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Abstract

Theoretical foundation and applications of the generalized spin-fermion (sp–d) exchange lattice model to various

magnetic systems, e.g., rare-earth metals and compounds, and magnetic semiconductors are discussed. The capabilities

of the model to describe spin quasiparticle spectra are investigated. The main emphasis is put on the dynamic behavior

of two interacting subsystems, the localized spins and spin density of itinerant carriers. A nonperturbative many-body

approach is used to describe the quasiparticle dynamics. Scattering states are investigated and three branches of

magnetic excitations are calculated in the regime characteristic of a magnetic semiconductor. For a simplified version of

the model (Kondo lattice model) we study the spectra of quasiparticle excitations with special attention given to diluted

magnetic semiconductors in a simple approximation to demonstrate the role of disorder effects. For this, to include the

effects of disorder, a modified mean field is determined self-consistently. The approach permits to investigate and clarify

the role of various interactions and disorder effects in unified and coherent fashion.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The existence and properties of localized and itinerant magnetism in metals, oxides, and alloys, and their
interplay is an interesting but not yet fully understood problem of quantum theory of magnetism [1–6]. The
behavior and the true nature of the electronic and spin states, and their quasiparticle dynamics are of
central importance to the understanding of physics of correlated systems such as magnetism and
e front matter r 2004 Elsevier B.V. All rights reserved.
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Mott–Hubbard metal–insulator transition in metals and oxides, magnetism and heavy fermions in rare-
earth compounds, and anomalous transport properties in perovskite manganites [7,8]. This class of systems
is characterized by complex, many-branch spectra of elementary excitations. Moreover, the correlation
effects (competition and interplay of Coulomb correlation, direct or indirect exchange, sp–d hybridization,
electron-phonon interaction, disorder, etc.) are essential [9]. These materials are systems of great interest
both intrinsically and as a possible source of understanding the magnetism of matter generally [6].
Beginning with Zener [10–14], Ruderman and Kittel [15] de Gennes [16], and others [17–19], various
formulations of spin-fermion model for interacting spin and charge subsystems have been studied. There
has been considerable interest in identifying the microscopic origin of quasiparticle states [20] in these
systems and a few model approaches have been proposed. Many magnetic and electronic properties of rare-
earth metals and compounds [1,17], and magnetic semiconductors [20–23] and related materials may
reasonably be interpreted in terms of combined spin-fermion models (SFM) which include interacting spin
and charge subsystems [2,3,5,19,20]. This approach permits one to describe significant and interesting
physics, e.g., bound states and magnetic polarons [24], anomalous transport properties, etc.
The problem of adequate physical description within various types of spin-fermion model [25–28] has

