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NONEQUILIBRIUM STATISTICAL OPERATOR METHOD AND

GENERALIZED KINETIC EQUATIONS
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We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of

the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some

approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles

and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized

kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation

for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking

the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium

medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator

method is an effective, convenient tool for describing irreversible processes in condensed matter.
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1. Introduction

The purpose of statistical mechanics is to create a consistent, effective formalism for describing the
macroscopic behavior of multiparticle systems based on the microscopic theory. A rather effective, reliable
approach that allows describing a large variety of phenomena in systems such as fluids, gases, and solids
was formulated in statistical mechanics. Statistical mechanics also verifies such thermodynamic concepts
as heat, temperature, and entropy based on the laws of the microscopic behavior of particles.

The purpose of any theory is to describe reality. It is clear that real systems are open systems that can
be regarded as closed only approximately. The central problem of nonequilibrium statistical mechanics is
to derive evolution equations for a given system consistently starting from reversible equations of motion.
Nonequilibrium statistical thermodynamics provides approaches and tools for describing the irreversible
processes in real systems in the framework of a unified theoretical method that allows calculating the
transport coefficients characterizing the evolution of nonequilibrium processes (albeit approximately).
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We note that one of the fundamental thermodynamic laws (the second law of thermodynamics) differs
quite significantly from other general physical laws. The second law is formulated as an inequality, not an
equality. This inequality becomes an equality in the limit of reversible processes. But we know that there are
obstacles to the practical realization of this limit. By definition, a reversible process is a process such that
the thermodynamic system never deviates significantly from the equilibrium. Because any process takes
a finite time, there are unavoidable perturbations affecting the equilibrium. Therefore, deriving reliable,
exact evolution equations is quite difficult. We mention a specific aspect of the concept of time in this
context. We sometimes say that the time in thermodynamics is manifested not as a quantity itself but only
as an indicator of the sense of a quantity: the change in entropy.

For calculating transport coefficients, there are many different methods, which are typically restricted
by certain applicability conditions. For instance, the most widely used approach, based on the Boltzmann
equation, is applicable to a highly rarefied gas of pointlike particles.

Different schemes for describing kinetic phenomena and transport processes have been proposed in
recent decades [1]–[13]. This research direction is actively developing and has many different aspects [14]–
[18]. A large contribution to developing modern methods of equilibrium and nonequilibrium statistical
mechanics was made by Academician Bogoliubov in [1]–[3]. In what follows, we briefly discuss some of these
approaches, mainly those that use the method of the nonequilibrium Gibbs ensemble. We concentrate on
the nonequilibrium statistical operator (NSO) method developed by Zubarev [5], [14], [15] and on obtaining
generalized kinetic equations in the framework of this approach.

2. Equilibrium and nonequilibrium ensemble methods

The task of statistical mechanics is to describe observable equilibrium and nonequilibrium properties
of multiparticle systems theoretically based on their molecular content, their specific intermolecular inter-
action, and the nature of their external environment [19], [20]. The universal tool of equilibrium statistical
mechanics was developed by Gibbs [21] and is called the Gibbs ensemble method. The Gibbs method
has a high degree of generality and a quite large applicability domain in problems of equilibrium statistical
mechanics. The concepts and approaches of this method have diverse applications in various fields [15], [16].

The ensemble is characterized by a distribution function f(p,q), which in the case of classical mechanics
must satisfy the Liouville equation

df

dt
= 0. (2.1)

This dynamical requirement reflects the fact that the points in the phase space (p,q) representing the system
state in an ensemble do not interact with each other; moreover, the phase space volume is preserved. The
ensemble method also assumes equiprobabilities of microstates in isolated systems [15], [22], [23].

We note that the concepts of the Gibbs distribution [24] and the Gibbs state play an important role
in considering the equilibrium properties of statistical ensembles. The Gibbs distribution in probability
theory and mathematical statistical mechanics [15], [16], [22], [23] is defined as the probability distribution
describing the configuration statistics of a multiparticle system in thermodynamic equilibrium. It remains
invariant during the further evolution of the system. Therefore, for a system in statistical equilibrium,
there is a Gibbs distribution function, which can be used to calculate the mean of any dynamical quantity
over the ensemble. In contrast, a similar universal distribution has not been formulated for irreversible
processes. Numerous approximate models and methods have been applied [5], [15], [16], and mechanical
and thermal perturbations causing nonequilibrium processes in a system have been considered [20], [15], [18].
Mechanical perturbations can be expressed as certain contributions to the system Hamiltonian; in this case,
the deviations from equilibrium due to such contributions can be described based on perturbation theory.
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The linear response method developed by Kubo [5], [15], [16], [20] allows calculating the transport
coefficients under mechanical perturbations, such as an external electric field. This allows finding a compact
expression for the conductivity in terms of correlation functions. At the same time, being gradients of density
and temperature, such thermal perturbations cannot be consistently expressed in terms of perturbative
contributions to the Hamiltonian.

In the standard thermodynamic approach, a small number of parameters macroscopically defining the
ensemble are used to describe the properties of a uniform equilibrium system [5]. To describe irreversible
processes in systems that deviate very slightly from the thermal equilibriums, the following technique can
be used. We assume that we can divide the system into a set of certain small subsystems, each of which is
in local equilibrium [5], [15], [16]. In other words, each of these subsystems can be regarded as a separate
thermodynamic system characterized by a small number of physical variables describing its state.

Two mutually related problems are usually considered in the statistical mechanics of transport pro-
cesses: revealing the mechanism for approaching equilibrium and representing the microscopic properties
in terms of macroscopic fluxes. One of the effective approaches to these problems is the Zwanzig ap-
proach [8], [9], [10], [25]. It is based on the reformulated Gibbs method and uses projection operators in
the space of all possible ensemble densities (or distribution functions) to split the ensemble density into the
relevant part (which allows calculating the means of certain quantities over an ensemble) and the remaining
irrelevant part. Such a split is a generalization of a known split of the density matrix into the diagonal and
nondiagonal parts, which is standardly used to derive the kinetic master equation. It was shown that the
relevant part satisfies a kinetic equation that is a generalization of previously obtained master equations,
in particular, the Van Hove equation.

The approach related to constructing nonequilibrium ensembles was developed by Bergmann and
Lebowitz [26]–[29]. There are many methods for constructing such ensembles, and the distribution function
ρ(r1, . . . , rn,p1, . . . ,pn, t) characterizing the ensemble state is therefore not defined uniquely. This function
must be chosen such that the mean over the ensemble corresponds exactly to the incomplete information
about the system state at a given time. The subsequent system evolution is modeled as the behavior
averaged over all elements of a representative ensemble.

The accurate definition of a nonequilibrium system state is a rather complicated problem because this
state cannot be characterized uniquely. Nevertheless, a detailed consideration in certain cases leads to
establishing various time scales during the system evolution [1]–[3], [5]. Moreover, the local equilibrium
(quasiequilibrium) distribution and nonequilibrium distribution can often be regarded as having similar
structures and functional dependences on the system parameters. This leads to the possibility of a so-
called reduced description, in whose framework a rather wide class of transport processes can be described
approximately using a certain finite number of macroscopic quantities or relevant variables [5]. In this
case, we should remember that for the system to reach a stable state or stay in an nonequilibrium steady
state, it must be not isolated but must be in contact with an environment (a system of heat baths), which
provides the presence of thermal and other gradients in the system. This was emphasized in papers by
Bergmann and Lebowitz [26]–[29], where nonequilibrium solutions for some simple systems in the framework
of the nonequilibrium ensemble approach were found and a simple method (of the relaxation type) for
constructing the approximate stationary solutions was proposed. But this program turned out to be not
entirely successful. The basic inconvenience of this approach is the need for detailed manipulation of the
interaction between the system and the heat bath.

Another method, which is closer to the NSO method, was developed by McLennan [6]. It is based on
introducing external (nonconservative) forces describing the effect of the environment or heat bath on a
given system. In other words, we consider the finite real perturbations due to a heat bath that lead to the
irreversible system behavior. Numerous papers on this subject emphasize the need to develop a consistent
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theory describing the smoothing of the distribution function in the phase space, which accounts for the
increase of entropy in open nonequilibrium systems. This means that the corresponding averaging of the
distribution function (statistical operator) plays an important role. These questions have great significance
in studying the ergodicity of dynamical and statistical systems [5], [15], [16]. In this context, we note
that effective averaging methods in describing complex (nonlinear) systems were developed by Bogoliubov
and other authors [30]–[33]. It was noted in [34] that the mixing property arising in ergodicity theory is
not a necessary condition for statistical systems with any finite values of the volume and particle number.
Only the behavior of the limit averages of macroscopic quantities as t → ∞ after the thermodynamic limit
transition is important [5], [15], [16]. In [30], [31], an effective averaging method that allows obtaining
asymptotic solutions of a differential equation without secular terms was developed in the framework of the
perturbation theory in the small parameter ε. In this approach, the basic goal is to find a transformation
of the variables that allows splitting them into slow and fast variables.

