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In the paper of ZuBarEv and the authors (') the Schrodinger-type equation with
damping for the dynamical system weakly coupled to a thermal bath was obtained on
the basis of the method of the nonequilibrium statistical operator (3). The applicability
of this general equation to the concrete problems was demonstrated in paper (1) on the
examples of the calculation of the energy shift and width of the electron and exciton sys-
tems interacting with the phonon field. It was shown in (1) that these values of the
shift and width coincide with the results of calculations by the other methods (3-4).

In this short note we present an additional important example of the application
of the method of paper (). We consider the problem of the natural width of spectral
line of the atomic system and show that our result coincides with the result obtained
earlier (see for example ref. (>6)). This problem is an excellent example for elucidating
the sense of the Schrédinger-type equation with damping.

It is well known that the excited levels of the isolated atomic system have a finite
lifetime because there is a probability of emission of photons due to interaction with
the self-electromagnetic field. This leads to the atomic levels becoming quasi-discrete
and consequently acquiring a finite small width. It is just this width that is called the
natural width of the spectral lines.

Let us consider an atom interacting with the self-electromagnetic field in the approxi-
mation when the atom is at rest. For simplicity, the atom is supposed to be in two
states only, 4.e. in a ground state a and in an excited state b. The atomic system in the
excited state b is considered, in a certain sense, as a small « nonequilibrium » system,
and the self-electromagnetic field as a thermostat or a thermal bath. The relaxation
of the small system is then a decay of the excited level and occurs by radiative tran-
sitions.

We shall not discuss here the case when the electromagnetic field can be considered
as an equilibrium system with infinitely many degrees of freedom, because it has been
discussed completely in the literature (5-).
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Following the paper (), we write the total Hamiltonian in the form

(1) H=Hn+H+V,
where
(2) Hou=3 Byaja,, x=a,b,

is the Hamiltonian for the atomic system alone, al and a, are the creation and anni-
hilation operators of the system in the state with energy E,. (For a detailed deserip-
tion of the algebra of second quantization for one system see, for example, ref. (*#)).

(3) Hr=3 kebby
k.4

is the Hamiltonian of transverse electromagnetic field (>¢), 1= 1,2 is the polarization,
#k is'the momentum of a photon, b,:,l and b,; are the of creation and annihilation oper-
ators of the photon in the state (kAi), ¢ is the light velocity, V is the interaction operator
responsible for the radiative transitions and having the following form in "the non-
relativistic approximation:

(4) V———pAur).

where ‘¢ and maretheelectron charge and mass, respectively, A, (r) is the vector po-
tential of the transverse electromagnetic field at the point r; [px A, (r)]= 0. For a
finite system enclosed in a eubic box of volume 2 with periodic boundary conditions,
one can write (56)

1 2mkh? ikr ik
(5) A(r) = VG 2}; ( 7%3) € [bkz exp [1 ] + b}, exp [— 7"” .
k,

Now, following (1), the interaction (4) is represented as a product, such that the
atomic and field variables are factorized:

(6) V=c§g¢a,sa;aﬁ . Pap=Pha

where '

™ Pap = Z {Gaplh, )by + bas Ghalh, D)},

®) Gaplle, 7) = — — (Mz ) e (= |exp— pl6) .
mce

where |« and |B> are the eigenstates of energies and Fy that of the Hamiltonian j#,.,
and are given by

9) Howled = Byl , o B=a,b.

(") M. LAX: Phys. Rev., 129, 2342 (1963).
(¢) M. Lax: 1966 Brandeis Lectures in Theoretical Physics (New York, 1968).
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In the electric-dipole approximation, from eqs. (7) and (8) we get
e 2nchz\? +

(10) Pap=——<Ap|B> > [~ €xlbur+ bea) -
me A\ Kk

The matrix element of the dipole moment d = er between states |« and |g) is rela-
ted to the matrix element of the momentum p in the following way:

m
(11) a|p|p> = ~e—ﬁ<Ea—Eﬁ>daﬂ,

and we assume that {a|p|e> = 0.
As was already mentioned, we use the Schrodinger-type equation with damping (1)
for the quantity <{a,> which has the form

., d<ay>

(12) it dt"‘» = B, {o> + > Kyplag),
[
where
V]
]' —
(12a) K5~ %Z Aty exp [, 1Py Fpplt) >, »
Y

—

and {...), denotes the statistical average with the quasi-equilibrium statistical opera-
tor (%), which has the form

(13) 0ults 0) = Q;lexp[—z(fa(t)aa + kel - Byt >aaa“)] ,

1%) @, =Spexp[—z(fa(t)au+f; yat + Fa(ya’ aa)],

&

where f,(t), fx(t), F,(t) are the parameters conjugated with quantities <a,), <oc1>, <al ay>
in the sense of nonequilibrium thermodynamies,

Pap(t) = @up(t) €Xp [i_z (B, — Hp) t] .

It is clear from eq. (12a) that the K, and K,, are equal to zero and thus (12) becomes

(14) i 4

a = Ela,y + Kplay ,

where

<

2hizer 1 1
(15) Ky=20° zjdw o) Agg(’_‘)

k# w0+ﬁw+ts k
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with #w,= E,—H,,

(16) F (&, w) = {({m> + 1) 8o + ek) + <ny> (o — ck)},
1
(17) (g = ; gy = W = n(k) ,
. k k k
(18) |3 ) = Kalplo>[F— | <alple> 2 } | Plple> £ ) -

Next we have

Lk, o) v Lk, w) wfk
19 - A A . kdk-| A 1-)40,
(a9 zf k hw0+ ho 4 de ab(k) (2m)® fd fiwg -+ fiw + e f “b(k)

where d( denotes the spherical angle element. It is easily verified that

k 8
(20) Ja3(3) a0=F icalplr.

Substitution of (20) into (15) gives (v = ck)

o

2 . n(v) + 1 n(v)
T {NHEUWW}.

0

(2D

=

Finally, we obtain the formulae for width I', which we defined by K,, = AE, — (fi/2)il,
from eq. (21) when the temperature tends to zero

4ew0

(22) Iy=g

Calplby =% 8 .

3
This expression coincides with the well-known value for the natural width of spectral
lines (5). We are not concerned with the calculation of the shift and the diseussion of
of its linear divergence because this is a usual example of the divergence of the self-
energy in field theories.

Thus, with the aid of the Schrodinger-type equation with damping one ean simply
calculate the energy width and shift. This treatment can be used in a number of con-
crete problems of line broadening due to perturbations (°). In our paper we have cal-
culated the width with the aid of the equation for the nonequilibrium averages. However,
it is well known that the equations for nonequilibrium averages are equivalent to the
equations for the appropriate Green’s functions which are equivalent, in turn, to usual
perturbation theory if the latter holds.

* % %

The authors wish to thank Prof. D. N. ZUBAREV for many valuable suggestions and
discussions.

(*) J. COOPER: Rev. Mod. Phys., 39, 167 (1967).