intensively been studied during the last decades, especially in the context of magnetic and transport
properties of rare-earth and transition metals and their compounds and magnetic semiconductors
[20,29,30]. Substances which we refer to as magnetic semiconductors, occupy an intermediate position
between magnetic metals and magnetic dielectrics. Magnetic semiconductors are characterized by the
existence of two well defined subsystems, the system of magnetic moments which are localized at lattice
sites, and a band of itinerant or conduction carriers (conduction electrons or holes). Typical examples are
the Eu-chalcogenides, where the local moments arise from 4f electrons of the Eu ion, and the spinell
chalcogenides containing Cr3þ as a magnetic ion. There is experimental evidence of a substantial mutual
influence of spin and charge subsystems in these compounds. This is possible due to the sp–d(f) exchange
interaction of the localized spins and itinerant charge carriers [21,31]. More recent efforts have been
directed to the study of the properties of diluted magnetic semiconductors (DMS) [32–38]. Further attempts
have been made to study and exploit carriers which are exchange-coupled to the localized spins. The effect
of carriers on the magnetic ordering temperature is found to be very strong in DMS. DMS are mixed
crystals in which magnetic ions (usually Mnþþ) are incorporated in a substitutional position of the host
(typically a II–VI or III–V) crystal lattice. DMS offer a unique possibility for a gradual change of the
magnitude and sign of exchange interaction by means of technological control of carrier concentration and
band parameters. This field is very active and there are many aspects to the problem. A lot of materials were
synthesized and tested [39–41]. The new material design approach to fabrication of new functional DMS
resulted in producing a variety of compounds. The presence of the spin degree of freedom in DMS may lead
to a new semiconductor spin electronics which will combine the advantages of the semiconducting devices
with the new features due to the possibilities of controlling the magnetic state. However, the coexistence of
ferromagnetism and semiconducting properties in these compounds require a suitable theoretical model
which would describe well both the magnetic cooperative behavior and the semiconducting properties as
well as a rich field of interplay between them. The majority of theoretical papers on DMS studied their
properties mainly within the mean-field approximation and continuous media terms. In a picture like this
the disorder effects, which play an essential role[42–46], can be taken into account roughly only. Moreover,
there are different opinions on the intrinsic origin and the nature of disorder in DMS [47–49]. Recently,
there were made a lot of efforts to go beyond the simplest level of approximation, the virtual crystal
approximation (VCA) and many effective schemes for a better treatment of disorder effects were elaborated
[42,46,44,50–53]. Thus, many experimental and theoretical investigations call for a better understanding of
the relevant physics and the nature of solutions (especially magnetic) within the lattice spin-fermion model
[5,20,31]. In this paper, we concentrate on the description of the magnetic excitation spectra and treat the
disorder effects in the simplest VCA to emphasize the chief purpose of this paper, the need for a suitable
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definition of the relevant generalized mean fields (GMF) and for internal self-consistency in the description
of the spin quasiparticle many-body dynamics.
In the previous papers, we set up the formalism of the method of Irreducible Green Functions (IGF) [9].

This IGF method allows one to describe quasiparticle spectra with damping for many-particle systems on a
lattice with complex spectra and a strong correlation in a very general and natural way. This scheme differs
from the traditional method of decoupling of an infinite chain of equations [54] and permits a construction
of the relevant dynamic solutions in a self-consistent way at the level of the Dyson equation without
decoupling the chain of equations of motion for the GFs.
In this paper, we apply the IGF formalism to consider quasiparticle spectra for the lattice spin-fermion

model consisting of two interacting subsystems. It is the purpose of this paper to explore more fully the
notion of GMF [9] which may arise in the system of interacting localized spins (including effects of
disorder) and lattice fermions to justify and understand the nature of the relevant mean fields. Background
and applications of the generalized spin-fermion (sp–d) exchange model to magnetic and DMS are
discussed in some detail. The capabilities of the model to describe quasiparticle spectra are investigated.
The key problem of most of this work is the formation of spin excitation spectra under various conditions
on the parameters of the model. The intention is to investigate the quasiparticle spectra and GMF of the
magnetic semiconductors consisting of two interacting charge and spin subsystems within the lattice spin-
fermion model in a unified and coherent fashion to analyze the role and influence of the Coulomb
correlation and exchange. An added motivation for performing new consideration and a careful analysis of
the magnetic excitation spectra arise from the circumstance that the various new materials were fabricated
and tested, and a lot of new experimental facts were accumulated. The chief purpose of this paper has been
to call attention to the need for internal self-consistency in the description of spin quasiparticle dynamics of
interacting spin and charge subsystems.
2. The spin-fermion model

The concept of the sp–d (or d–f) model plays an important role in the quantum theory of magnetism
[1,2,5,14,20,31]. In this section, we describe the sp–d model which describes the localized 3d(4f)-spins
interacting with s(p)-like conduction (itinerant) electrons (or holes) and takes into consideration the
electron–electron interaction.
The total Hamiltonian of the model is given by

H ¼ Hs þ Hs2d þ Hd: (1)

The Hamiltonian of band electrons (or holes) is given by

Hs ¼
X

ij

X
s

tija
y

isajs þ
1

2

X
is

Unisni�s: (2)

This is the Hubbard model. We adopt the notation

ais ¼ N�1=2
X
~k

aks expði~k~RiÞ a
y

is ¼ N�1=2
X
~k

a
y

ks expð�i
~k~RiÞ:

