1

N

∑

q

2S

(2S + 1)

(εk−q − εk)

(2S + 1)
N(ω(q)) . (104)

We shall now estimate the binding energy of the magnetic polaron bound state.

The binding energy of the magnetic polaron is convenient to define as

εB = εk↓ −Ek↓ . (105)

This definition is quite natural and takes into account the fact that in the simple

Hartree–Fock approximation the spin-down band is given by the expression

εk↓ = εk + IS .

Then the binding energy εB behaves according to the formula:

(i) a wide-band semiconductor (|I |S � W )

εB = ε0B1 −
(−I)

N

∑

q

(εk−q − εk)

(εk−q − εk − 2IS)
N(ω(q)) ; (106)

(ii) a narrow-band semiconductor (|I |S �W )

εB = ε0B2 −
1

N

∑

q

2S

(2S + 1)

(εk−q − εk)

(2S + 1)
N(ω(q)) (107)
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where

ε0B1 =
(2I2S)

N

∑

q

1

(εk−q − εk − 2IS)
'

|I |S

W
|I |

ε0B2 = −I +
εk

(2S + 1)
' |I | . (108)

The present consideration gives the generalization of the thermodynamic study of

the magnetic polaron. Clearly, local magnetic order lowers the state energy of the

dressed itinerant carrier, with respect to some conduction or valence band. It is

obvious that below TN of the antiferromagnet the mobility of spin polarons will be

less than of bare carriers,93 since they have to drag their polarization cloud along.

Experimental evidence for magnetic polarons in concentrated magnetic semiconduc-

tors came from optical studies of EuTe, an antiferromagnet.94 Direct measurements

of the polaron-binding energy were carried out in Ref. 95.

8. Quasiparticle Many-Body Dynamics and Damping of

Quasiparticle States

8.1. Green function picture of quasiparticles

An effective way of viewing quasiparticles, quite general and consistent, is via the

Green function scheme of many-body theory87 which we sketch below for complete-

ness.

At sufficiently low temperatures, a few quasiparticles are excited and, there-

fore, this dilute quasiparticle gas is nearly a noninteracting gas in the sense that

the quasiparticles rarely collide. The success of the quasiparticle concept in an in-

teracting many-body system is particularly striking because of a great number of

various applications. However, the range of validity of the quasiparticle approxima-

tion, especially for strongly interacting lattice systems, was not discussed properly

in many cases. In systems like simple metals, quasiparticles constitute long-lived,

weakly interacting excitations, since their intrinsic decay rate varies as the square

of the dispersion law, thereby justifying their use as the building blocks for the

low-lying excitation spectrum.

As we have mentioned earlier, to describe a quasiparticle correctly, the Irre-

ducible Green functions method is a very suitable and useful tool.

It is known87 that the GF is completely determined by the spectral weight

function A(ω). To explain this, let us remind that the GFs are linear combinations

of the time correlation functions

FAB(t− t′) = 〈A(t)B(t′)〉 =
1

2π

∫ +∞

−∞
dω exp[iω(t− t′)]AAB(ω) (109)

FBA(t′ − t) = 〈B(t′)A(t)〉 =
1

2π

∫ +∞

−∞
dω exp[iω(t′ − t)]ABA(ω) . (110)
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Here, the Fourier transforms AAB(ω) and ABA(ω) are of the form

ABA(ω) = Q−12π
∑

m,n

exp(−βEn)(ψ†
nBψm)(ψ†

mAψn)δ(En −Em − ω) (111)

AAB = exp(−βω)ABA(−ω) . (112)

Expressions (111) and (112) are spectral representations of the corresponding time

correlation functions. The quantities AAB and ABA are spectral densities or spectral

weight functions.

It is convenient to define

FBA(0) = 〈B(t)A(t)〉 =
1

2π

∫ +∞

−∞
dωA(ω) (113)

FAB(0) = 〈A(t)B(t)〉 =
1

2π

∫ +∞

−∞
dω exp(βω)A(ω) . (114)

Then, the spectral representations of the Green functions can be expressed in the

form

Gr(ω) = 〈〈A|B〉〉rω

=
1

2π

∫ +∞

−∞

dω′

ω − ω′ + iε
[exp(βω′) − η]A(ω′) (115)

Ga(ω) = 〈〈A|B〉〉aω

=
1

2π

∫ +∞

−∞

dω′

ω − ω′ − iε
[exp(βω′) − η]A(ω′) . (116)