A very effective example of this approach is the paper by Bogoliubov and Zubarev [35]. The averaging
method proposed in [30], [31] has a wide application in various problems of dynamical systems theory [30]–
[33] and also in problems of statistical mechanics and condensed matter theory [5], [15], [16]. These ideas also
stimulated the development of the NSO method [5], which naturally includes ideas about both the presence
of various time and energy scales in multiparticle systems and the corresponding reduced description in
terms of a small set of relevant variables [5]. In this context, the time-averaging procedure describing the
smoothing of the distribution function [5] and the set of relevant variables plays an important role.

3. The NSO method

The general idea of the NSO method [5], [14] is that a certain set of parameters {Fm(t)} suffices for
describing a nonequilibrium system state at not very small time scales and, in addition, a particular solution
ρ(t, 0) of Liouville equation (2.1) depending on time only via the quantities Fm(t) can be found. The first
argument of ρ(t, 0) indicates the implicit time dependence. We assume that a nonequilibrium statistical
ensemble can be characterized by a small set of relevant operators Pm(t) (quasi-integrals of motion) and
that the NSO is a functional of these operators,

ρ(t) = ρ{. . . , Pm(t), . . . }. (3.1)

It can be shown [5] that if the statistical operator ρ(t, 0) satisfies the Liouville equation, then it coincides
with

ρ(t) = exp
(

Λ(t) −
∫ 0

−∞
dt1

∑
m

Gm(t, t1)Pm(t1)
)

, Λ(t) = 1 − λ(t), (3.2)

where
Gm(t, t1) = εeεt1Fm(t + t1),

Λ(t) = ε

∫ 0

−∞
dt1 eεt1λ(t + t1) = λ(t) −

∫ 0

−∞
dt1 eεt1 λ̇(t + t1).

(3.3)

We rewrite (3.2) in the form

ρ = exp( log ρq(t) ) = exp
(

ε

∫ 0

−∞
dt1 eεt1 exp

(
iHt1

�

)
log ρq(t + t1) exp

(
−iHt1

�

))
=

= exp(−S(t, 0) ) = exp
(
−ε

∫ 0

−∞
dt1 eεt1S(t + t1, t1)

)
=

= exp
(
−S(t, 0) +

∫ 0

−∞
dt1 eεt1 Ṡ(t + t1, t1)

)
, (3.4)
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where the bar denotes the invariant part of an operator [5],

ρq(t) = exp
(

Ω(t) −
∑
m

Fm(t)Pm

)
≡ exp(−S(t, 0)),

Ω(t) = log Tr exp
(
−

∑
m

Fm(t)Pm

)
,

(3.5)

and S(t, t1) satisfies the equations

Ṡ(t, 0) =
∂S(t, 0)

∂t
+

1
i�

[S(t, 0), H ],

Ṡ(t, t1) = exp
(

iHt1
�

)
Ṡ(t, 0) exp

(
−iHt1

�

)
.

(3.6)

Here, ρq is the quasiequilibrium statistical operator, corresponding to the extreme value of the information
entropy S = −Tr(ρ log ρ) [5], [15], [36]–[39] under the additional conditions of constant Tr(ρPm) = 〈Pm〉q
with Tr ρ = 1. In this case,

δΦ
δFm

= −〈Pm〉q, 〈 • 〉q = Tr(ρq • ), (3.7)

where
Φ(ρ) = −Tr(ρ log ρ) −

∑
m

Fm Tr(ρPm) + λTr ρ, 〈Pm〉t = 〈Pm〉tq. (3.8)

We again emphasize that the NSO method, as noted above, is essentially based on an analogy with
nonlinear mechanics [30]–[33]. A nonlinear system tending to a limit cycle “forgets” its initial conditions.
Therefore, the variables necessary for characterizing the system (relevant operators) depending on time via
Fm(t) must be constructed by taking the part of the operators (which are included in the logarithm of
the statistical operator) that is invariant under motion with the Hamiltonian H . We explain this in more
detail.

By definition, taking the invariant part of the operator Fm(t)Pm yields

Bm(t) = Fm(t)Pm = ε

∫ 0

−∞
dt1 eεt1Fm(t + t1)Pm(t1) =

= Fm(t)Pm −
∫ 0

−∞
dt1 eεt1

(
Fm(t + t1)Ṗm(t1) + Ḟm(t + t1)Pm(t1)

)
. (3.9)

Here, ε → 0 and

Ṗm =
1
i�

[Pm, H ], Ḟm(t) =
dFm(t)

dt
. (3.10)

We emphasize that the parameter ε > 0 tends to zero only after the thermodynamic limit transition [22], [23].
The operators Bm(t) satisfy the Liouville equation in the limit ε → 0:

∂Bm

∂t
− 1

i�
[Bm, H ] = ε

∫ 0

−∞
dt1 eεt1

(
Fm(t + t1)Ṗm(t1) + Ḟm(t + t1)Pm(t1)

)
. (3.11)

Therefore, the operation of taking the invariant part leads to smoothing the oscillating terms.
We note that a similar procedure is used in formal scattering theory [5] and allows imposing boundary

conditions that eliminate advanced solutions of the Schrödinger equation [5], [15]. This is especially clear
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when the parameters Fm(t) are independent of time. Differentiating the operator Pm with respect to time
yields

∂Pm(t)
∂t

= ε

∫ 0

−∞
dt1 eεt1Ṗm(t + t1). (3.12)

The quantities Pm(t) can be regarded as integrals (or quasi-integrals) of motion although they are conserved
only in the limit ε → 0. In our context, this procedure leads to selecting only the retarded solutions of the
Liouville equation.

The quantum (and also classical) Liouville equation is invariant under a time reversal. It is well
known that the Bogoliubov concept of quasiaverages [40]–[42] has great significance in equilibrium statistical
mechanics. According to this concept, infinitesimal perturbations can have a large effect on a system if
they break any symmetry and thus remove degeneration (or quasidegeneration). As a result, their effect
can be finite if they tend to zero after the thermodynamic limit transition. Zubarev [41] showed that
the concept of symmetry-breaking perturbations and quasiaverages is also meaningful in the theory of
irreversible processes [5]. The method for constructing the NSO [5] gains great transparency and depth in
the framework of the concept of quasiaverages. The general idea in [41] is to consider infinitesimal sources
breaking the symmetry of the Liouville equation.

It can be shown [41] that ρ(t, 0) satisfies the Liouville equation but with an infinitesimal source in
the right-hand side. This source is proportional to ε, which tends to zero after the thermodynamic limit
transition. Indeed, we consider the equation

∂ρε

∂t
+

1
i�

[ρε, H ] = −ε(ρε − ρq) (3.13)

or, written differently,
∂ log ρε

∂t
+

1
i�

[log ρε, H ] = −ε(log ρε − log ρq), (3.14)

where ε → 0 after the thermodynamic limit transition. Equation (3.13) is an analogue of the corresponding
equation in quantum scattering theory [5]. Introducing infinitesimal sources in the Liouville equation
corresponds to imposing the boundary conditions

exp
(

iHt1
�

)(
ρ(t + t1) − ρq(t + t1)

)
exp

(
− iHt1

�

)
→ 0. (3.15)

Here, t1 → −∞ after the thermodynamic limit transition.
It was shown in [43]–[45] that the operator ρε has the form

ρε(t, t) = ε

∫ t

−∞
dt1 eε(t1−t)ρq(t1, t1) = ε

∫ 0

−∞
dt1 eεt1ρq(t + t1, t + t1). (3.16)

Here, the first argument in the function denotes the implicit time dependence via the parameters Fm(t), and
the second denotes the time dependence via the Heisenberg representation. The sought statistical operator
can be defined as

ρε = ρε(t, 0) = ρq(t, 0) = ε

∫ 0

−∞
dt1 eεt1ρq(t + t1, t1). (3.17)

As a result, the NSO becomes

ρ = Q−1 exp
(
−

∑
m

Bm

)
= Q−1 exp

(
−

∑
m

ε

∫ 0

−∞
dt1 eεt1Fm(t + t1)Pm(t1)

)
=

= Q−1 exp
(
−

∑
m

Fm(t)Pm +
∑
m

∫ 0

−∞
dt1 eεt1

(
Ḟm(t + t1)Pm(t1)+Fm(t + t1)Ṗm(t1)

))
. (3.18)
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We can write Eq. (3.14) in the form

d

dt
(eεt log ρ(t, t)) = εeεt log ρq(t, t), (3.19)

where

log ρ(t, t) = U †(t, 0) log ρ(t, 0)U(t, 0), U(t, 0) = exp
(

iHt

�

)
. (3.20)

Integrating (3.19) over the interval (−∞, 0), we obtain

log ρ(t, t) = ε

∫ 0

−∞
dt1 eεt1 log ρq(t + t1, t + t1). (3.21)

We assume that limε→+0 log ρ(t, t) = 0. As a result, we have

ρ(t, 0) = exp
(
−ε

∫ 0

−∞
dt1 eεt1 log ρq(t + t1, t1)

)
= exp(log ρq(t, 0)) ≡ exp(−S(t, 0)).