In the case of a pure semiconductor, at low temperatures the conduction electron band is empty and the
Coulomb term U is therefore not so important. A partial occupation of the band leads to an increase in the
role of the Coulomb correlation. It is clear that we treat conduction electrons as s-electrons in the Wannier
representation. In doped DMS the carrier system is the valence band p-holes.
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The band energy of Bloch electrons �ð~kÞ is defined as follows:

tij ¼ N�1
X
~k

�ð~kÞ exp½i~kð~Ri � ~RjÞ	;

where N is the number of lattice sites. For the tight-binding electrons in a cubic lattice we use the standard
expression for the dispersion

�ð~kÞ ¼ 2
X
a

tð~aaÞ cosð~k~aaÞ; (3)

where ~aa denotes the lattice vectors in a simple lattice with the inversion center.
The term Hs2d describes the interaction of the total 3d(4f)-spin with the spin density of the itinerant

carriers [31]

Hs2d ¼ �2
X

i

I~si
~Si ¼ �IN�1=2

X
kq

X
s

½S�s
�qa

y

ksakþq�s þ zsSz
�qa

y

ksakþqs	; (4)

where sign factor zs is given by

zs ¼ ðþ or �Þ for s ¼ ð" or #Þ

and

S�s
�q ¼

S�
�q if s ¼ þ;

Sþ
�q if s ¼ �:

(

In DMS the local exchange coupling resulted from the p–d hybridization between the Mn d levels and the p
valence band I � V 2

p2d: For the subsystem of localized spins we have

Hd ¼ �
1

2

X
ij

Jij
~Si
~Sj ¼ �

1

2

X
q

Jq
~Sq

~S�q: (5)

Here we use the notation

Sa
i ¼ N�1=2

X
~k

Sa
k expði

~k~RiÞ; Sa
k ¼ N�1=2

X
~i

Sa
i expð�i

~k~RiÞ; ½S�
k ;S

z
q	 ¼

1

N1=2

 S�

kþq ½Sþ
k ;S

�
q 	 ¼

2

N1=2
Sz

kþq;

Jij ¼ N�1
X
~k

J~k exp½i
~kð~Ri � ~RjÞ	:

This term describes a direct exchange interaction [4] between the localized 3d (4f) magnetic moments at the
lattice sites i and j: In the DMS system this interaction is rather small. The ferromagnetic interaction
between the local Mn moments is mediated by the real itinerant carriers in the valence band of the host
semiconductor material. The carrier polarization produces the RKKY exchange interaction of Mn local
moments

HRKKY ¼ �
X
iaj

Kij
~Si
~Sj : (6)

We emphasize that Kij � jI2j � V 4
p2d: To explain this, let us remind that the microscopic model [31], which

contains basic physics, is the Anderson–Kondo model

H ¼
X

ij

X
s

tija
y

isajs � V
X

ij

X
s

ðaþ
isdjs þ h:c:Þ � Ed

X
i

X
s

nd
is þ

1

2

X
is

Und
isnd

i�s: (7)
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For the symmetric case U ¼ 2Ed and for UbV Eq. (7) can be mapped onto the Kondo lattice model
(KLM)

H ¼
X

ij

X
s

tija
y

isajs �
X

i

2I~si
~Si (8)

Here I � 4V2=Ed: The KLM may be viewed as the low-energy sector of the initial model Eq. (7).
We follow the previous treatments and take as our model Hamiltonian expression (1). As stated above,

the model will represent an assembly of itinerant charge carriers in a periodic atomic lattice. The carriers are
represented by quantized Fermi operators. The lattice sites are occupied by the localized spins. Thus, this
model can really be called the spin-fermion model.
3. Outline of the IGF method

In this section, we discuss the main ideas of the IGF approach that allows one to describe completely
quasiparticle spectra with damping in a very natural way.
We reformulated the two-time GF method [9] to the form which is especially adjusted to correlated

fermion systems on a lattice and systems with complex spectra. A very important concept of the whole
method is the Generalized Mean Fields (GMF), as it was formulated in [9]. These GMF have a complicated
structure for the strongly correlated case and complex spectra, and are not reduced to the functional of
mean densities of the electrons or spins when one calculates excitation spectra at finite temperatures. A
practical way of determining the GMF is to calculate a corresponding GF as it will be described below.
To clarify the foregoing, let us consider a retarded GF of the form [54]