The most important practical consequence of spectral representations for the re-

tarded and advanced GFs is the so-called spectral theorem. The spectral theorem

can be written as

〈B(t′)A(t)〉 = −
1

π

∫ +∞

−∞
dω exp[iω(t− t′)][exp(βω) − η]−1ImGAB(ω + iε) (117)

〈A(t)B(t′)〉 = −
1

π

∫ +∞

−∞
dω exp(βω)

× exp[iω(t− t′)][exp(βω) − η]−1ImGAB(ω + iε) . (118)

Expressions (117) and (118) are of fundamental importance. They directly relate

the statistical averages with the Fourier transforms of the corresponding GFs. The

problem of evaluating the latter is thus reduced to finding their Fourier transforms

providing the practical usefulness of the Green functions technique.88,87

The spectral weight function reflects the microscopic structure of the system

under consideration. Its Fourier transform origination is then the density of states

that can be reached by adding or removing a particle of a given momentum and en-

ergy. Consider a system of interacting fermions as an example. For a noninteracting
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system, the spectral weight function of the single-particle GF Gk(ω) = 〈〈akσ ; a†kσ〉〉

has a simple peaked structure

Ak(ω) ∼ δ(ω − εk) .

For an interacting system, the spectral function Ak(ω) has no such a simple peaked

structure, but it obeys the following conditions:

Ak(ω) ≥ 0 ;

∫

Ak(ω)dω = 〈[akσ , a
†
kσ ]+〉 = 1 .

Thus, we can see from these expressions that for a noninteracting system, the

sum rule is exhausted by a single peak. A sharply peaked spectral function for

an interacting system means a long-lived single-particle-like excitation. Thus, the

spectral weight function was established here as a physically significant attribute

of GF. The question of what is the best way of extracting it from a microscopic

theory is the main aim of the present theory.

The GF for a noninteracting system is Gk(ω) = (ω − εk)−1. For a weakly in-

teracting Fermi system, we have Gk(ω) = (ω − εk −Mk(ω))−1 where Mk(ω) is the

mass operator. Thus, for a weakly interacting system, the δ-function for Ak(ω) is

spread into a peak of finite width due to the mass operator. We have

Mk(ω ± iε) = ReMk(ω) ∓ ImMk(ω) = ∆k(ω) ∓ Γk(ω) .

The single-particle GF can be written in the form

Gk(ω) = {ω − [εk + ∆k(ω)] ± Γk(ω)}−1 . (119)

In the weakly interacting case, we can thus find the energies of quasiparticles by

looking for the poles of single-particle GF (119)

ω = εk + ∆k(ω) ± Γk(ω) .

The dispersion relation of a quasiparticle

ε(k) = εk + ∆k[ε(k)] ± Γk[ε(k)]

and the lifetime 1/Γk then reflects the inter-particle interaction. It is easy to see

the connection between the width of the spectral weight function and decay rate.

We can write

Ak(ω) = (exp(βω) + 1)−1(−i)[Gk(ω + iε) −Gk(ω − iε)]

= (exp(βω) + 1)−1 2Γk(ω)

[ω − (εk + ∆k(ω))]2 + Γ2
k(ω)

. (120)

In other words, for this case, the corresponding propagator can be written in the

form

Gk(t) ≈ exp(−iε(k)t) exp(−Γkt) .
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This form shows under which conditions, the time-development of an interacting

system can be interpreted as the propagation of a quasiparticle with a reasonably

well-defined energy and a sufficiently long lifetime. To demonstrate this, we consider

the following conditions:

∆k[ε(k)] � ε(k) ; Γk[ε(k)] � ε(k) .

Then we can write

Gk(ω) =
1

[ω − ε(k)][1 − d∆k(ω)
dω |ω=ε(k)] + iΓk[ε(k)]

(121)

where the renormalized energy of excitations is defined by

ε(k) = εk + ∆k[ε(k)] .

In this case, we have, instead of (121),

Ak(ω) = [exp(βε(k)) + 1]−1

[

1 −
d∆k(ω)

dω

∣
∣
∣
∣
ε(k)

]−1
2Γ(k)

(ω − ε(k))2 + Γ2(k)
. (122)

As a result, we find

Gk(t) = 〈〈akσ(t); a†kσ〉〉

= −iθ(t) exp(−iε(k)t) exp(−Γ(k)t)

[

1 −
d∆k(ω)

dω

∣
∣
∣
∣
ε(k)

]−1

. (123)

A widely known strategy to justify this line of reasoning is the perturbation theory.

