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The equations of strong coupling superconductivity in disordered transition 
metal alloys have been derived by means of "'irreducible" Green's functions 
and on the basis of the alloy version of the Bari~id-Labbd-Friedel model 
for electron-ion interaction. The configurational averaging has been 
performed by means of the coherent potential approximation. Making 
some approximations, we have obtained the formulas for the transition tem- 
perature Tc and the electron-phonon coupling constant A. These depend on 
the alloy component and total densities of states, the phonon Green's function, 
and the parameters of the model 

1. INTRODUCTION 

The modern microscopic theory of superconductivity was given a 
rigorous mathematical formulation in the classic work of Bogolubov and 
co-workers 1-3 and others. *-s It was shown that the equations of supercon- 
ductivity can be derived from the fundamental electron-ion and electron- 
electron interactions. The set of equations obtained is known as the Eliash- 
berg equations. They enable us to investigate the electronic and lattice 
properties of a metal in both the normal and superconducting states. 
Moreover, the Eliashberg equations are appropriate to the description of 
strong coupling superconductors, in contrast to the so-called Gorkov 
equations, which are valid in the weak coupling regime and describe the 
electron subsystem in the superconducting state only. 

Extensions of the theory to disordered superconductors have been 
given for the "dirty ''9 and dilute 1° alloy limits. Interest in theoretical and 
experimental study of disordered superconductors has increased, 1~ and 
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much effort has been devoted to transition metal compounds 12 and substitu- 
tionally disordered alloys. 13 

A number of papers 14-2~ have described concentrated superconducting 
alloys, using the Gorkov weak coupling approach and the coherent potential 
approximation (CPA) to treat disorder. They use the following model 
Hamiltonian with Cooper pair sources Ai: 

+ " "4- + 
H = Y, eicrni~ + ~', t i ia io~tj~ - ~ ( A i a  i t a  i$ + A*ai~ait) ( 1 )  

io" iicr i 

These papers discuss the influence of the disorder on the electron subsystem. 
The phonon;mediated parameters of the effective electron-electron inter- 
action in alloys entering the definition of A~ in (1) have been recently 
derived 22 on the basis of the random contact model. On the other hand, 
Griinewald and Scharnberg 23 studied the effect of force constant disorder 
on the electron-phonon spectral function a 2(z)F(z), while Appe124 investi- 
gated the influence of atomic ordering in alloys on their Tc by means of 
the integral equation for the vertex part. 

Eliashberg-type theories have also been proposed for superconducting 
alloys. 25'26 Kerker and Bennemann 25 used a Fr/Ahlich-type Hamiltonian for 
the electron-phonon interaction and neglected the effect of disorder on 
the phonon Green's function (GF). Lustfeld 26 obtained the expression for 
Tc on the basis of a phenomenological ansatz for the averaged anomalous 
self-energy [cf. Eq. (16) for ~ff  in Ref. 26]. 

The purpose of the present paper is to develop a microscopic self- 
consistent theory of strong coupling superconductivity in disordered transi- 
tion metal alloys. The alloy version 27 of the Bari~i6-Labb6-Friedel (BLF) 
tight-binding model 28'29 is used for the electron-ion interaction. As was 
shown in Refs. 30-32, the BLF phonon-induced d-d coupling is the 
dominant mechanism for superconductivity in such systems. We derive the 
equations for superconductivity in the site representation by means of the 
irreducible Green's function method 33-35 in Section 2, using ideas 
developed previously in connection with the derivation of Eliashberg-type 
equations for pure transition metals in the Wannier representation. 35 
Various attempts at configurational averaging are discussed in Section 3, 
where the formula for Tc is also obtained. Section 4 contains a discussion 
and conclusions. 

2. G E N E R A L  T H E O R Y  

When studying superconductivity in transition metal alloys one must 
take into account at least three facts of major importance: (i) The d electrons 
responsible for superconductivity in these systems have atomic character 
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(Section 2.1); (ii) these materials usually belong to the class of strong 
coupling superconductors (Sections 2.2 and 2.3); (iii) they are very often 
disordered, so to obtain meaningful results requires the proper averaging 
(Section 3). 