G ¼ hhAðtÞ;Ayðt0Þii ¼ �iyðt � t0Þh½AðtÞAyðt0Þ	Zi; Z ¼ �: (9)

As an introduction to the concept of IGFs, let us describe the main ideas of this approach in a symbolic and
simplified form. To calculate the retarded GF Gðt � t0Þ; let us write down the equation of motion for it

oGðoÞ ¼ h½A;Ay	Zi þ hh½A;H	� j Ayiio: (10)

Here we use the notation hhAðtÞ;Ayðt0Þii for the time-dependent GF and hhA j Ayiio for its Fourier
transform [54]. The notation ½A;B	Z refers to commutation and anticommutation depending on the value of
Z ¼ �:
The essence of the method is as follows [9]:
It is based on the notion of the ‘‘IRREDUCIBLE’’ parts of GFs (or the irreducible parts of the operators,

A and Ay; out of which the GF is constructed) in terms of which it is possible, without recourse to a
truncation of the hierarchy of equations for the GFs, to write down the exact Dyson equation and to obtain
an exact analytic representation for the self-energy operator. By definition, we introduce the irreducible
part (ir) of the GF

ðirÞhh½A;H	�jA
yii ¼ hh½A;H	� � zAjAyii: (11)

The unknown constant z is defined by the condition (or constraint)

h½ðirÞ½A;H	�;A
y	Zi ¼ 0 (12)

which is an analogue of the orthogonality condition in the Mori formalism. Let us emphasize that due to
the complete equivalence of the definition of the irreducible parts for the GFs ð

ðirÞ
hh½A;H	�jA

yiiÞ and
operators ð

ðirÞ
½A;H	�Þ � ð½A;H	�Þ

ðirÞ we will use both the notation freely (ðirÞhhAjBii is the same as
hhðAÞ

ðirÞ
jBii). A choice one notation over another is determined by the brevity and clarity of notation only.
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From condition (12) one can find

z ¼
h½½A;H	�;A

y	Zi

h½A;Ay	Zi
¼

M1

M0
: (13)

Here M0 and M1 are the zeroth and first-order moments of the spectral density. Therefore, the irreducible
GFs are defined so that they cannot be reduced to the lower-order ones by any kind of decoupling. It is
worth noting that the term ‘‘irreducible’’ in a group theory means a representation of a symmetry operation
that cannot be expressed in terms of lower dimensional representations. Irreducible (or connected)
correlation functions are known in statistical mechanics. In the diagrammatic approach, the irreducible
vertices are defined as graphs that do not contain inner parts connected by the G0-line. With the aid of
definition (11) these concepts are expressed in terms of retarded and advanced GFs. The procedure extracts
all relevant (for the problem under consideration) mean-field contributions and puts them into the
generalized mean-field GF which is defined here as

G0ðoÞ ¼
h½A;Ay	Zi

ðo� zÞ
: (14)

To calculate the IGF ðirÞhh½A;H	�ðtÞ;A
yðt0Þii in (10), we have to write the equation of motion for it after

differentiation with respect to the second time variable t0: The condition of orthogonality (12) removes the
inhomogeneous term from this equation and is a very crucial point of the whole approach. If one introduces
the irreducible part for the right-hand side operator, as discussed above for the ‘‘left’’ operator, the
equation of motion (10) can be exactly rewritten in the following form:

G ¼ G0 þ G0PG0 (15)

The scattering operator P is given by

P ¼ ðM0Þ
�1
ðhhð½A;H	�Þ

ðirÞ
jð½Ay;H	�Þ

ðirÞ
iiÞðM0Þ

�1: (16)

The structure of Eq. (16) enables us to determine the self-energy operator M by analogy with the diagram
technique

P ¼ M þ MG0P: (17)

We use here the notation M for self-energy (mass operator in quantum field theory). From definition (17) it
follows that the self-energy operator M is defined as a proper (in the diagrammatic language, ‘‘connected’’)
part of the scattering operator M ¼ ðPÞp: As a result, we obtain the exact Dyson equation for the
thermodynamic double-time Green functions

G ¼ G0 þ G0MG: (18)