In a strongly interacted system on a lattice with complex spectra, the concept of a

quasiparticle needs a suitable adaptation and a careful examination. It is therefore

useful to have a workable and efficient IGF method which, as we have seen, permits

one to determine and correctly separate the elastic and inelastic scattering renor-

malizations by a correct definition of the generalized mean field and to calculate

real quasiparticle spectra, including the damping and lifetime effects.

8.2. Damping of magnetic polaron state

We shall now calculate the damping of the magnetic polaron state due to the

inelastic scattering effects. To obtain the Dyson equation from Eq. (91), we have

to use the relation (17). Thus, we obtain the exact Dyson equation, Eq. (18),

Ĝ(k;ω) = Ĝ0(k;ω) + Ĝ0(k;ω)M̂kσĜ(k;ω) . (124)

The mass operator has the following exact representation:

M̂kσ =






0 0

0
Πkσ(ω)

χb
kσ(ω)




 . (125)
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Here the notation was used

Πkσ(ω) =
∑

pq

{

〈〈Ap|A
†
q〉〉

p

ωb
kpω

b
kq

+
〈〈Ap|B

†
q〉〉

p

ωb
kpΩkq

+
〈〈Bp|A

†
q〉〉

p

Ωkpωb
kq

+
〈〈Bp|B

†
q〉〉

p

ΩkpΩkq

}

. (126)

For the single-particle GF of itinerant carriers we have

〈〈akσ |a
†
kσ〉〉 = {(〈〈akσ |a

†
kσ〉〉

0)−1 − Σkσ(ω)}−1 . (127)

Here the self-energy operator Σkσ(ω) was defined as

Σkσ(ω) =
I2

N

Πkσ(ω)

1 − (χb
kσ(ω))−1Πkσ(ω)

. (128)

We shall now use the exact representation, Eq. (128), to derive a suitable self-

consistent approximate expression for the self-energy. Let us consider the GFs ap-

pearing in Eq. (126). According to the spectral theorem, Eqs. (117) and (118), it is

convenient to write down the GF 〈〈Ap|A
†
q〉〉

p in the following form:

〈〈Ap|A
†
q〉〉

p

=
1

2π

∫ +∞

−∞

dω′

ω − ω′ + iε
[exp(βω′) + 1]

∫

dt exp(iω′t)〈A†
qAp(t)〉

p . (129)

Then we obtain for the correlation function 〈A†
qAp(t)〉

p

〈A†
qAp(t)〉

p =
I2

N
〈Sσ

q C
†
k+q−σCk+p−σ(t)S−σ

−p (t)〉

+ 〈a†q+k−σΦ†
−q−σΦ−p−σ(t)ap+k−σ(t)〉 . (130)

A further insight is gained if we select a suitable relevant “trial” approximation

for the correlation function in the r.h.s. of (130). In this paper, we show that our

formulations based on the IGF method permit one to obtain an explicit approximate

expression for the mass operator in a self-consistent way. It is clear that a relevant

trial approximation for the correlation function in (130) can be chosen in various

ways. For example, a reasonable and workable one can be the following “mode-

mode coupling approximation”which is especially suitable for a description of two

coupled subsystems. Then the correlation function 〈A†
qAp(t)〉

p could now be written

in the approximate form using the following decoupling procedure (approximate

trial solutions):

〈Sσ
q C

†
k+q−σCk+p−σ(t)S−σ

−p (t)〉 ' δq,p〈S
σ
q S

−σ
−q (t)〉 〈C†

k+q−σCk+q−σ(t)〉

〈a†q+k−σΦ†
−q−σΦ−p−σ(t)ap+k−σ(t)〉 ' δq,p〈Φ

†
−q−σΦ−q−σ(t)〉 〈a†q+k−σaq+k−σ(t)〉 .