2.1.  T h e  Hami l ton ian  

In the so-called modified tight-binding method we write the Hamil- 
tonian for a given configuration of atoms in an alloy as 27 

1 ~' + + He-i + Hi (2) H = Y~ elni,~ + -  ~, Uini~ni-~ + tija ioai~ 

q- + 

Here ni~ = aioai~, and ai~ (ai~) creates (annihilates) the d electron in the 
"Wannier"  state ffi~ with spin ~r. The tlj are the hopping matrix elements, 
and the prime indicates that the sum over j is limited to nearest neighbors 
of i. Here Ei and U~ are random "energy levels" and intrasite Coulomb 
matrix elements, respectively. He-i stands for the electron-ion interaction 
Hamiltonian. This part of H was derived previously 27 and is a direct 
generalization of the BLF 28 model, 

He_i = ~, E T i i ( u i  - u j  )aioai~ (3) 

with 

q~ + q b  r R 7 - R ;  
Tij = 2 "I111- - Ri (4) 

Here u ~ is the o~th component of the displacement of an ion at the ith site, 
and q~ is the Slater coefficient describing an exponential [exp (-q~r)] 
decrease of  the d-electron wave function. 28 It takes on the value qg (qB) 
when the atom at site i is of A (B) type. Rj - R~ = Rj~ is the relative position 
vector of two ions at i and/'. The last part of the Hamiltonian represents 
the ion subsystem and in the harmonic approximation used here it is given 
by 

2 
P i . 1 r~ ,~ ~. at3 B 

H i = ~ - - ~ - - L  E (5) 
• 2M,- 2 ~i -~ u~ u,~j uj 

M~ denotes the mass of an ion at site i. It equals MA or MB. The dynamical 
matrix (I)~ ~ is also in general a random quantity. 

2.2.  E lec tron  Green ' s  Funct ion  and Mass Operator  

In disordered systems where the distance between "impurities" is 
comparable to the interatomic distance of the host a° the coherence length 
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(or Cooper pair size) is greatly reduced. The proper description of supercon- 
ductivity in such systems requires the proper description of the Cooper 
pairs. The pairing in general takes place between time-reversed states and 
these cannot be represented as k~' and -kS in disordered alloys, because 
k is not a good quantum number in these systems. Therefore, we have to 
start from the states in the site representation, describe the pairing (i.e., 
obtain an expression for the anomalous electron Green's function and mass 
operator), and only then average over various configurations in order to 
obtain quantities that can be compared with experiment. 

To solve for the mass operator we use the eciuation of motion method 
for the two-time thermodynamic Green's function. 36'37 The Green's func- 
tion G~ (w) is a matrix in Nambu representation and is defined for a fixed 
configuration of ions in space by 

^o. ( ((ai,~[aj+)),,,, ((a,o.laj-=)L'~ = ((t#,~[C)o, 
Gij (o~) = k,((a i+_,~laT))o., Ca,+-,~laj~))o,} (6) 

where ~Oj + = (aj), aj_=) is the so-called Nambu field spinor. 5 Differentiation 
A O r  

of G , i ( t -  t') over the first time variable t gives the following equation for 
the Green's function (6): 

A A o r  
AimGmj(w) =/]j + Ui~3B,j + Y~ T~,,,C,m,j 

m m [ 3  

(7) 

where the caret denotes matrices in spin indices, ?,, i = 1, 2, 3, are the Paul, 
matrices, and 

3,,.,  = o ~ o -  (~,a,,. + t~, .)~;  l]j = a,,.~o 

Bij : ( ((ai~n'-']a T ))°'' 
\((a ,+-,~ni,~laT)L, 

[3 + 
C',mj [ ((uimam°[ai'~))~' 

= [3 + + " \((u toga .,-o.[a 1",~)),o, 

((aio-ni-o-laj-o-)),,,'~ 
((a i+-,,ni,~laj_,~)),o} 

((uf,,,a,.,.[aj-,.)),o 
[3 + 

((U m i a  , . - ~ l a j - ~  ) ) o J  

~t ~ ot 
l, L ir n : bl i - -  bl rn 

To proceed we define the "irreducible" operator as in Refs. 29 and 33-35: 

ir + + (( (aio-ni-o-)laj,~))=((aio-ni-o.laj,~))o, 

-(ne-o-)((ai,~laTo-)),o 

+ (aioa,-~)  ((a ,+_~ I a j+ ))o. (8) 

which gives rise to new equations of the form (7) with/~,,,  replaced by 
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i r  A 
(Bi.,) and Ai., replaced by 

fi~l.,.=fi~,m_U / <n),.>. - (agoa,_¢>'~ 3 ' 
\-(ai-,~aiS>, - (n , .~>  ] ' '  (9) 

This means that we have extracted from the original Green's function the 
Hartree-Fock-Bogolubov 3 mean field, given here by the difference (,41,g,. - 