The mean of any dynamical variable A can be calculated as

〈A〉 = lim
ε→+0

Tr(ρ(t, 0)A), (3.22)

and we see that it is just the quasiaverage. The normalization of the quasiequilibrium distribution ρq is
preserved under the conditions

Tr(ρ(t, 0)Pm) = 〈Pm〉 = 〈Pm〉q, Tr ρ = 1. (3.23)

We can therefore state that the effect of irreversibility is closely related to breaking the time symmetry [15]
and, in a certain sense, to the idea of quasiaverages in statistical mechanics [40]–[42].

Before discussing kinetic equations, we briefly discuss the hierarchy of time scales in nonequilibrium
processes. A significant advantage of the NSO method is that the existence of different time scales is
emphasized in it from the very beginning. We assume that the Hamiltonian of our system can be represented
in the form H = H0 + V , where H0 is an unperturbed Hamiltonian and V describes a weak perturbation.
This split of the original Hamiltonian is not quite unique and depends on the system feature considered. It
is important that the choice of the operator H0 defines a short-time scale τ0. This choice is determined by
the fact that the nonequilibrium system state for t � τ0 can be described (with reasonable accuracy) using
some finite set of operators Pm.

We assume that after the short time τ0 (fast stage), the system can reach an incomplete equilibrium
or a quasiequilibrium. In this case, the basic assumption is that the system state is completely determined
using the quasi-integrals of motion, which are the inner system parameters. Typical relaxation times of
these parameters are much longer than τ0. With a high degree of likelihood, we can then state that even
if the quasi-integrals do not have certain equilibrium values at the initial instant, then these fast-varying
variables become functions of external parameters and of quasi-integrals of motion after the time τ0. It
is important that this functional relation is independent of the initial values of these variables. In other
words, the operators Pm must be chosen such that they satisfy the condition

[Pk, H0] =
∑

l

cklPl, (3.24)

where ckl are some coefficients (complex numbers). We should write the evolution equation for only this
set of relevant operators. We note that the relevant operators can be either scalars or vectors.

The equations of motion for means of the other (nonrelevant) operators (other physical variables) follow
in some sense from the evolution equations for the relevant operators. Moreover, relation (3.24) leads to an
infinite chain of operator equalities. For times t ≤ τ0, the nonequilibrium means of these operators are fast
oscillating, and they become functions of the means for times t > τ0.
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4. Generalized kinetic equations

The NSO method [5] has wide application in various problems of statistical mechanics. Pokrovskii [46]
contributed greatly to the development of kinetic equation theory in the framework of the NSO method.
Generalized kinetic transport equations describing the evolution of 〈Pm〉 and Fm(t) can be obtained by
averaging the equations of motion for Pm with the found NSO:

〈Pm〉 = − δΩ
δFm(t)

, Fm(t) =
δS

δ〈Pm〉 . (4.1)

The generalized transport equations are

〈Ṗm〉 = −
∑

n

δ2Ω
δFm(t) δFn(t)

Ḟn(t), Ḟm(t) =
∑

n

δ2S

δ〈Pm〉 δ〈Pn〉
〈Ṗn〉. (4.2)

In addition, the entropy production can be written as

Ṡ(t) = 〈Ṡ(t, 0)〉 = −
∑
m

〈Ṗm〉Fm(t) = −
∑
n,m

δ2Ω
δFm(t) δFn(t)

Ḟn(t)Fm(t). (4.3)

Equations (4.2) are mutually conjugate and together with (4.3) form a complete system of equations for
〈Pm〉 and Fm.

Following [46], we write the kinetic equations for a system with a weak interaction. The Hamiltonian
is H = H0 + V , where H0 is the Hamiltonian of noninteracting particles (or quasiparticles) and V is the
interaction operator. As relevant operators, we chose the set of Pk in the form a†

kak or a†
kak+q. Here, a†

k

and ak are the creation and annihilation operators (either Fermi or Bose). The starting equations are the
equations of motion

Ṗk =
1
i�

[Pk, H ]. (4.4)

Below, we assume that relation (3.24) holds.
In accordance with (3.18), we have

ρ = Q−1 exp
(
−

∑
k

Fk(t)Pk +
∑

k

∫ 0

−∞
dt1 eεt1

(
Ḟk(t + t1)Pk(t1) + Fk(t + t1)Ṗk(t1)

))
.

We also take 〈Pk〉 = 〈Pk〉q into account. Generalized kinetic equations [46] for 〈Pk〉 can be written as

d〈Pk〉
dt

=
1
i�

〈[Pk, H ]〉 =
1
i�

∑
l

ckl〈Pl〉 +
1
i�
〈[Pk, V ]〉. (4.5)

The right-hand sides of these equations contain a generalized collision integral, which can be written using
an expansion in powers of V as

d〈Pk〉
dt

= L0
k + L1

k + L21
k + L22

k , (4.6)

where
L0

k =
1
i�

∑
l

ckl〈Pl〉q, L1
k =

1
i�

〈[Pk, V ]〉q,

L21
k =

1
�2

∫ 0

−∞
dt1 eεt1〈[V (t1), [Pk, V ]]〉q,

L22
k =

1
�2

∫ 0

−∞
dt1 eεt1

〈[
V (t1), i�

∑
l

Pl
∂L1

k(. . . , 〈Pl〉, . . . )
∂〈Pl〉

]〉
q
.

(4.7)

We can similarly find terms corresponding to the higher orders V 3, V 4, etc.
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4.1. Generalized kinetic equations for a system in a heat bath. Equations (4.5) were general-
ized in [47] to a system interacting with a heat bath. The concept of a heat bath is rather complicated and
has specific features [48]. Normally, a heat bath is defined as a system with an effectively infinite number
of degrees of freedom. A heat bath maintains a desired temperature of the considered system. Following
Bogoliubov [3], we regard a heat bath as a randomizing source for a small subsystem (which can be a single
particle in the limit case). An example of such systems is an atomic or molecular system interacting with
an electromagnetic field or a system of nuclear or electron spins interacting with a crystal lattice.

The complete system can be described by the Hamiltonian

H = H1 + H2 + V, (4.8)

where
H1 =

∑
α

Eαa†
αaα, V =

∑
α,β

Φαβa†
αaβ , Φαβ = Φ†

βα. (4.9)

Here, H1 is the Hamiltonian of the small subsystem, a†
α and aα are the creation and annihilation operators

of quasiparticles with the energies Eα in the small subsystem, V is the interaction operator between the
small subsystem and the heat bath, and H2 is the heat bath Hamiltonian, which we do not write explicitly.
The operators Φαβ act on the heat bath variables. We assume that the system state can be characterized
by the set of operators 〈Pαβ〉 = 〈a†

αaβ〉 and the heat bath state can be described by the operator 〈H2〉.
Here, 〈 • 〉 denotes averaging with the NSO, which is defined below.

We write the quasiequilibrium operator in the form

ρq(t) = exp(−S(t, 0)), (4.10)

where

S(t, 0) = Ω(t) +
∑
αβ

PαβFαβ(t) + βH2, Ω(t) = log Tr exp
(
−

∑
αβ

PαβFαβ(t) − βH2

)
.

Here, Fαβ(t) are the thermodynamic parameters conjugate to Pαβ , and β is the inverse temperature of the
heat bath. All operators are considered in the Heisenberg representation. We write the NSO as

ρ(t) = exp(−S(t, 0) ), (4.11)

where

S(t, 0) = ε

∫ 0

−∞
dt1 eεt1

(
Ω(t + t1) +

∑
αβ

PαβFαβ(t) + βH2

)
. (4.12)

The parameters Fαβ(t) are defined by the condition 〈Pαβ〉 = 〈Pαβ〉q. Deriving the kinetic equations, we use
the expansion in the parameter of the small perturbation V and also assume that the equality 〈Φαβ〉q = 0
holds.

For convenience in the further analysis, we rewrite ρq as

ρq = ρ1 ⊗ ρ2 = Q−1
q exp(−L0(t)), (4.13)

where

ρ1 = Q−1
1 exp

(
−

∑
αβ

PαβFαβ(t)
)

, Q1 = Tr exp
(
−

∑
αβ

PαβFαβ(t)
)

,

ρ2 = Q−1
2 e−βH2 , Q2 = Tr exp(−βH2),

Qq = Q1Q2, L0 =
∑
αβ

PαβFαβ(t) + βH2.