(131)

Here the notation was introduced
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〈Φ†
−q−σΦ−q−σ(t)〉

=
1

N

∑

pp′

JpJp′〈((Sz
−p)

irSσ
q+p − (Sz

−(q+p))
irSσ

−p)
ir

× (S−σ
−(p′+q)(t)(S

z
p′ (t))ir − S−σ

p′ (t)(Sz
−(q+p)(t))

ir)ir〉 . (132)

The approximation, Eq. (131), in the diagrammatic language corresponds to neglect

of the vertex correction, i.e. the correlation between the propagation of the polaron

and the magnetic excitation, and the electron and magnon, respectively. This can

be performed since we already have in our exact expression (130) the terms pro-

portional to I2 and J2. Taking into account the spectral theorem, Eqs. (117) and

(118), we obtain from Eqs. (129)–(132)

〈〈Ap|A
†
q〉〉

p '
I2

N
δq,p

∫ ∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2) (133)

(
−1

π
Im〈〈S−σ

−q |S
σ
q 〉〉ω1

)(
−1

π
Im〈〈Ck+q−σ |C

†
k+q−σ〉〉ω2

)

+ δq,p
1

N

∑

q′

(Jq′ − Jq−q′ )2
∫ ∫ ∫

dω1dω2dω3

ω − ω1 − ω2 − ω3
F2(ω1, ω2, ω3)

×

(
−1

π
Im〈〈(Sz

−q′ )ir|(Sz
q′ )ir〉〉ω1

)(
−1

π
Im〈〈S−σ

−(q−q′)|S
σ
q−q′〉〉ω2

)

×

(
−1

π
Im〈〈ak+q−σ |a

†
k+q−σ〉〉ω3

)

〈〈Bp|B
†
q〉〉

p '
I2

N
δq,p

∫ ∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2)

×

(
−1

π
Im〈〈(Sz

−q)
ir |(Sz

q )ir〉〉ω1

)(
−1

π
Im〈〈Ck+qσ |C

†
k+qσ〉〉ω2

)

(134)

where

F1(ω1, ω2) = (1 +N(ω1) − f(ω2)) (135)

F2(ω1, ω2, ω3) = (1 +N(ω1))(1 +N(ω2) − f(ω3)) −N(ω2)f(ω3)

= (1 +N(ω1))(1 +N(ω2)) − (1 +N(ω1) +N(ω2))f(ω2) . (136)

The functions F1(ω1, ω2), Eq. (136), and F2(ω1, ω2, ω3), Eq. (135), represent clearly

the inelastic scattering of bosons and fermions. For estimation of the damping effects

it is reasonably to accept that

〈〈Ap|B
†
q〉〉

p ' 〈〈Bp|A
†
q〉〉

p ' 0 . (137)
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We have then

Πkσ '
∑

qp

(

〈〈Ap|A
†
q〉〉

p

ωb
kpω

b
kq

+
〈〈Bp|B

†
q〉〉

p

ΩkpΩkq

)

'
∑

q

(

〈〈Aq |A
†
q〉〉

p

(ωb
kq)

2
+

〈〈Bq |B
†
q〉〉

p

(Ωkq)2

)

. (138)

We can see that there are two distinct contributions to the self-energy. Putting

together formulae (133)–(138), we arrive at the following formulae for both the

contributions

ΠI
kσ =

I2

N

∑

q

∫ ∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2)

×

{
1

(ωb
kq)

2

(
−1

π
Im〈〈S−σ

−q |S
σ
q 〉〉ω1

)(
−1

π
Im〈〈Ck+q−σ |C

†
k+q−σ〉〉ω2

)

+
1

(Ωkq)2

(
−1

π
Im〈〈(Sz

−q)
ir |(Sz

q )ir〉〉ω1

)(
−1

π
Im〈〈Ck+qσ |C

†
k+qσ〉〉ω2

)}

(139)

ΠJ
kσ =

1

N

∑

qq′

(Jq′ − Jq−q′ )2
∫ ∫ ∫

dω1dω2dω3

ω − ω1 − ω2 − ω3

×F2(ω1, ω2, ω3)
1

(ωb
kq)

2

(
−1

π
Im〈〈(Sz

−q′)ir |(Sz
q′)ir〉〉ω1

)

×

(
−1

π
Im〈〈S−σ

−(q−q′)|S
σ
q−q′〉〉ω2

)(
−1

π
Im〈〈ak+q−σ |a

†
k+q−σ〉〉ω3

)

. (140)

Equations (124), (125), (139), and (140) constitute a closed self-consistent system

of equations for the single-electron GF of the s–d model in the bound state regime.

This system of equations is much more complicated than the corresponding system

of equations for the scattering states. We can see that to the extent that the spin

and fermion degrees of freedom can be factorized as in Eq. (131), the self-energy

operator can be expressed in terms of the initial GFs self-consistently. It is clear

that this representation does not depend on any assumption about the explicit form

of the spin and fermion GFs in the r.h.s. of Eqs. (139) and (140).