A 
A~.,). To proceed we write down the equations of motion for the Green's 

ir ^ functions (Bii) and C~.,,i, differentiating them over the second time variable 
t ' .  29'35 Then we again go over to "irreducible" Green's functions, but now 
with respect to rhs operators (cf. Ref. 27). The set of equations obtained 
for the various Green's functions can be solved exactly. To this end we 
define the zeroth-order Green's functions as 

EA, -o~ 
l , i m ( ~ r n j ( ( - 0  ) = ~ i j  ( 1 0 )  

m 

and obtain the following exact equation: 

~Or 
~ (~o)K~ (~o)~.,(~o) 

n , m  

where the "scattering" o p e r a t o r / ~  is given by 

ir  --o" --or + ir << (q/.~a~)l(o,,. a,,~)>L. 
l " -- i r  

~..  ~ (( (pi..am¢)l(p,,,a,_¢))>o~ i 
Ki'(°')=2~'~ t ] 

ir  o" + --o" 4- ir  ~r (( (pi,,,a,.-,~)l(pu, arc) )>~,, 
ir  o" + o" ir \ (( (p,~am-¢))(pu,ar-¢))>~./ 

(11) 

¢3 (12) 

p ,  = U,.ni,,Sii+ Y Tij(ui - u j )  
ot 

Equation (11) can be written in the form of the Dyson equation 33'34 

(13) 

Ao- ~0o- ~n; (o,)di/(o~)~,j(o~) (14) 
fl 

A o- 
where one introduces the mass operator dda(oJ), the "proper part ''33 of 
the scattering operator K~ (oJ). Denoting the random matrices in site space 
by ~, ~o, anddd, one can writethe formal solution of (14) as 

= [(aJ°)  - I  - d % ]  -1 (15 )  

To find an expression for the mass operator ~ we proceed in the same 
way as done previously 29'a5 and express the Green's functions entering the 
operator /~ through the correlation function by means of the spectral 
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theorem. 36'37 We decouple these correlation functions in the following way: 

/3 + a B o~ + (u .a(t)a m~(t)u inan,~) ~ (u ml(t) U in) (a .,~(t)a.,~) 
+ (nt-~(t)a t~(t)ni-oat,~) ~ (nt-~(t)ni-~)(a [~(t)a,~) 

(16) 

neglecting the vertex corrections according to the Midal-Eliashberg 
approach. 4'6'29 Using again the spectral theorem on the rhs of (16), we 
obtain for the mass operator d~ (cf. Ref. [35]) 

o- ~ el-ph ~ c 
J ~ i l ( W  ) :  ~/~il, cr (O.) )'~-~/~il,o.(O.) ) (17) 

with the electron-phonon part given by 
oo 

j~,-ph, , 1 f [ doo2cth(/3ool/2)+th (/3w2/2) 
il, o" t °o ) = ~ dool 

. OO - - O O l - - O O 2  
-oo 

(_1)  im((ui,.lurt))o.l+i.r3(_l) × y  E r :  ' ° 
ml' aB 

× Im ff~v (oo2 + ie)~3Tl~t (18) 

and the energy-dependent Coulomb part given by 
oo 

.o u,u, f f  cth (floo 1/2) + th (/3oo2/2) a~[it,,,-(oo) = ~ j j  dool dw2 
OO - - 0 )  1 - - 0 9  2 

--oo 

with 

o ' , o -  rt o ' - - o "  s X [Fi! (ool)gil(oo2)--F!t (wl)git(oo2)] (19) 

I 
~ Im (((ni-,,-lnt-o-)),,,+i,, 0 ) 

Fil (w)= \ O, ((n~o.lnto.)),,,+i, 
, [((ai,,[a[,~))o,+i~, + 0 , 

g~(oo) = lm ~ 0, ((ai-,~[al,~b,o+i~) 

s lm + 0+ ((ai~r[alo(r}}oj+i.) 
gi'(oo) = (((ai-~[at-~))~.+i., 

The elastic or Hartree-Fock-Bogolubov part of the Coulomb mass 
operator, not included in (17) and (19), can be written as [cf. its definition 
in (9)] 

HF Ui .. _Ui  fm  dtol th "73 - Im C~ii (oo l+ le ) r361 ,  (20) ~iza (oo) =T,S,,r3 2 J_~ 
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The equations (14) and (17)-(20) form a set of a self-consistent equations 
for the determination of the random Green's function and mass operator. 
The calculation of the phonon Green's function entering the electron- 
phonon part of the mass operator is discussed in the following section. 

