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The spectrum of hole quasiparticles and the role of magnetic correlations are investigated
in the self-consistent Irreducible Green Functions formalism motivated from Strongly
Correlated Electron systems in the framework of spin-fermion model. It was clearly
pointed out on the self-energy level, beyond Hartree-Fock approximation, how the one-
and two-magnon processes define the true nature of carriers in HTSC.

A vast amount of theoretical searches for the relevant mechanism of high tem-
perature superconductivity (HTSC) deals with the strongly correlated electron
models."® The understanding of the true nature of the electronic states in HTSC
are one of the central topics of the current experimental and theoretical efforts in
the field. The plenty of experimental and theoretical results shows that the charge
and spin fluctuations induced in the carrier hopping lead to the drastic renormaliza-
tion of the single-particle electronic states due to the strong correlation. It makes
the problem of constructing of the correct ground state wave functions and descrip-
tion the real many-body dynamics of the relevant correlated models of HTSC quite
difficult.}~12 The right picture of dynamical properties is very important because of
the most important experimental data of HTSC have a dynamical nature, i.e. de-
pends on frequency.! The dramatic change of the electronic structure caused by the
carrier doping is found in the one-particle spectral density.!®

As far as the CuOs-planes in the HTSC compounds are concerned, it was
argued!417 that a suitable workable model with which one can start to discuss
the dynamical properties of copper oxides is the spin-fermion (or Kondo—Heisenberg
model).}7-23 This model allows for motion of doped holes and results from d-p model
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Hamiltonian with using of the strong coupling unitary transformation.®41% A num-
ber of perturbation approaches have been used!?~27 to describe the spin and carrier
dynamics of HTSC. In the present paper we use novel nonperturbative method to
attack the same problem. This method of Irreducible Green Functions (IGF)2%2°
rely on a unified self-consistent calculation of one-particle fermion and spin Green
Functions (GF) including damping effects and finite lifetimes and gives the correct
results both for the weak and strong coupling. The approach we suggest is founded
on the number of studies and has proved to be valuable for the s-f model,30-3!
Heisenberg antiferromagnet,>? Anderson model,**3* and Hubbard model.35:3¢

We consider the interacting hole-spin model for a copper-oxide planar system
described by the Hamiltonian

H=H;+Hx+Hy, (1)
where H; is the doped hole Hamiltonian

H ==Y (tafaj, +hc) =) e(k)ai, oo (2)

(ij)o ko

where af, and a;, are the creation and annihilation second quantized fermion op-
erators, respectively for itinerant carriers with energy spectrum

€(g) = —4t cos(1/2¢z) cos(1/2¢y) = t71(q). (3)
The term H; in (1) denotes Heisenberg superexchange Hamiltonian
1
H; = (Z) ISmSn = Z,: J(g)8,S—,. (4)

Here S,, is the operator for a spin at copper site r, and J is the nearest neighbor
(n.n.) superexchange interaction

J(q) = 2J[cos(gz) + cos(gy)] = J72(q) - (5)

Finally, the hole-spin (Kondo type) interaction Hx may be written as (for one-doped
hole)

Hx =Y Ko:Si=N""23"N"K(q)[SZ]a%,ar4q-0 + 2057 107 ,0k100] - (6)

kq o

This part of the Hamiltonian was written as the sum of a dynamic (or spin-flip)
part and a static one. Here K(q) is hole-spin interaction energy

K(q) = K[cos(1/2g:) + cos(1/2g,)] = Kv3(q) (7
and sign factor z, is given by

2z, =(+or—) for o=(1 or |).
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We start in this paper with the one-doped hole model (1), which is considered to
have captured the essential physics of the multi-band strongly correlated Hubbard
model in the most interesting parameters regime ¢t > J,|K|. We apply the IGF
method to spin-fermion model (1). We are able to give a much more detailed
and self-consistent description of the fermion and spin excitation spectra than in
papers,'”2 including the damping effects and finite lifetimes.

The two-time thermodynamic Green Functions to be studied here are given by

G(ko,t —t) = {aro(t),ai, (1)) = —16(t — t')[ako (t), 0, (t)}+),  (8)
X7 (mn.t —t') = (S5(1), ST (¢)) = —ib(t — ') {[S7.(2), S (F)]-) - (9)

In order to evaluate the GFs (8) and (9) we need use the suitable information about
a ground state of the system. For the 2D spin 1/2 quantum antiferromagnet in a
square lattice the calculation of the exact ground state is a very difficult problem.!:12
In this paper we assume the two-sublattice Neel ground state. According to Neel
model, the spin Hamiltonian (4) may be expressed as®?

Hi= ¥ S 0808 a0

(mn) a,B

Here (a, 8) = (a, b) are the sublattice indices.