Let us first consider the so-called “static” limit. The thorough discussion of this

approximation was carried out in Ref. 27. We just show below that a more general

form of this approximation follows directly from our formulae. The contributions

of the GFs, Eqs. (133) and (134), are then

〈〈Ap|A
†
q〉〉

p '
I2

N
δq,p

∫ ∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2) (141)
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(
−1

π
Im〈〈S−σ

−q |S
σ
q 〉〉ω1

)(
−1

π
Im〈〈Ck+q−σ |C

†
k+q−σ〉〉ω2

)

+ δq,p
1

N

∑

q′

(Jq′ − Jq−q′ )2〈(Sz
q′)ir(Sz

−q′)ir〉

∫ ∫
dω1dω2

ω − ω1 − ω2
F1(ω1, ω2)

×

(
−1

π
Im〈〈S−σ

−(q−q′)|S
σ
q−q′ 〉〉ω1

)(
−1

π
Im〈〈ak+q−σ |a

†
k+q−σ〉〉ω2

)

〈〈Bp|B
†
q〉〉

p '
I2

N
δq,p〈(S

z
q )ir(Sz

−q)
ir〉

∫
dω1

ω − ω1
F1(ω1)

×

(
−1

π
Im〈〈Ck+qσ |C

†
k+qσ〉〉ω1

)

(142)

F1(ω1) = (1 − f(ω1)) .

In the limit of low carrier concentration it is possible to drop the Fermi distribution

function in Eqs. (133)–(140). In principle, we can use, in the r.h.s. of Eqs. (135)

and (137), any workable first iteration-step form of the GF and find a solution by

iteration (see Ref. 87). It is most convenient to choose, as the first iteration step,

the following simple one-pole expressions:

−1

π
Im〈〈S−σ

−p ak+q+p−σ |S
σ
p a

†
k+q+p−σ〉〉ω

= 〈S−σ
−pS

σ
p 〉δ(ω + zσωp − ε(k + q + p− σ)) ,

−1

π
Im〈〈(Sz

−p)
irak+q+pσ |(S

z
p )ira†k+q+pσ〉〉ω

= 〈(Sz
−p)

ir(Sz
p)ir〉δ(ω − ε(k + q + p− σ)) ,

−1

π
〈〈S−σ

−q |S
σ
q 〉〉ω = −zσ2〈Sz〉δ(ω + zσωq) ,

−1

π
Im〈〈ak+q+p−σ |a

†
k+q+p−σ〉〉ω = δ(ω − ε(k + q − σ)) . (143)

Using Eqs. (129)–(136) in (125) we obtain the self-consistent approximate expres-

sion for the self-energy operator (the self-consistency means that we express ap-

proximately the self-energy operator in terms of the initial GF, and, in principle,

one can obtain the required solution by a suitable iteration procedure)

Σkσ(ω) '
2I2〈Sz

0 〉

N3/2

∑

qp

δσ↓ +N(ωq)

(ωb
k,q)

2

(
〈Sσ

p S
−σ
−p 〉

ω + zσ(ωq − ωp) − ε(k + q − p− σ)

+
〈(Sz

−p)
ir(Sz

p)ir〉

ω + zσωq − ε(k + q + p− σ)

)
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+
I2

N

∑

qp

∫

dω′ (1 +N(ω′))

(Ωk,q)2

(
−1

π
Im〈〈(Sz

q )ir |(Sz
−q)

ir〉〉ω′

)

×

(
〈S−σ

−pS
σ
p 〉

ω − ω′ + zσωq − ε(k + q + p− σ)
+

〈(Sz
−p)

ir(Sz
p )ir〉

ω − ω′ − ε(k + q + pσ)

)

.

(144)

Here we write down for brevity the contribution of the s–d interaction to the in-

elastic scattering only. For the spin-wave approximation and low temperatures we

get

Σk↓(ω) '
(2SI)2

N

∑

qp

1

(ωb
k,q)

2

N(ωp)(1 +N(ωq))

ω − (ωq − ωp) − ε(k + q − p ↓)
. (145)

Using the self-energy Σkσ(ω) it is possible to calculate the energy shift ∆kσ(ω) =

ReΣkσ(ω) and damping Γkσ(ω) = −ImΣkσ(ω) of the itinerant carrier in the bound

state regime. As it follows from Eq. (145), the damping of the magnetic polaron

state arises from the combined processes of absorption and emission of magnons

with different energies (ωq − ωp). Then the real and imaginary part of self-energy

give the effective mass, lifetime and mobility of the itinerant charge carriers

m∗

m
= 1 −

[

Re
∂Σkσ

∂ε(kσ)

] ∣
∣
∣
∣
ε(kσ)=εF

(146)

% =
( m

ne2

)(1

τ

)

;
1

τ
= ImΣkσ(ε(kσ))|ε(kσ)=εF

. (147)

9. Conclusions

In summary, we have presented an analytical approach to treating the charge quasi-

particle dynamics of the spin-fermion (s–d) model which provides a basis for descrip-

tion of the physical properties of magnetic and diluted magnetic semiconductors.