2.3. The "Renormalized" P h o n o n  Green's Function 

The general scheme of the calculation is the same as for the electron 
Green's function. The phonon Green's function is defined as 35 

D~t3(t-t ') =((u~(t)lu~(t')))= -iO(t-t')([u~(t), u~ (t')]) (21) 

We differentiate it twice over the time t and then twice over the time t'. 
The zeroth-order Green's function is defined as 

qb ~,V]D .i (to) = 6ifi~t3 (22) 
n V  

and enables us to write down the Dyson equation D = D°+D°HD, with 
the phonon mass operator II (polarization operator) given by 

oo 

1 2 ( f l to l /2 ) - th  (#to2/2) 
II:vm'(t°)=~2 f f dt°l dt°2th to -0)1+0) 2 

xE T: y_., {(,~,,,,,-a,,,,) 
nl n ' l '  cr 

x T~l [Im + + ((at,~la,,,o-)),,,,+i,~ Im ((aro.la.o.))~-i¢ 
4- 

- I m  ((a.-~la.,~))o,,+i. Im ((aeo-lato-)),o2+i.]T~;r (6.'m'-6r,.,)} (23) 

Note that the phonon spectrum in the superconducting state is additionally 
renormalized as compared to the normal state. 27'areas To obtain the formula 
(23) for the polarization operator II we have neglected the vertex correc- 
tions, as in (16). 

3. C O N F I G U R A T I O N A L  A V E R A G I N G  

In this section we discuss different attempts at averaging. Our main 
task is to obtain the averaged system of equations describing the supercon- 
ducting alloy. For a given, fixed configuration of atoms in a lattice, these 
are given by the set of equations (14) and (17)-(20). Roughly speaking, 
we need the configurationally averaged Green's Function (C~(z)) = t~ (z) and 
total mass operator (,////t°t(z))=/~t°t(z), where 

At°t(z ) = ,/~ nv + A ~l-r'h(z ) + e/~ ¢(Z) (24) 
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For later convenience we rewrite Eq. (14) as 

2 [ Z ~ O ~ i l  - -  E i ~ 3 ~ i l  - -  ~ ~ t o t  t r  tio'3 --  J/{ il,~ ( Z ) ] ( ~ / ]  ( Z )  : ~i] 
l 

(25) 

In this paper we are not interested in the dynamical effect of the electron- 
electron interaction and neglect the mass operator ~ ( z ) .  Thus the electron 
correlations are treated in the Hartree-Fock approximation. 

We start the discussion of averaging with the simplest possibility, where 
only the random energy levels El are described in the CPA and the other 
random parameters U~, Tq are averaged to lowest order in the concentra- 
tion x. 

3.1. The Simplest Method of Averaging 

In the following we assume the hopping integrals t~j to be nonrandom, 
periodic quantities, or replace the actual parameters by their averaged 
values, i.e., 

- 2 . A A  A B  ~ 2 . B B  
t i i ~ t i j = X  li i  + 2 x ( 1 - x ) t i i  + ( l - x )  tli (26) 

The average of the alloy Green's function c~ = ~o+ c~0/~tc~, where ~ 1 =  
~/~X-lF+~l-ph and ~o is defined by 

is assumed to be 

A - A ~ 0  
(Z~ot~it -- ei'r3t~il -- t il'ra)c~ l](Z ) = 61i (27) 

I 

= OpA (28) 

GOpA denotes the CPA averaged Green's function defined in Eq. (27). In 
order to obtain the lowest order estimation to (~¢/~ 1) we replace the Green's 
functions entering the definition of ~ 1 by their averaged values while the 
remaining random single-site parameters, a~ = Ui, q~, etc., or their product 
average in the following manner 

=l(a2) = x~2 +yo~; i=j 
(29) 

The above averaging scheme is rather crude but workable. It gives some 
insight into the problem, and moreover enables us to derive the nonlinear- 
ized Eliashberg equations of superconductivity in alloys. In a sense this 
scheme resembles the so-called Anderson limit of constant order parameter 
studied in the CPA by various authors, a4'2° 
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Fourier-transforming the averaged equation (28) and expressing the 
averaged mass operator A~r~ (o9) in terms of the Pauli matrices ~i in a standard 
way, 4-8,12 

~ ,  (o9) = [1 - zk(o,)]o9~o + xk(o9)~3 +,p~(o9)~l (30) 

we arrive at the equations 

I_ ~ Re [(o9,)2 _ A;(o9,)]1/2 sign w [1-Z(w)]w=-  dw'K(og',w) w' (31) 