To calculate the electronic states induced by hole-doping in the spin-fermion
model approach we need to calculate the energies of a hole introduced in the Neel
antiferromagnet. To be consistent with (10) we define the single-particle fermion

GF as
{aa(ko)lag (ko)) ((aa(ka)la;*(kv)))>
flap(ko)lat (ko)) (ap(ko)lay (ko)) /
Note, that the same fermion operators a,(ic), annihilates a fermion with spin ¢

on the (a)-sublattice in the ¢th unit cell has been used in Ref. 18. The equation of
motion for the Fourier transform of the elements of GF (11) are written as

D (Whay ~ (k) (aq (ko)laF (ko)) = bap — (A(ko, a)|af), (12)

G(ko,w) = ( (11)

where

A(ko,a) = N2 K(p)(Sfuaalk +p— 0) + 2057 puaalk +po)).  (13)

4

We make use of the general Irreducible Green Function(IGF) approach?®?° to
threat the the equation of motion (12). It may be shown after much straight-
forward(c.f. Refs. 30 and 31) but tedious manipulation that the equation (13) can
be rewritten as the Dyson equation for two-time thermodynamic retarded GF

G(ko,w) = Go(ko,w) + Go(ko,w)M (ko,w)G(ka,w) . (14)
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Here Go(ko,w) = Q™1 describes the behavior of the electronic subsystem in the
Generalized Mean-Field(GMF) approximation (for the detailed discussion of the
GMF concept, see Refs. 29 and 36). The 2 matrix have the form

(w — €.(ka)) —e*(k) )

_o(k)  (w—es(ko)) (15)

Qko,w) = (

where

calko) = (k) — 2, N2 Y~ K(p)(S}a)bp0 = €*(k) — 2,KS.,  (16)

P
S, =N"YV%SzE),

is the renormalized band energy of the holes.
The elements of the matrix GF Gy(ko,w) are found to be

u2(ko) + v? (ko)

5" (korw) = w—er(ko) w—e_(ko)’ (7
e __ u(ko)v(ka) _ w(ko)v(ko) 44
G&(ko,w) = o—ei(h) w—ec (ko) - Gy (ko,w), (18)
_ v?(ko) u?(ko)
G (ko) = w — ex (ko) + w—e_(ka)’ (19)
where Ks Ks

u?(ko) = 1/2(1 —zam);vz(ka) = 1/2(1+ZUW), (20)

e+ (ko) = £R(k) = ((e**(k)® + K2S2)1/2, (21)

the simplest assumption is that each sublattice is s.c. and ¢**(k) = O(a = a,b).
Although we have worked in the GFs formalism, our expressions (17)-(21) are in
accordance with the results of the Bogolubov (u,v)-transformation for fermions,
but, of course, the present derivation is more general.

The mass operator M in Dyson equation (14), which describes hole-magnon
scattering processes, is given by as a “proper” part?® of the irreducible matrix GF
of higher order

() (A(ko, )| A* (ko, @)) (D) (“)((A(ka,a)|A+(kU’b)»(ir))_ (22)

Mko,w) = (ﬁr)((A(ka, b)| AT (ko,a))D) (I A(ka, b)| AT (ko, b)) (r)

To find the renormalization of the spectra e4 (ko) and the damping of the quasipar-
ticles it is necessary to determine the self-energy for each type of excitations. The
formal solution of the Dyson equation (14) can be written as

G=((Go)™' = M)~ (23)
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From (23) one immediately obtain

Gz(ko) = (w = ex(ko) ~ £*(ko,w)) ™" . (24)
Here the self-energy operator is given by
TE (ko,w) = ATM® + B(M® + M?®) + ATM® (25)
where
Af = (’i(’“ﬂ) 7
v2(ko)

B = u(ko)v(ko) .

Equations (24) determines the quasiparticle spectrum with damping (w = E — iI")
for the hole in the AFM background. Contrary to the simplified calculations of the
hole GF for doped HTSC, the self-energy (25) is proportional K? but not t2

1 +N(w1) —_ n(wg)
W—w; — ws

+o0
MP(ko,w) = N"1K? Z/ dw1dws
q —Q0

X [Fg’ﬁ_a(Q7 Wi )gaﬁ(k + q—o, “)2) + F;f?(Qv wl)gaﬁ(k + q, ‘-‘)2)}( . )
26

Here functions N(w) and n(w) are Bose and Fermi distributions, respectively, and
the following notations have been used for spectral intensities

F25(g,0) = = Tm (3,157 o).
, (27)
Goplko,w) = —;Im ((aa(ka)la;(ko)))w, 1,7 = (+, -, 2).

The equations (27) and (24) forms the self-consistent set of equations for the de-
termining of the GF (22). It need hardly be remarked that the advantages of the
present formulation permits:

(1) to make much more exact statements about interacting hole-spin system;
(ii) to calculate in controlled manner beyond the Hartree—Fock approximation;
(iii) with IGF method we can make a one-to-one correspondence between each
complete set of contractions arising in each term of diagrammatic expan-
sion(c.f. Refs. 18 and 19).