(4.14)
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The starting equation is

d〈Pαβ〉
dt

=
1
i�
〈[Pαβ , H ]〉 =

1
i�

(Eβ − Eα)〈Pαβ〉 +
1
i�
〈[Pαβ , V ]〉, (4.15)

where we restrict ourself to terms of the second order in V . For a system in a heat bath, the kinetic
equations written for 〈Pαβ〉 are

d〈Pαβ〉
dt

=
1
i�

(Eβ − Eα)〈Pαβ〉 −
1
�2

∫ 0

−∞
dt1 eεt1〈[[Pαβ , V ], V (t1)]〉q. (4.16)

These equations generalize the results in [46] to a system in a heat bath. We can show that the assumption
concerning the model form of Hamiltonian (4.8) is insignificant. For arbitrary H1 and V and some set of
variables 〈Pk〉 satisfying the condition [H1, Pk] =

∑
l cklPl, we can construct the quasiequilibrium statistical

operator ρq in the form

ρq = Q−1
q exp

(
−

∑
k

PkFk(t) − βH2

)
, (4.17)

where Fk(t) are the parameters conjugate to 〈Pk〉. In this case, the kinetic equations for 〈Pk〉 are

d〈Pk〉
dt

=
i

�

∑
l

ckl〈Pl〉 −
1
�2

∫ 0

−∞
dt1 eεt1〈[[Pk, V ], V (t1)]〉q. (4.18)

We note that the derived generalized kinetic equations are a useful tool for studying quantum dynamics
in condensed matter [15], [16], [18], [49]. One method for studying quantum dynamics is the reduced density
matrix method. In this approach, the reduced density matrix can be obtained by taking the average
ρ1 = Tr2 ρ of the complete matrix over the irrelevant heat bath degrees of freedom. A known example
of this approach is the Redfield equations for the spin density matrix, which were also obtained (in a
generalized form) using the NSO method [15], [16], [49]. Redfield-type equations for 〈Pαβ〉 can be written
in a general form as

d〈Pαβ〉
dt

=
1
i�

(Eβ − Eα)〈Pαβ〉 −

−
∑

ν

(
Kβν〈Pαν〉 + K†

αν〈Pνβ〉
)

+
∑
μ,ν

Kαβ,μν〈Pμν〉. (4.19)

In structure, they correspond to the Redfield equations for the spin density matrix

∂ραα′

∂t
= −iωαα′ραα′

+
∑
β,β′

Rαα′ββ′ρββ′
(4.20)

in the absence of an external field (the case of a variable external field was considered in [15], [16], [49]).
Here, ραα′

is the αα′ element of the spin density matrix, ωαα′ = (Eα −Eα′)/�, Eα is the energy of the spin
state α, and Rαα′ββ′ρββ′

is the so-called “relaxation matrix” (see [15], [16] for the detailed notation).
Returning to Eq. (4.19), we consider the case of the diagonal means 〈Pαα〉. As a result, we obtain

d〈Pαα〉
dt

=
∑

ν

Kαα,νν〈Pνν〉 − (Kαα + K†
αα)〈Pαα〉, (4.21)
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where

Kαα,ββ =
1
�2

Jαβ,βα

(
Eα − Eβ

�

)
= Wβ→α,

Kαα + K†
αα =

1
�2

∑
β

Jβα,αβ

(
Eβ − Eα

�

)
= Wα→β .

(4.22)

The quantities Wβ→α and Wα→β denote the transition probabilities expressed in terms of the spectral in-
tensities J . Using the properties of the spectral intensities [5], we can verify that the transition probabilities
satisfy the detailed balance equations

Wβ→α

Wα→β
=

e−βEα

e−βEβ
. (4.23)

As a result, we obtain the equation

d〈Pαα〉
dt

=
∑

ν

Wν→α〈Pνν〉 −
∑

ν

Wα→ν〈Pαα〉, (4.24)

which has the usual form of the famous Pauli equation (Pauli master equation) for the density ma-
trix [15], [16].

4.2. Schrödinger-type equation for a dynamical system in a heat bath. Following [15], [16],
[50], we now consider the behavior of a small dynamical subsystem governed by the Hamiltonian H1 and
interacting with a heat bath governed by the Hamiltonian H2. As operators characterizing the state of
the small subsystem, we choose the operators a†

α, aα, and nα = a†
αaα. In this case, the quasiequilibrium

statistical operator ρq becomes

ρq = exp
(

Ω −
∑
α

(
fα(t)aα + f †

α(t)a†
α + Fα(t)nα

)
− βH2

)
≡ exp(−S(t, 0)), (4.25)

where

Ω = log Tr exp
(
−

∑
α

(
fα(t)aα + f †

α(t)a†
α + Fα(t)nα

)
− βH2

)
. (4.26)

Here, fα, f †
α, and Fα play the role of Lagrange multipliers. They are the parameters conjugate to 〈aα〉q,

〈a†
α〉q, and 〈nα〉q:

〈aα〉q = − δΩ
δfα(t)

, 〈nα〉q = − δΩ
δFα(t)

,
δS

δ〈aα〉q
= fα(t),

δS

δ〈nα〉q
= Fα(t). (4.27)

The quantities aα and a†
α in the statistical operator can be interpreted as sources of quantum noise [15], [16].

We transform the quasiequilibrium statistical operator into the form ρq = ρ1 ⊗ ρ2, where

ρ1 = exp
(

Ω1 −
∑
α

(
fα(t)aα + f †

α(t)a†
α + Fα(t)nα

))
,

Ω1 = log Tr exp
(
−

∑
α

(
fα(t)aα + f †

α(t)a†
α + Fα(t)nα

))
,

ρ2 = exp(Ω2 − βH2), Ω2 = log Tr exp(−βH2).

(4.28)

As a result, we obtain expression (4.11) for the NSO ρ. We assume that the conditions

〈aα〉q = 〈aα〉, 〈a†
α〉q = 〈a†

α〉, 〈nα〉q = 〈nα〉 (4.29)
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are satisfied.
We start from the equations of motion

i�
d〈aα〉

dt
= 〈[aα, H1]〉 + 〈[aα, V ]〉,

i�
d〈nα〉

dt
= 〈[nα, H1]〉 + 〈[nα, V ]〉.

(4.30)

The second order in V yields

i�
d〈aα〉

dt
= Eα〈aα〉 +

1
i�

∫ 0

−∞
dt1 eεt1〈[[aα, V ], V (t1)]〉q,

i�
d〈nα〉

dt
=

1
i�

∫ 0

−∞
dt1 eεt1〈[[nα, V ], V (t1)]〉q.

(4.31)

Here, V (t1) denotes the operator V in the interaction representation. The expansion yields

i�
d〈aα〉

dt
= Eα〈aα〉 +

1
i�

∫ 0

−∞
dt1 eεt1

( ∑
β,μ,ν

〈Φαβφμν(t1)〉q 〈aβa†
μaν〉q − 〈φμν(t1)Φαβ〉q 〈a†

μaνaβ〉q
)

,

where φμν(t1) = Φμν(t1) exp((i/�)(Eμ − Eν)t1) or, using another form,

i�
d〈aα〉

dt
= Eα〈aα〉 +

1
i�

∑
β,μ

∫ 0

−∞
dt1 eεt1〈Φαμφμβ(t1)〉q 〈aβ〉 +

+
1
i�

∑
β,μ,ν

∫ 0

−∞
dt1 eεt1〈[Φαν , φμν(t1)]〉q 〈a†

μaνaβ〉q. (4.32)

As a result, we obtain

i�
d〈aα〉

dt
= Eα〈aα〉 +

1
i�

∑
β,μ

∫ 0

−∞
dt1 eεt1〈Φαμφμβ(t1)〉q 〈aβ〉. (4.33)

Using the spectral representations for the correlation functions, we can write the equation

i�
d〈aα〉

dt
= Eα〈aα〉 +

∑
β

Kαβ〈aβ〉, (4.34)

where Kαβ is defined as

1
i�

∑
μ

∫ 0

−∞
dt1 eεt1〈Φβμφμν(t1)〉q =

1
2π

∑
μ

∫ +∞

−∞
dω

Jμν,βμ(ω)
�ω − Eμ − Eν + iε

= Kβν. (4.35)

Hence, we obtain a Schrödinger-type equation for the mean amplitudes 〈aα〉. In a certain sense, it is
an analogue (or generalization) of the Schrödinger equation for a particle moving in a medium. We consider
this analogy in more detail. For this, we write the analogue of the wave function as

ψ(r) =
∑

α

χα(r)〈aα〉. (4.36)
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Here, {χα(r)} is the full orthonormalized set of one-particle wave functions for the operator (−�
2/2m)∇2 +

v(r), and v(r) is the potential energy. We have the equation

(
− �

2

2m
∇2 + v(r)

)
χα(r) = Eαχα(r). (4.37)

The quantity ψ(r) thus plays the role of the wave function for a particle moving in a medium with friction.
In this case, Eq. (4.34) becomes

i�
∂ψ(r)

∂t
=

(
− �

2

2m
∇2 + v(r)

)
ψ(r) +

∫
d3r′ K(r, r′)ψ(r′), (4.38)

where the kernel K(r, r′) of integral equation (4.38) is

K(r, r′) =
∑
α,β

Kαβχα(r)χ†
β(r′) =

1
i�

∑
α,β,μ

∫ 0

−∞
dt1 eεt1〈Φαμφμβ(t1)〉qχα(r)χ†

β(r′).