~ a(og') 
A(o9)Z(o9) = do9' ' " n  ' oo K(w,  w) Re [(09,)2 A2(o9,)]1/2 Slg o9 

' zX(og') 
- Vc dw' th Re [(~0,) 2 _ A2(w,)]l/2 

where A(w) = ~(og)/Z(og) and 

Vc = N(,F)(Ui)/[ 1 + N(eF)(UI) In eF]  (33) 
OgCA 

N(ev) is the density of states of an alloy at fermi energy eF, and the kernel 
K(w', co) is expressed in the usual way ~2 through the electron-phonon 
spectral (or Eliashberg) function o~2(z)F(z) containing all the essential 
information about the system: 

a2(z)F(z) 

= f  cl2kf dZq {Ig~(k,q)12[ - l I m  - 
as~ Vk .Is~--V--qq ~X Dk-q,x(Z +/¢)] 

+IsdZp[g~(k,q,p)12[-lIml?u_p_,(z+ie)]}/Is d2k (34) 
F Up V Uk 

(~2 ~ 
Ig~ (k, q)l z --  2 M A d  2 ~ [e k--q,A (~ It -- V q )]2 

Qi-O2 . . . . .  
]g~(k, q, p)]2= 8-MAd "£ ~ [ek--q--p,A (Uk - - V p + q  +/.)  k - p  - - O q ) ]  2 

Q1 = xq2A +Yq~; Q2 = x2qZA + 2xyqAqB + y2q 2 

c~ OEk ek = N -1 • ~o" exp [ ik(Ri-  R/)], Vk = (35) 
ii Ok" 

Ma is the mass of an A-type atom, d denotes the distance between nearest 
neighbors in a lattice, and ek,x and/~k,x (Z) denote, respectively, the phonon 
polarization vector and the averaged Green's function of phonon branch A. 
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The phonon Green's function/~k~ itself is a solution of the equation 
(shorthand notation is used) 

/5 = /9°  +/9°Ft/9 (36) 

where/5o as defined in (22) is calculated in the CPA, but the phonon mass 
operator l--l(to) giving the renormalization of the phonon spectrum in an 
alloy is calculated here in a similar way as/~r. 

In general it is important to use the fully renormalised phonon Green's 
function because the anomalous phonon contribution for high Tc comes 
mainly ~2 from the phonon linewidth [ - I m  I-I(to + iE)] and the renormaliz- 
ation can remarkably change the spectrum of the superconductor, giving 
rise to a new localized phonon mode, as recently discussed by Machida. 38 

3.2. General Averaging Scheme 

All the quantities of the theory developed in Section 2, such as mass 
operators J/~/l.~(to), l~Iil(to), Green's functions, etc., depend on the configur- 
ation of the whole alloy. Most important, however, is the dependence on 
the occupancy of the so-called terminal points i, l. The rest of the atoms 
can be replaced b y a n  effective medium. This means that we replace the 
functions ftit,~ (to), (~i~ (w), etc., by their conditionally averaged counterparts 

/~ril.~ (to) = (~il,~(to))~/~; t_~(to) = (~(to))~/~; . . .  (37) 

where ( . . . ) ~  denotes the configurational conditional averaging over all 
lattice sites {1'} different from i and l, the conditions being the fixed types 
of atoms at sites i and l. Evaluation of various conditional averages 
M A A  i ,IrAB ,'~ ,~ ,  i~ . . . .  requires in turn knowledge of the conditionally averaged 
electron and phonon Green's functions. The best way to calculate them is 
to use the off-diagonal CPA developed by Blackman, eta[. 39 for electrons 
and its extension to phonons. 4° The resulting set of equations is difficult 
to solve numerically and therefore we will not discuss it further. 

To make the problem tractable we resort in the next subsection to 
additional approximations leading to the single-site description. 