The Coupled equations (24) can be solved analytically by suitable iteration
procedure. In principle, we can use, in the right-hand side of (26) any workable
first iteration step for of the relevant GFs and find a solution by repeated iteration.
It is most convenient to choose as the first iteration step the simplest two-pole
expressions, corresponding to the GF structure for a mean field, in the following
form

goplko,w) = Ry 6(w — E, (ko)) + R_6(w — E_(ko)), (28)
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where Ry are the certain coefficients depending on u(ko) and v(ko). The magnetic
excitation spectrum corresponds to the frequency poles of the GFs in (27). In view
of the discussion elsewhere of the spin dynamics of the present model, we shall
content ourselves with the simplest initial approximation for the spin GF occurring
in (26) (c.f. Ref. 32)

52:%: ap (@w) = Lyd(w = 2,w,) = L_6(w + zowy) - (29)
Here w, is the energy of the antiferromagnetic magnons and L. are the certain
coefficients.3? We are now in a position to find an explicit solution of coupled equa-
tions obtained so far. This is achieved by using (28) and (29) in the right-handside of
(26). Then the hole self-energy in 2D quantum antiferromagnet for the low-energy
quasiparticle band E_(ke) is

7 (ko,w)
_ K?s, 14 N(wg) —n(E_(k—q)) , N(w) +n(E_(k+4q))
T 2N Zq:ci{ w-w,—E_(k—4q) w+wy—E_(k+9q)

2K°S7 N(wq4p)(1 + N(wy)) + n(E-(k + p))(N(wq) = N(wep))
+ = Z D? q+p = +qwq+p - SRTE) at+p/.

qp

(30)
Here we have used the notations
C? = U, + Vq)27 D? = (UgUgip — VqVq+p)2 )

where the coefficients U, and V, appears as a results of explicit calculation of the
mean-field magnon GF (9).3

A very remarkable feature of this result is that our expression (30) accounts for
the hole-magnon inelastic scattering processes with the participation of one or two
magnons. It will be important for the consideration of Cooper pairing processes as
we will show elsewhere.

The self-energy representation in a self-consistent form (26) provide a possibility
to model the relevant spin dynamics by selecting spin-diagonal or spin-off-diagonal
coupling as a dominating or having different characteristic frequency scales. As a
workable pattern, we consider now the static trial approximation for the correlation
functions of the magnon subsystem3? in the expression (26). Then the following
expression is readily obtained

R—? +oo du’
Mo (kow) = oS [ (S Sauslk + g =) (8D
q —_

(52 00) " (550)" gap s + g0,)]
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Taking into account (25) we find the following approximative form

- K- xTH e+ X,
= (ko,w)~m¥ ST E g @) (32)

The dynamics of spin-1/2 Heisenberg antiferromagnet with nearest-neighbor ex-
change constant J, on a two-dimensional square lattice deserves a more detailed
discussion. This will be done in the near future.

It should be noted, however, that in order to make this kind of study valuable as
one of the directions to studying the mechanism of HTSC the binding of quasiparti-
cles must be taking into account. This very important problem!®182% deserves the
separate consideration. In spite of formal analogy of the our model (1) with that
of a Kondo lattice, the physics are different. There is a dense system of spins inter-
acting with a smaller concentration of holes. As many authors have mentioned, for
the obtaining the magnon exchange mediated superconductivity (of the non-s-wave
character most probably) the suitabie effective interactions between two fermions,
which is relevant for the case, is two-magnon exchange-type of interaction. Whese
the fermion-magnon bound state formation has to be suppressed or not for promo-
tion of the appearance of the superconductivity is not quite clear problem. This
question is in close relation with the right definition of the magnon vacuum for the
case when K # 0.

In summary, in this paper we have presented calculations for normal phase of
HTSC, which are describable in terms of the spin-fermion model. We have char-
acterized the true quasiparticle nature of the carriers and the role of magnetic
correlations. It was shown that the physics of spin-fermion model can be under-
stood in terms of competition between antiferromagnetic order on the CuOs-plane
preferred by superexchange J and the itinerant motion of carriers. In the present
paper we do not presented all the details as regards for different possibilities of the
definition of the relevant generalized mean fields in this formalism. Carrying this
procedure to other possibilities leads to a much more rich set of solutions for the
spin-fermion model. In the light of this situation it is clearly of interest to explore
in details whether the hole motion is expressed as that of the Zhang-Rice singlet
in the framework of the present formalism. Considering that the carrier-doping
results in the HTSC for the realistic parameters range t > J, K, corresponding
the situation in oxide superconductors, the careful examination of the collective
behavior of the carriers for a moderately doped system must be performed. It
seems that this behavior can be very different from that of single hole case. The
problem of the coexistence of the suitable Fermi-surface of mobile fermions and the
antiferromagnetic long range or short range order(c.f. Refs. 6, 18, and 19) has to
be clarified. Finally, in the present paper we have considered the simplified spin-
fermion model (1), taking into account a Kondo-like spin coupling K (6) between
the oxygen hole and two nearest copper spins, arising from the strong d—p hybridiza-
tion of the three-band extended Hubbard model.?™ However hybridization induces
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effective spin-preserving hopping and spin-exchanging hopping terms also,! 437 im-
plicitly taking into account the charge-transfer processes. Work is in progress to
refine the present approach for calculating of two-hole dynamics and the binding of
quasiparticles for more general models.
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