We see that (4.38) can indeed be called the Schrödinger-type equation for a dynamical system in a
heat bath. It is interesting that very similar Schrödinger-type equations with nonlocal interaction were used
in collision theory [15], [16] to describe particle scattering on an ensemble of many scattering centers. To
explicitly show some features of Eq. (4.38), we consider the translation operator eiqp/�, where q = r′ − r
and p = −i�∇r. We can then write (4.38) as

i�
∂ψ(r)

∂t
=

(
− �

2

2m
∇2 + v(r)

)
ψ(r) +

∑
p

D(r,p)ψ(r), (4.39)

where
D(r,p) =

∫
d3q K(r, r + q)eiqp/�. (4.40)

It is reasonable to assume that the variation of the wave function ψ(r) is not very significant over the
typical correlation length of the kernel K(r, r′). Using the series expansion for eiqp/�, we then obtain

i�
∂ψ(r)

∂t
=

(
− �

2

2m
∇2 + v(r) + Re U(r)

)
ψ(r) + i ImU(r)ψ(r) (4.41)

(in the zeroth order), where

U(r) = Re U(r) + i ImU(r) =
∫

d3q K(r, r + q). (4.42)

Equation (4.41) has exactly the functional form of the Schrödinger equation with a complex potential
known in collision theory [15], [16]. Expanding eiqp/� in a series up to the second order, we then represent
Eq. (4.38) in the form [16], [50]

i�
∂ψ(r)

∂t
=

{(
− �

2

2m
∇2 + v(r)

)
+ U(r) − 1

i�

∫
d3r′ K(r, r + r′)r′p +

+
1
2

∫
d3r′ K(r, r + r′)

3∑
i,k=1

r′ir
′
k∇i∇k

}
ψ(r). (4.43)
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If we introduce the function
A(r) =

c

i�e

∫
d3r′ K(r, r + r′)r′, (4.44)

which is an analogue (in a certain sense) of the complex vector potential A of an electromagnetic field, and
the effective mass tensor [15], [51]

{
1

M(r)

}
ik

=
1
m

δik −
∫

d3r′ Re K(r, r + r′)r′ir
′
k, (4.45)

then we can write (4.43) in the form

i�
∂ψ(r)

∂t
=

{
−�

2

2

∑
i,k

(
1

M(r)

)
ik

∇i∇k + v(r) + U(r) +
i�e

mc
A(r)∇ + iT (r)

}
ψ(r), (4.46)

where
T (r) =

1
2

∫
d3r′ Im K(r, r + r′)

∑
i,k

r′ir
′
k∇i∇k. (4.47)

In an isotropic medium, the tensor {1/M(r)}ik is diagonal and A(r) = 0. We note that the concept of an
effective mass tensor was introduced in physics by Blokhintsev and Nordheim [52] (also see [51]).

It is useful to clarify the above in terms of solid state physics. For this, we consider the eigenfunctions
ψn(k, r) of an electron in the field of a periodic lattice (here n is the number of a band):

ψn(k, r + Rl) = eikRlψn(k, r)(k, r), ψn(k, r) = eikrun(k, r). (4.48)

They are called Bloch functions, and the electrons described by them are therefore called Bloch electrons.
The form of the Bloch functions indicates the physical sense of the vector k: an electron in a crystal can
be represented as a plane wave modulated by the lattice period. Studying the general properties of the
function En(k) in the neighborhood of selected points in the band k0 leads to the relation [15], [51]

En(k) = En(k0) +
�

m
spnn +

�
2s2

2m
+

�
2

m2

∑
j �=n

(spnj)(spjn)
En(k0) − Ej(k0)

+ . . . , (4.49)

where the quantities pnj and s are defined in [15], [51]. This relation shows that the electron described by
the Schrödinger equation with a periodic potential can be regarded as a particle affected by an interaction
with the potential or as a quasiparticle. The properties of this quasiparticle already include the interaction
with the static lattice.

We consider the case where the point k0 corresponds to an extremum. For the second derivative of the
energy with respect to k, we have

m

�2

∂2En

∂sα ∂sβ
=

m

�2

∂2En

∂kα ∂kβ
= δαβ +

1
m

∑
j �=n

pα
njp

β
jn + pβ

njp
α
jn

En(k0) − Ej(k0)
. (4.50)

Here, sα and sβ are the Cartesian coordinates of the vector s in some fixed system of axes, and pα
nj are the

corresponding components of the matrix element of the momentum operator. Using the relation

(
m

m∗

)
αβ

=
m

�2

∂2En

∂kα ∂kβ
, (4.51)
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we introduce the inverse effective mass tensor. We can then write (4.50) as

(
m

m∗

)
αβ

= δαβ +
1
m

∑
j �=n

pα
njp

β
jn + pβ

njp
α
jn

En(k0) − Ej(k0)
. (4.52)

This is often called the sum rule for effective masses and sometimes also called the f -sum rule. The diagonal
elements in (4.52) have a simpler form:

(
m

m∗

)
αα

= 1 +
2
m

∑
j �=n

|pα
nj |2

En(k0) − Ej(k0)
. (4.53)

We hence see that the interaction of a given energy level with lower levels or with the states of the ion
core, for which Ej < En, leads to a decrease in the effective mass, while interaction with the higher states
(Ej > En) increases it.

The concept of effective mass is well enough defined near either the minimum or maximum of a band.
Moreover, the effective mass m∗ near the minimum,

E = E0 +
k2

x�
2

2m∗ , (4.54)

differs from the effective mass m∗∗ near the top of the band,

E = E1 +
(kx − π/a)2�

2

2m∗∗ . (4.55)

In both cases, the masses m∗ and m∗∗ can significantly differ from the real electron mass. Therefore, if an
energy band is very narrow and the curvature of the energy surface near the bottom of the band is small,
then the effective mass m∗ is large, sometimes much larger than the real mass. On the other hand, near
the top of a band, if the curvature is large, then the mass m∗∗ is very small. The tensor feature of the
effective mass (which makes an electron and a hole accelerate differently depending on the field direction)
is important for crystals with an asymmetric structure or in the case where the minimum and maximum
are not in the center of the Brillouin zone. In some cases, the quantities m∗

x, m∗
y, m∗

z must be considered
negative; in this case, some of them are positive while others are negative near the saddle point. A close
similarity of this mechanism to the theory of the Dirac positron is interesting. A set of systems (e.g., a
two-dimensional graphite layer) in which the electron motion is described in terms of relativistic quantum
mechanics are currently studied; in these systems, the electron behaves as a zero-mass relativistic particle.

The concept of an effective mass is widespread, especially in the physics of semiconductors and semi-
conductor devices [15], [51], polaron theory [53], semiconductor superlattices [15], [51], and microelectronics
and nanostructure physics [15], [51]. It turned out that the concept of an effective mass is especially useful
in conductivity theory and also in other fields of solid state physics, nuclear physics, and so on.

In the theory of systems of many interacting particles, the general concept of quasiparticles [15], which
represent the spectrum of elementary excitations of the system with electron–electron, electron–phonon,
and other interactions taken into account, is considered. A quasiparticle is a renormalized (dressed in clouds
of virtual particles) “seed” (or bare) particle with an effective mass in the form m∗ = m(1 + λe-e + λe-ph).
And the renormalized (effective) mass can differ significantly from the original mass, for instance, as in
systems of heavy fermions [15].