3.3. The Random Contact Model 

In the contact model, electron scattering processes caused by the 
electron-electron and electron-phonon interactions are taken into account 
only if the two electrons are initially both at the same site i and finally 
both at another s i te  1'. 24-26 In our tight binding approach this means that 
we neglect all off-diagonal (in site indices) matrix elements of the electron 
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and phonon Green's  functions and of the mass operator. Thus we obtain 

^,~ ,, Ui f ~  1 I m  (~iS°'(to2+iE)}~3 

co 

1 I I  dtol dw2 cth(flw'/2) +th  (18o02/2) 
2 to - w l - t o 2  

--{90 

+Dm~(to l+ ie ) ]} ' a{  l Im ~ ie)} ~ ~ '~ - ~mm(to2 + r3Tmi (38) 

Note that we have incorporated the random energy levels ei into the 
definition of the total mass operator matrix. Because of the definition of 
the electron-phonon interaction parameters Ti% [cf. their definition in Eq. 
(4)] the sum over m in Eq. (38) is limited to nearest neighbor sites to i. 
This sum gives rise to some sort of configurational averaging. The configur- 
ational average of any function ~ in the site representation can be defined 
as 

G,i(to) = l E  ~,+,;+, 
N l  

where the subscript l goes over all N randomly occupied sites in a sample. 
Noting this fact and denoting the distance between neighboring sites as 
previously by d = I R , . - R ;  I and d~ = R ~  -R~' ,  we can rewrite Eq. (38) for 
an atom of type A at site i as 

.~ U A  f °°  t h ~ 3  {_ 1 im 0A,* (to2 + ie)},~3 , A , , - T  dto2 
oo 

dto2 cth (/%) 1/2) + th (~to2/2) 
2rr 2 t o  -- tol -- to2 

--OD 

= d  2 
x ~ Ld-~{2xq2 ImD~A(tox+ie) 

X 5 3 A°" " Im GA (o)2 + tE)r3 + ¼ (qg + qB)EY [Im D ~ (to 1 + ie) 

+ Im D ~  (to1 + ie)]x'~3 Im G~ (toE + ie)'~3} (39) 

with a similar formula for M ~  (to). Here [ denotes the value of the hopping 
integral for neighboring atoms in a cubic lattice [cf. Eq. (26)]. According 
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to the discussion in Section 3.2 and in order to have a true single-site 
description of/~f, we have conditionally averaged Eq. (38) with the condition 
i = A. Here GA (DA) denotes the conditionally averaged electron (phonon) 
Green's function. The third term in (39) results from the electron-phonon 
interaction and has exactly the same form as Lustfeld's 26 expression for 
Orl,A [his Eq. (8)]. 

The above single-site matrices/V/'~ (to), i = A, B, are the only random 
quantities in our model and serve as input parameters in the matrix CPA 
equations. The outputs of these equations are: (i) the coherent potential 

^o" matrix E (to) replacing M7 (to) in an effective medium and (ii) the Green's 
function G~ (to) describing the properties of the averaged system. As usual, 
the existence of a nonzero solution for the part of the ~ ( to )  matrix that 
is off-diagonal in the spin indices (i.e., the anomalous part) determines the 
superconducting transition temperature T~. 

The model, as stated above, is appropriate for discussing the possible 
coexistence between superconductivity and magnetism, but this is outside 
the scope of the present paper. Therefore in the following we omit the 
spin index tr. 

3.4. C P A  Equations for Superconductivity in the Contact Model  

Here we briefly discuss the calculation of the averaged electron Green's 
functions G(z) and G~(z), i = A, B. The averaged Green's function G(z) is 
related to the configuration-dependent one ~(z) by 41 

q(z  ) = 3 ( z  ) + 3 ( z  ) 3 ( z  ) (40) 

where the scattering operator ~ refers to the whole system. In the single-site 
CPA the condition (÷)= 0 determining the averaged Green's function is 
replaced by the following41: 

(t,>=xL,+yT B = 0, f ', = (41) 

with the single-site T-matrix 

Here 

f'i = I~'i + ~ G "  (42) 

~/ [ M~I (z) -~,ll(Z), 
= ~Ml*~ (z*)-  £'2(z*), 

" 

O ( z ) -  - ,  , 
\G 2(z ), 

Mil2(z)-E~2(z) ~ (43) 
-M~I (-z) +En(z)] 

- G u ( - z ) ]  (44) 
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and 

Ol1(z)  = l E  z + E,,+ ~11 ( - z )  
N k [z - e,, - E1 l(Z )][z + e,, + Z11 ( - z ) ]  - £12(z )E*z(z *) 

012(Z)~---L E ~12(Z) 
N ,  [z  - e k -  Z 1 2 ( z ) ] [ z  + E~ + X l l ( - z ) ]  - X 1 2 ( z ) Z  ~*2(z *) 

(45) 

A very important relation connecting the anomalous and normal parts of 
(44) follows from the last two equations, namely 

011(Z)-- 011(--Z) ,~, ,, . 
(~12(z) = 2z + E1 l ~ ( ~ z )  z,12tz) (46) 