We have investigated the mutual influence of the s–d and direct exchange effects on

interacting systems of itinerant carriers and localized spins. We set out the theory as

follows. The workable and self-consistent IGF approach to the decoupling problem

for the equation-of-motion method for double-time temperature Green functions

has been used. The main achievement of this formulation is the derivation of the

Dyson equation for double-time retarded Green functions instead of causal ones.

That formulation permits one to unify convenient analytical properties of retarded

and advanced GF and the formal solution of the Dyson equation which, in spite

of the required approximations for the self-energy, provides the correct functional

structure of single-particle GF. The main advantage of the mathematical formal-

ism is brought out by showing how elastic scattering corrections (generalized mean

fields) and inelastic scattering effects (damping and finite lifetimes) could be self-

consistently incorporated in a general and compact manner. This approach gives a

workable scheme for definition of relevant generalized mean fields written in terms
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of appropriate correlators. A comparative study of real many-body dynamics of the

spin-fermion model is important to characterize the true quasiparticle excitations

and the role of magnetic correlations. It was shown that the charge and magnetic

dynamics of the spin-fermion model can be understood in terms of the combined

dynamics of itinerant carriers, and of localized spins and magnetic correlations of

various nature. The two other principal distinctive features of our calculation were,

first, the use of correct analytic definition of the relevant generalized mean fields

and, second, the explicit self-consistent calculation of the charge and spin-wave

quasiparticle spectra and their damping for the two interacting subsystems. This

analysis includes the scattering and bound state regimes that determine the essen-

tial physics. We demonstrated analytically, by contrasting the scattering and bound

state regime that the damping of magnetic polaron is affected by both the s–d and

direct exchange. Thus, the present consideration is the most complete analysis of

the scattering and bound state quasiparticle spectra of the spin-fermion model. As

it is seen, this treatment has advantages in comparison with the standard methods

of decoupling of higher order GFs within the equation-of-motion approach, namely,

the following:

At the mean-field level, the GF one obtains, is richer than that following from

the standard procedures. The generalized mean fields represent all elastic scattering

renormalizations in a compact form.

The approximations (the decoupling) are introduced at a later stage with respect

to other methods, i.e., only into the rigorously obtained self-energy.

The physical picture of elastic and inelastic scattering processes in the interact-

ing many-particle systems is clearly seen at every stage of calculations, which is not

the case with the standard methods of decoupling.

Many results of the previous works are reproduced mathematically more simply.

The main advantage of the whole method is the possibility of a self-consistent

description of quasiparticle spectra and their damping in a unified and coherent

fashion. Thus, this picture of an interacting spin-fermion system on a lattice is far

richer and gives more possibilities for analysis of phenomena which can actually take

place. In this sense, the approach we suggest produces a more advanced physical

picture of the quasiparticle many-body dynamics. We have attempted to keep the

mathematical complexity within reasonable bounds by restricting the discussion,

whenever possible, to the minimal necessary formalization. Our main results reveal

the fundamental importance of the adequate definition of generalized mean fields

at finite temperatures which results in a deeper insight into the nature of the bound

and scattering quasiparticle states of the correlated lattice fermions and spins. The

key to understanding of the formation of magnetic polaron in magnetic semiconduc-

tors lies in the right description of the generalized mean fields for coupled spin and

charge subsystems. Consequently, it is crucial that the correct functional structure

of generalized mean fields is calculated in a closed and compact form. The essen-

tial new feature of our treatment is that it takes account the fact that the charge

carrier operators (a†kσ , akσ) should be treated on the equal footing with the complex
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“spin-fermion” operators (C†
kσ , Ckσ). The solution thus obtained agrees with that

obtained in the seminal paper of Shastry and Mattis,74 where an approach limited

to zero temperature was used.

Finally, we wish to emphasize a broader relevance of the results presented here

to other complex magnetic materials. The detailed consideration of the state of

itinerant charge carriers in DMS along this line will be considered separately.
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