In some problems in collision theory [15], the concept of an effective mass allows writing a generalized
Schrödinger equation with the effective mass m∗ (depending on the particle position) instead of the real
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mass m (this situation is realized in some semiconducting heterostructures). In nuclear physics, using a
nonlocal optical potential V (r, r′) (under certain conditions) leads to a wave equation for a local potential
V (r) with the effective mass [15]

M∗(r) = M

(
1 − Mα2

�2
V (r)

)−1

. (4.56)

In conclusion, we note that the linear Schrödinger-type equation is a sufficiently good approximation
for a system of Bose particles under the condition

〈nα〉 − |〈aα〉|2 = (eFα − 1)−1 � 1, (4.57)

which in fact agrees with the condition 〈nα〉 � 1. This corresponds to involving only weakly excited states
in the quasiparticle system. In the case of Fermi statistics, the linear terms cannot be eliminated by shifting
operators by a complex number, because this transformation is not canonical. In quantum field theory, the
sources (linear in Fermi operators) can be introduced using classical spinor fields anticommuting with both
themselves and primary fields. We considered this more complicated case in [54].

We also note that introducing the quantity ψ(r) does not mean that the state of a small dynamical
subsystem becomes a pure state. It remains mixed because it is described by the statistical operator, and
the dynamics of the system are described by a system of coupled evolutionary equations for the quantities
fα, f †

α, and Fα. There have been numerous attempts to derive a Schrödinger-type equation for a particle
in a medium. But it is clear that Eq. (4.38) of the damped Schrödinger equation type is most suitable
for describing the dynamical behavior of a particle in a medium in the presence of dissipation. This yields
numerous applications of this equation to problems of physics, physical chemistry, biophysics, etc. Various
aspects of dissipative behavior and stochastic processes in complicated systems were discussed in detail
in [15], [16].

5. Damping effects in an open dynamical system

In [55], the applicability of the developed general method to particular problems was shown in an
example of calculating the natural width of a spectral line in an atomic system [15]. It is well known
that the excited levels in an isolated atomic system, appearing as a result of interaction with its own
electromagnetic field, have a finite lifetime. As a result, the levels become quasidiscrete and acquire a finite
small width, called the natural width of a spectral line. Consequently, the width of a spectral line equals
the inverse lifetime of an excited state.

We consider an atom interacting only with its own electromagnetic field in the approximation of an
atom at rest. For simplicity, we assume that the atom can be in only one of two states, the ground and
excited states, denoted here by the indices α = 1, 2, and that the energies Eα are the relative energies
of these states. We thus assume that the atomic system in the excited state plays the role of a small
“nonequilibrium” subsystem and the electromagnetic field can be regarded as an analogue of a heat bath.
The relaxation (which is the decay of an excited level in this case) occurs via transitions with radiation.
We write the Hamiltonian of the complete system as H = Hat + Hf + V , where

Hat =
∑

α

Eαa†
αaα (5.1)

is the Hamiltonian of the atomic subsystem, a†
α and aα are the creation and annihilation operators for the

system in the state Eα, and
Hf =

∑
k,λ

kc b†k,λbk,λ (5.2)
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is the Hamiltonian of the transverse electromagnetic field [15], [55], where �k is the photon momentum, c is
the speed of light, λ is the polarization index, and b†k,λ and bk,λ are the creation and annihilation operators
for a photon in the state (kλ), λ = 1, 2. The interaction operator V , which is responsible for transitions
with radiation, in the nonrelativistic approximation is

V = − e

mc
pAtr(r), (5.3)

where e and m are the electron charge and mass, Atr(r) is the vector potential (at the point r) of the
transverse electromagnetic radiation field, and [p × Atr(r)] = 0. The vector potential Atr(r) can be
expanded in a series of plane waves:

Atr(r) =
1√
Ω

∑
k,λ

(
2π�

2c

k

)1/2

ek,λ(bk,λeikr/� + b†k,λe−ikr/�). (5.4)

The k sum is over all states of plane waves with the momentum �k in a finite box of volume Ω. The λ

sum is over two allowed directions of photon polarization with the momentum �k. The only nonvanishing
matrix elements of the creation and annihilation operators b†k,λ and bk,λ can be represented as

〈nk,λ − 1|bk,λ|nk,λ〉 =
√

nk,λ, 〈nk,λ + 1|b†k,λ|nk,λ〉 =
√

nk,λ. (5.5)

We now write the interaction operator V in form (4.9):

V =
∑
α,β

ϕαβa†
αaβ, ϕαβ = ϕ†

βα, (5.6)

where
ϕαβ =

1√
Ω

∑
k,λ

(
Gα,β(k, λ)bk,λ + b†k,λG∗

βα(k, λ)
)
,

Gα,β(k, λ) = − e

mc

(
2π�

2c

k

)1/2

ek,λ〈α|eikr/�p|β〉.

(5.7)

Here, |α〉 and |β〉 are the eigenvectors of the Hamiltonian Hat with the eigenvalues Eα and Eβ ,

Hat|α〉 = Eα|α〉. (5.8)

As usual, we assume that the decay transition of the electric dipole from the state a = 1 to the state
b = 2 is permitted, i.e., we consider kr � 1. Then ϕαβ becomes

ϕαβ = − e

mc
〈α|p|β〉

∑
k,λ

(
2π�

2c

k

)
1/2

ek,λ(bk,λ + b†k,λ). (5.9)

The matrix elements of the dipole momentum operator d = er between the states |α〉 and |β〉 are related
to the matrix elements of the momentum p as

〈α|p|β〉 = −m

e�
(Eα − Eβ)dαβ . (5.10)

Here, we assume that the atom does not have a stationary dipole momentum, i.e., 〈α|p|α〉 = 0.
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We now we use the damped Schrödinger-type equation obtained above,

i�
d〈aα〉

dt
= Eα〈aα〉 +

∑
β

Kαβ〈aβ〉, (5.11)

where

Kαβ =
1
i�

∑
γ

∫ 0

−∞
dt1 eεt1〈ϕαγ ϕ̃γβ(t1)〉q. (5.12)

Here, ϕ̃αβ(t) is

ϕ̃αβ(t) = ϕαβ(t) exp
(

i

�
(Eα − Eβ)t

)
. (5.13)

It is clear from the above that Kaa = 0 and Kba = 0. We therefore have

i�
d〈ab〉
dt

= Eb〈ab〉 + Kbb〈ab〉, (5.14)

where

Kbb =
2π�

2e2

m2c

1
Ω

∑
k

∫ ∞

−∞
dω

1
k

J(k, ω)
�ω0 + �ω + iε

Aab
ab

(
k
k

)
, �ω0 = Eb − Ea,

and we use the notation
J(k, ω) = (〈nk〉 + 1)δ(ω + ck) + 〈nk〉δ(ω − ck),

〈nk〉 =
∑

λ

〈nkλ〉 = (eβck − 1)−1 = n(k),
(5.15)

and

Aab
ab = |〈a|p|b〉|2 −

(
〈a|p|b〉k

k

)(
〈b|p|a〉k

k

)
. (5.16)

We then have

1
Ω

∑
k

∫ ∞

−∞
dω

1
k

J(k, ω)
�ω0 + �ω + iε

Aab
ab

(
k
k

)
=

=
1

(2π)3

∫
k dk

∫ ∞

−∞
dω

1
k

J(k, ω)
�ω0 + �ω + iε

∫
d� Aab

ab

(
k
k

)
, (5.17)

where d� is the element of a space angle. We can verify the equality

∫
d� Aab

ab

(
k
k

)
=

8π

3
|〈a|p|b〉|2. (5.18)

For the quantity Kbb, we have (here ν = ck)

Kbb =
2e2

m2c2�
|〈a|p|b〉|2

∫ ∞

0

ν dν

(
n(ν) + 1

ω0 − ν + iε
+

n(ν)
ω0 + ν + iε

)
, (5.19)

and we then find the expression for the damping Γb at T = 0 K:

Kbb = ΔEb −
i�

2
Γb, Γb =

4
3

e2ω0

m2c3�
|〈a|p|b〉|2 =

4
3

ω3
0

c3�
|dab|2. (5.20)
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This expression coincides with the known value of a natural width of atomic spectral lines [15]. Using the
damped Schrödinger-type equation, we can thus simply calculate the energy shift and damping in different
particular systems.

It is useful to note that the problem of the natural width of spectral lines has been used many times to
test various new calculation schemes and quantum physics theories [15]. For instance, the authors of [56]
remarked, “The variety of treatments of the line-broadening problem is so great as to be bewildering, and
it is often difficult to see whether different approaches describe, or do not describe, the same effects.”
Blokhintsev [57] also considered the problem of the natural width of a spectral line in 1946. In his paper
“Calculating spectral line natural width by the stationary method,” he wrote, “The problem of light emission
and absorption is usually considered by the method of quantum transitions. Meanwhile, this problem, like
the dispersion problem, can be solved extremely simply by the method of stationary states.” Further, the
author wrote a system of equations for the amplitudes of states of two types: the emitter is in the state
m without light quanta and the emitter is in the state n with a single light quantum emitted. Taking the
energy conservation law into account, we obtain a solution for the amplitude and an approximate expression
based on it for the position of the level of the whole system (emitter and emission). It follows from this
expression that we have “exactly the shift and broadened levels that Dirac obtained in calculating the
resonance scattering.” Then “the spectral distribution within the width of the line” was found. Blokhintsev
noted that in transforming the amplitudes to the coordinate representation, “we obtain a divergent wave
whose amplitude increases slowly with increasing distance from the emission source the same as we have
for a classical damped oscillator.”