To close the set of equations (38) and (40)-(46) we need the expression 
for the single-site Green's function G~(z). In the CPA it is given by 41 

G i ( z ) = ~ ( z ) + G ( z ) ~ ( z ) G ( z ) - - [ 1 - ~ ( i ~ I , . - £ ) ] - a G ,  i = A , B  (47) 

The resulting set can be solved numerically and the transition temperature 
Tc determined. At this temperature there is a nonzero solution for the 
anomalous part of these equations. Therefore we expect that at T + T¢, 
E12(z)+0 and M~2(z)+0,  thus making possible linearization and 
simplification of the problem. This is the subject of the next section. 

3.5. Linearized Equations and the Transition Temperature 

The simplest way to linearize the equations of the previous sections 
with respect to Elz(z) and M~2 (z) is to write every matrix if" as a sum of 
normal ff.n (diagonal) and anomalous (i.e., purely off-diagonal, supercon- 
ducting) ~s parts and use the matrix identity ( A - B ) - 1 =  
A -1 + A - 1 B ( A - B )  -1 repeatedly. Up to linear order in E12 the diagonal 
part of (41) gives the so-called Soven equation, 42 

Z n ( z  ) = xM~l (z ) + yM~I (z ) 

--[MA1 (z)-]~11(Z)]Oll(Z)[M~l (Z ) -  ~.ll(X)] 

&l(z) = ! E  1 
N u z - E ~ - E l l ( z )  

(48) 

while the off-diagonal part can be written as 

[ Glz(z) +.. , i 1 
o12(z) = (~h (z) Lo11(~( -z )  ,~12tz)-M1~ (z)/Gh (-z)) J 

(49) 
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Noting the definition G~l ( z )=[G~(z ) -M~l ( z )+El l ( z ) ]  -1 and the 
identity 

, ,1"~711(-z)- Ol~(z) 
G~l (z ) -G~l  ( -z  ) = G~1~z )| - a~l(Z ) O ~  "[=~11(Z)--~ '~l l ( - -Z)  

( -z)  - M ] ,  (z)l G],  ( -z)  (50) +M]I  .l 

and defining the auxiliary function £ 1 2 ( Z ) ,  17'21'25 

2 z  
~ 1 2 ( Z )  = ~"12(Z) 

2z q'- ~ 1 1 ( - - Z )  --  ~ l l ( Z )  

we obtain from (49) and (46) the CPA equation for ~a2(z): 

\l  2(zl 12(z) 2z-M , (-z)+ (z) (-z)\/ 
2z 

i i i 
= ( G l l  ( z ) M 1 2  ( z ) a l l ( - Z ) )  

(51) 

(52) 

Note that Eq. (51) has the structure of the so-called Abrikosov-Gorkov 
relation. 1°'21'26 It expresses the additional changes of E12(z) due to the 
disorder in the normal part of the problem. It is easy to verify that 

i i 
G~2 (z) = {a~l (z) -- a~l  ( -z)  -- G~I (z)[2z +M~I (z) - M l 1  ( -z) ]G 11 (--Z)} 

x ~.12(z)/2z + G~I (z)M~2 ( z ) G ~ I  (Z) (53) 

Equation (38) or (29) and (53) determine the input parameters M~2 (z) 
for (52). It is worthwhile to note the presence of the terms [M;(-z)  -Mi (z ) ]  
in (52) and (53). They express an additional influence of the electron- 
phonon disorder (only the electron-phonon part of/~/i is energy dependent 
in our treatment) on the superconducting behavior of an alloy. However, 
we expect this effect to be weak and neglect it. 25"26 

Combining Eqs. (50), (53), and (38) we obtain from (52) the equation 

I: ~;12(~o) = do)' K~f(~o ', ~o) Re "212(~o'+ ie) 
co O) 

Io /~o~ . .  x12(oJ +iE) -- N ( E F )  Ueff dw' th T r~e ~o' (54) 

replacing the Eliashberg equation for the order parameter A(oJ) [cf. Eq. 
(32)]. The kernel Kef f is defined as usual 

I ?  cth (flz/2) + th (flw'/2) 
Kerr(co ' ,  to) = dza2(z)F(z ) (55) 

oo Z + ¢ o ' - -  ¢o - - i e  
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where the Eliashberg function is given by 

I-'~X qAI~A(,F)[--IImO~(¢.O 

1 
+ ~xy (qA + qB)ENA(~F)NB(EF) 

×[ -IImD~'(w+iE)-I lmD~(°J+iE) ] Ir 

y qBIVB(EF) -- ImD~(~o+i~) F) 

N ( E F )  Ueff  = (Ui N2 ( ~ ' F ) / N ( E F ) )  

(56)  

(57) 

N,.(EF) and N(ev) denote, respectively, the partially and totally averaged 
electron densities of states at the Fermi level 

N/(EF) 1 Im i = ---- G 11 (EF), i = A, B 
77 

N ( e F )  = -- 1__ Im Gll(EF) = XNA(EF) + yNB(~F) 
7'/" 

(58) 

Following the work of McMillan, s we can write down the formula for T¢: 

O 1.04(1 +ha0  
Tc = ~ exp h eff --/..£ e~'ff (1 + 0 . 6 2  haf) (59) 

where the electron-phonon coupling constant 

d E 
Aeff = ~ ~ ~--~ {XNA('F)/) ~, [Xq2ANA(eF) + ¼(qA + qs)2Ns(,F)] 

* a  2 1 2 1 +yNB(EF)DB[yq~NB(~F)+aX(qA+qS) NA(~F)]} N~eF ) (60) 

and the Coulomb pseudopotential 

* ---N(eF)U~a/[e+N(eF)Uafln~ W] (61) /g' eff 

both depend on the alloy parameters, in particular on the concentration 
x, thus giving rise to a concentration dependence of the transition tem- 
perature To. The calculation of Tc versus x for various transition metal 
alloys will be the subject of a subsequent publication. 
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In the above formulas ® is of the order of the Debye temperature of 
the alloy, W is the alloy bandwidthy and/97 denotes 

/~,  2 I ~  ImD~(w +ie) 
= - d w  , i = A, B (62) 

oo (.0 

To obtain Tc for various alloys one has to solve the CPA equation (48) 
and then calculate Ni(eF) and N(ev), then an equation similar to (48) for 
the calculation of the phonon Green's function D(~o) and then 67.  27,43 

4. DISCUSSION AND CONCLUSIONS 

We have developed a theory of strong coupling superconductivity in 
disordered transition metal alloys. The use of the alloy version of the BLF 
model ensures the proper treatment of the atomic character of the d 
electrons responsible for superconductivity in such systems. We were able 
to obtain a closed set of equations determining the electron and phonon 
Green's functions and mass operators. These equations give a general 
microscopic description of an alloy in the spirit of the Migdal-Eliashberg 
approach. Written in a Wannier space, they refer to the fixed configuration 
of atoms in an alloy. Therefore an averaging is needed. This was performed 
in two different ways. First in section 3.1 we used a very simple approxima- 
tion for the averaged Green's functions. As mentioned previously, this 
approximation gives a workable scheme for the derivation of the usual 
nonlinear Eliashberg equations written in terms of microscopic alloy para- 
meters. The second approach is fully based on the CPA. We take into 
account the randomness not only through the parameters of the Hamil- 
tonian but also in a self-consistent way through the configuration depen- 
dence of the single-site electron mass operator. Although similar to Refs. 
25 and 26, our paper contains some further developments of these theories 
for strong coupling superconductivity in disordered alloys. Contrary to Ref. 
25, we take into account the effect of disorder on the phonon Green's 
function and we do not replace, as already mentioned, the single-site 
Green's functions G A  and GB in the mass operator by the averaged Green's 
function G. In Ref. 26, the electron-phonon interaction Hamiltonian is not 
expressed in terms of microscopic parameters like q~, t~j, etc. The expression 
for the self-energy in Ref. 26 is limited to the contact model only, and in 
order to average the Green's function over the configuration a phenomenol- 
ogical ansatz is used for the anomalous self-energy. In contrast, we have 
derived the mass operator in a general way by means of the "irreducible" 
Green's functions, which permit the separation of the Hartree-Fock- 
Bogolubov mean-field terms, and we have obtained an exact expression 
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for the mass opera tor .  It  mus t  be  emphas ized  that  for the r a n d o m  contact  

mode l  l imit  we have der ived and  exploi ted the exact general  re la t ionship  
be tween  the no rma l  and  anoma lous  parts  of the C P A - a v e r a g e d  e lec t ron 
G r e e n ' s  funct ion.  

The  presen t  theory  in its genera l  form as well as the contact  mode l  
vers ion will be  used in the nea r  fu ture  for a discussion of the concen t ra t ion  

d e p e n d e n c e  of Tc in some t rans i t ion  meta l  alloys. 
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