In our approach, we use the concept of “quantum noise.” which allows constructing the NSO with
“sources” of noise and obtaining a system of coupled equations for the mean amplitudes and densities as
a result. Essentially, the obtained system of equations is analogous (in a certain sense) to the system of
Blokhintsev equations for the amplitudes and models the behavior of a “damped oscillator” [57]. The role
of friction is played by the interaction ϕαβ of the small system with the medium (heat bath).

6. Generalized Van Hove formula

In this section, we briefly consider the problem of scattering slow neutrons in a nonequilibrium medium
following [58]. It is known that the microscopic description of the dynamical behavior of condensed matter
(gases, fluids, and solids) uses the concept of space–time correlations and the corresponding correlation
functions [5], [15], [59]. The slow neutron scattering method [15], [59] is an effective tool for studying the
static (structure) and dynamic (quasiparticle excitation spectra) properties of complicated multiparticle
systems. The Van Hove theory [15], [59] has a general meaning for describing the scattering of neutrons
in a statistical equilibrium state in condensed media. In [15], [59], Van Hove derived the famous formula
that allows expressing the scattering cross section for slow neutrons in terms of the Fourier transform of
the space–time correlation functions. A generalization of the Van Hove theory to the case of slow neutron
scattering on the systems in a nonequilibrium state (e.g., in the presence of gradients of matter, temperature,
etc.) was proposed in [58]. The approach described in the preceding sections was used in that case.

We recall, that the basic quantity measured in particle-scattering experiments [15], [59] is the differential
scattering cross section. As an example, we first consider a crystal with a lattice constant a. The transition
amplitude for a particle falling on the target is the first-order quantity in the interaction strength between
the particle and target. The transition probability from the initial to the final states under the influence of
a potential V can be written as

Wkk′ =
2π

�

∣∣∣∣
∫

d3r ψ∗
k′V ψk

∣∣∣∣
2

Dk′(E′), (6.1)
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where Dk′(E′) is the density of the final states of the scattered particle. We define the cross section as

dσ =
Wkk′

magnitude of the incident flux
. (6.2)

The incident flux is equal to �k′/m, and the density of the final states of the scattered particle is

Dk′(E′) =
1

(2π)3
d3k′

dE′ =
m2

(2π)3�3
dΩ

(
�k′

m

)
. (6.3)

In this case, we can write the differential scattering cross section as

dσ

dΩ
=

m2

(2π)2�4

k′

k

∣∣∣∣
∫

d3r ei(k′−k)r/�V (r)
∣∣∣∣
2

. (6.4)

We now use this approach to describe inelastic scattering of slow neutrons [15], [58]. The experiment
consists in scattering a monochromatic neutron flux with the energy E and wave vector k on a sample.
The scattered neutrons are characterized by the final energy E′ = E + �ω and direction Ω of their final
wave vector k′. We are interested in the quantity I, which equals the number of neutrons with wave vectors
between k and k + dk scattered per unit time:

I = I0
ma3

�k
dw(k → k′)D(k) dk, (6.5)

where m is the neutron mass, a3 is the volume of an elementary target cell, dw(k → k′) is the transition
probability from the initial state |k〉 to the final state |k′〉, and D(k) is the state density

D(k) dk =
a3

(2π)3
k2 dΩ dk. (6.6)

For the wave functions of the incident and scattered particles, we have

ψk =
√

m

k
eikr/�, ψk′ =

1
(2π�)3/2

eik′r/�. (6.7)

The transition amplitude for a particle hitting the target is

dw(k → k′) =
m

�2k

d3k

(2π�)3

∫ ∞

−∞
dt d3r d3r′ 〈V (r)V (r′, t)〉e−i(k−k′)(r−r′)/�−iωt. (6.8)

In other words, we can write the transition amplitude describing the state change of an incident beam per
unit time as

dw(k → k′) =
1
�2

∫ ∞

−∞
dt Tr(ρmVk′k(0)Vk′k(t)) e−iωt, (6.9)

where ρm is the statistical operator describing the sample (target).
The scattering cross section is

d2σ

dΩ dE′ =
1

dΩ dω

I

I0
(6.10)

or, in a different form,

d2σ

dΩ dE′ = A

∫ ∞

−∞
dt d3r d3r′ 〈V (r)V (r′, t)〉 e−

i
�
(k−k′)(r−r′)−iωt, (6.11)
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where

A =
m2

(2π)3�5

k′

k
, E′ =

(k′)2

2m
. (6.12)

The expression

V =
2π�

2

m

∑
i

biδ(r − Ri) (6.13)

is usually used for the operator of neutron–medium interaction [15], [59]. Here, Ri is the position operator
for the nucleus of a target atom, and bi is the appropriate scattering length. It is also necessary to take
into account that

V =
N∑

i=1

V (r − Ri) =
N∑

i=1

e−ipRi/�V (r) eipRi/� (6.14)

and

〈βk′|V |αk〉 = 〈k′|V (r)|k〉
N∑

i=1

〈β|e−ik′Ri/� eikRi/�|α〉. (6.15)

We hence have
d2σ

dΩ dE′ ∝
k′

k

1
2π

∑
i,j

∫ ∞

−∞
dt

1
N

bibj〈eiκRi(0)/�e−iκRj(t)/�〉 e−iωt, (6.16)

where κ = k − k′. This expression describes the main point of the Van Hove theory [15], [59] that allows
writing the inelastic scattering cross section for the slow neutrons in terms of space–time correlations. As
mentioned above, in this case, we average with the equilibrium density matrix (statistical operator) ρm,
i.e., 〈 • 〉 = Tr(ρm • ).

We now consider the case of a nonequilibrium medium and use the NSO method. We let Hm denote
the Hamiltonian of the medium (target), Hb denote the Hamiltonian of the falling neutron beam, and V

denote the interaction operator. The complete Hamiltonian is

H = H0 + V = Hm + Hb + V. (6.17)

We write the transition amplitude as

dw(k → k′) =
1
�2

∫ ∞

−∞
dt Trm(ρm(t)Vk′k(0)Vk′k(t)) e−iωt, (6.18)

where ρm(t) is the NSO of the medium (target). In accordance with the above, the scattering cross section
is equal to

d2σ

dΩ dE′ = A

∫ ∞

−∞
dt d3r d3r′ 〈V (r)V (r′, t)〉me−i(k−k′)(r−r′)/�−iωt, (6.19)

where 〈 • 〉m = Trm(ρm(t) • ) and A and E′ are defined in (6.12).
We take into the account that

〈α′k′|V |αk〉 = 〈k′|V (r)|k〉
N∑

i=1

〈α′|e−i(k′Ri)/�ei(kRi)/�|α〉. (6.20)

As a result, we obtain [15], [58]

d2σ

dΩdE′ = − 1
(i�)2

Ã

N∑
i,j=1

∫ t

0

dτ ×

×
∑
α

〈α|{eiκRi(τ−t)/� eiκRj(0)/� eiω(τ−t) + eiκRi(0)/� eiκRj(τ−t)/� e−iω(τ−t)}ρm(t)|α〉
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or, in another form,

d2σ

dΩ dE′ = − 1
(i�)2

Ã

N∑
i,j=1

∫ t

0

dτ 2 Re〈e i
�

κRi(τ−t) e
i
�

κRj(0)〉meiω(τ−t). (6.21)

This expression can be written in terms of the density operator nκ =
∑N

i eiκRi/� as

d2σ

dΩ dE′ = Ã · 2 ReS(κ, ω, t), (6.22)

where

S(κ, ω, t) = − 1
(i�)2

∫ t

0

dτ eiω(τ−t)〈nκ(τ − t)n−κ〉m (6.23)

is called the scattering function.

We can write the NSO ρm(t) of the medium (target) as

ρm = ρq(t, 0) = ε

∫ 0

−∞
dτ eετρq(t + τ, τ) =

= ε

∫ 0

−∞
dτ eετ exp

(
−Hmτ

i�

)
ρq(t + τ, 0) exp

(
Hmτ

i�

)
=

= ε

∫ 0

−∞
dτ eετ exp(−S(t + τ, τ)). (6.24)

Another form of this expression is

ρm(t, 0) = exp(−S(t, 0)) +
∫ 0

−∞
dτ eετ

∫ t

0

dτ ′ exp(−τ ′S(t + τ, τ))Ṡ(t + τ, τ) exp(−(τ ′ − t)S(t + τ, τ)),

where

Ṡ(t, τ) = exp
(
−Hmτ

i�

)
Ṡ(t, 0) exp

(
Hmτ

i�

)
(6.25)

and
Ṡ(t, 0) =

∂S(t, 0)
∂t

+
1
i�

[S(t, 0), H ] =
∑
m

(ṖmFm(t) + (Pm − 〈Ṗm〉tq)Ḟm(t)). (6.26)

Finally, the expression for the scattering function of the neutron beam on the nonequilibrium medium
is [15], [58]

S(κ, ω, t) = − 1
(i�)2

∫ t

0

dτ 〈nκ(τ − t)n−κ(0)〉tq eiω(τ−t) −

− 1
(i�)2

∫ t

0

dτ

∫ 0

−∞
dτ ′ eετ ′

(nκ(τ − t)n−κ(0), Ṡ(t + τ ′))t+τ ′
eiω(τ−1). (6.27)

Here,
ρq(t, 0) = exp(−S(t, 0)), 〈B〉tq = Tr(Bρq(t, 0)), (6.28)

and we use the standard notation [5]

(A, B)t =
∫ 1

0

dτ Tr[A exp(−τS(t, 0))(B − 〈B〉tq) exp((τ − 1)S(t, 0))]. (6.29)
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We emphasise that the general feature of the derived expression (6.27) for S(κ, ω, t) is the presence
of the term Ṡ(t + τ ′) describing the entropy change. In the case of statistical equilibrium, the entropy
change is zero, and only the first term remains in formula (6.27), describing neutron beam scattering in the
equilibrium medium.

We note that the problem of neutron scattering in a nonequilibrium medium and of finding the NSO
of the medium has many features in common with the problem of describing a small subsystem interacting
with a heat bath considered above. In fact, the state of the whole system at the instant t can be described
by a statistical operator of the form

ρ(t) = exp
(
−iH0t

�

)
ρ(0) exp

(
iH0t

�

)
, ρ(0) = ρm(0) ⊗ ρb(0). (6.30)

The initial state of the medium (target) and of the incident beam of particles implies the factored form of
ρ(0) written as a product of the statistical operator ρm(0) of the medium (target) and the statistical beam
operator ρb(0). At the instant t, these operators can be written as

ρb(t) = Trm[ρ(t)] = Trm

(
exp

(
− iH0t

�

)
ρm(0) ⊗ ρb(0) exp

(
iH0t

�

))
,

ρm(t) = Trb[ρ(t)] = Trb

(
exp

(
− iH0t

�

)
ρm(0) ⊗ ρb(0) exp

(
iH0t

�

))
,

(6.31)

where Trm and Trb denote the partial averaging over the respective medium and beam variables.
The general expression for the probability of a transition from the initial state of the statistical system

described by the statistical operator ρi to the state with ρf is given by the formula

Wif(t) = Tr(ρi(t)ρf(t)). (6.32)

It is reasonable to assume that ρi can be written in the form ρi(t) = ρi(0) = |k〉〈k|. In this case, the
transition probability per unit time becomes

wif(t) =
d

dt
Tr(|k〉〈k|ρf (t)) =

d

dt
〈k|ρf(t)|k〉 =

〈
k

∣∣∣∣ d

dt
ρf(t)

∣∣∣∣k
〉

. (6.33)

In turn, we can write the generalized Liouville equation (with sources in the right-hand side) for the
statistical operator ρ(t) of the complete system (medium + beam) as

∂

∂t
ρ(t) − 1

i�
[(Hm + Hb + V ), ρ(t)]− = −ε

(
ρ(t) − Pρ(t)

)
, (6.34)

where P is the projection superoperator with the properties

P 2 = P, P (1 − P ) = 0, P (A + B) = PA + PB. (6.35)

The simplest case is
Pρ(t) = ρm0 ⊗ ρb = ρm0

∑
α

〈α|ρ(t)|α〉, (6.36)

where ρm0 is the equilibrium statistical operator of the medium.
To describe the nonequilibrium medium, we now use the method of imposing boundary conditions

described above. We have

∂

∂t
ρ(t) − 1

i�
[(Hm + Hb + V ), ρ(t)]− = −ε

(
ρ(t) − ρm(t)ρb(t)

)
, (6.37)
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where
ρm(t) = Trb ρ(t) =

∑
k

〈k|ρ(t)|k〉 (6.38)

and (in general case)

ρb = Trm(ρ(t)) =
∑
α

〈α|ρ(t)|α〉 =
∑
k,k′

〈k|ρb(t)|k〉|k〉〈k′| =
∑
k,k′

ρb
k′k|k〉〈k′|. (6.39)

Therefore, according the NSO method, we can rewrite Eq. (6.34) as

∂

∂t
ρ(t) − 1

i�
[H, ρ(t)]− = −ε

(
ρ(t) − ρm(t)

∑
q

ρb
qq(t)|q〉〈q|

)
, (6.40)

where we restrict ourself to diagonal terms of ρb with respect to the states |q〉 and where ε → 0 after the
thermodynamic limit transition. In this case, the NSO is

ρε = ρε(t, 0) = ρq(t, 0) = ε

∫ 0

−∞
dτ eετρq(t + τ, τ) =

= ε

∫ 0

−∞
dτ U(τ)ρm(t)

∑
k

ρb
kk(t + τ)|k〉〈k|U †(τ), (6.41)

where U(t) is the evolution operator.
By analogy with the derivation of the evolution equations for a small subsystem interacting with a

medium [17], [47], [50], we regard the neutron beam as a small subsystem interacting with a statistical
medium in a nonequilibrium state. We can write the appropriate evolution equation in the form

∂

∂t
ρb

qq(t) = − 1
i�

ε

∫ 0

−∞
dτ eετ

∑
k

ρb
kk(t + τ)

∑
α

〈α|〈q| [U(τ)ρm(t)|k〉〈k|U †(τ), V ]− |q〉|α〉. (6.42)

Following this analogy, we reasonably restrict ourselves to the lowest-order approximation and assume that
memory effects can be disregarded: ρb

kk(t + τ) � ρb
kk(t). Integrating by parts, we obtain the evolution

equation in the form

∂

∂t
ρb

qq(t) =
1
�2

∑
k

ρb
kk(t)

∫ 0

−∞
dτ eετ

∑
α

〈α|〈q| [U(τ)[V (τ), ρm(t)|k〉〈k|]−U †(τ), V ]− |q〉|α〉. (6.43)

Just as in deriving the kinetic equations for a system in a heat bath, we restrict ourself to the second order
in the interaction V . It hence follows that we can set U = U † = 1 in Eq. (6.43). As a result, we obtain an
equation analogous to Pauli equation (4.24):

∂

∂t
ρb

kk(t) =
∑

q

Wq→kρb
qq(t) −

∑
q

Wk→qρ
b
kk(t). (6.44)

Here, Wq→k are the effective transition probabilities

Wq→k = 2 Re
1
�2

∫ 0

−∞
dτ eετ 〈VqkVkq(τ)〉tm, (6.45)

where Vqk = 〈q|V |k〉, 〈 • 〉tm = Tr( • ρm(t)), and ε → 0 after the thermodynamic limit transition. We thus
obtain a generalization of expressions (6.1), (6.9), and (6.17) to the case of a nonequilibrium medium. This
directly verifies Eq. (6.23).
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7. Conclusion

We have briefly analyzed some problems of justifying the NSO method [5] and have shown its flexibility
and effectiveness in considering concrete applied problems in nonequilibrium statistical mechanics. In
particular, we discussed the derivation of generalized kinetic equations. We generally focused on the problem
of the interaction between a small nonequilibrium subsystem and a medium (heat bath). We analyzed its
evolution along with the dissipation processes arising as a result of interaction with the medium. Using the
NSO method for a dynamical system weakly interacting with a heat bath, we derived a damped Schrödinger-
type equation. In this case, we used the auxiliary concept of “quantum noise,” which allowed constructing
the NSO with noise “sources” and thus obtaining a system of coupled equations for the mean amplitudes
and densities.

As an illustration, we considered the problem of the natural width of spectral lines. This problem arises
in considering excited levels in an isolated atomic system that appear with a nonzero probability because of
the interaction with its own electromagnetic field and have a finite lifetime. As a result, the levels become
quasidiscrete and take a finite small width, called the natural width of a spectral line. We showed that the
obtained system of equations is analogous to the system of equations for the state amplitudes and models
the behavior of a “damped oscillator.” The role of friction is played by the interaction between the small
system and the medium (heat bath). We also obtained a generalized Van Hove formula for the problem of
neutron scattering in a nonequilibrium medium. A more detailed and complete discussion of these and other
problems of nonequilibrium statistical mechanics can be found in [15], [16], [39]. A further development of
the NSO method and its various applications can be found in [5], [14].
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