The difference between P and M can be regarded as two different solutions of two integral Eqs. (15) and
(18). However, from the Dyson equation (18) only the full GF is seen to be expressed as a formal solution of
the form

G ¼ ½ðG0Þ
�1

� M	�1: (19)

Eq. (19) can be regarded as an alternative form of Dyson equation (18) and the definition of M provides that
the generalized mean-field GF G0 is specified. On the contrary, for the scattering operator P, instead of the
property G0G�1 þ G0M ¼ 1; one has the property

ðG0Þ
�1

� G�1 ¼ PG0G�1:

Thus, the very functional form of the formal solution (19) precisely determines the difference between P

and M.



ARTICLE IN PRESS

A.L. Kuzemsky / Physica B 355 (2005) 318–340324
Thus, by introducing irreducible parts of GF (or irreducible parts of the operators, out of which the GF
is constructed) the equation of motion (10) for the GF can exactly be (but using the orthogonality
constraint (12)) transformed into the Dyson equation for the double-time thermal GF (18). This result is
very remarkable because the traditional form of the GF method does not include this point. Note that all
quantities thus considered are exact. Approximations can be generated not by truncating the set of coupled
equations of motion but by a specific approximation of the functional form of the mass operator M within
a self-consistent scheme expressing M in terms of the initial GF M � F ½G	: Different approximations are
relevant to different physical situations.
The projection operator technique has essentially the same philosophy. But with using constraint (12) in

our approach we emphasize the fundamental and central role of the Dyson equation for calculation of
single-particle properties of many-body systems. The problem of reducing the whole hierarchy of equations
involving higher-order GFs by a coupled nonlinear set of integro-differential equations connecting the
single-particle GF to the self-energy operator is rather nontrivial. A characteristic feature of these equations
is that besides the single-particle GF they involve also higher-order GF. The irreducible counterparts of the
GFs, vertex functions, serve to identify correctly the self-energy as

M ¼ G�1
0 � G�1:

The integral form of Dyson equation (18) gives M the physical meaning of a nonlocal and energy-
dependent effective single-particle potential. This meaning can be verified for the exact self-energy using the
diagrammatic expansion for the causal GF.
Here a sketchy form of the IGF method was presented. We demonstrated in Ref. [9] that the IGF method

is a powerful tool for describing the quasiparticle excitation spectra, allowing a deeper understanding of
elastic and inelastic quasiparticle scattering effects and the corresponding aspects of damping and finite
lifetimes. In the present context, it provides an efficient tool for analysis of the mean fields and GMF of the
complicated many-body models. Thus, in this article we will confine ourselves by calculation of the
generalized mean-field GF G0:
4. Quasiparticle dynamics of the (sp–d) model

To describe self-consistently the spin dynamics of the extended sp–d model, one should take into account
the full algebra of relevant operators of the suitable ‘‘spin modes’’ which are appropriate when the goal is to
describe self-consistently quasiparticle spectra of two interacting subsystem.
We have two kinds of spin variables

Sþ
k ; S�

�k ¼ ðSþ
k Þ

y; sþk ¼
X

q

aþ
q"akþq#; s��k ¼ ðsþk Þ

y
¼
X

q

aþ
kþq#aq":

Let us consider the equations of motion

½Sþ
k ;Hs2d	� ¼ �IN�1

X
pq

½2Sz
k�qa

y

p"apþq# � Sþ
k�qða

y

p"apþq" � a
y

p#apþq#Þ	; (20)

½S�
�k;Hs2d	� ¼ �IN�1

X
pq

½2Sz
k�qa

y

p#apþq" � S�
k�qða

y

p"apþq" � a
y

p#apþq#Þ	; (21)

½Sz
k;Hs2d	� ¼ �IN�1

X
pq

ðSþ
k�qa

y

p#apþq" � S�
k�qa

y

p"apþq#Þ; (22)
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½Sþ
k ;Hd	� ¼ N�1=2

X
q

JqðS
z
qSþ

k�q � Sz
k�qSþ

q Þ; (23)

½S�
�k;Hd	� ¼ N�1=2

X
q

JqðS
z
�ðkþqÞS

�
q � Sz

qS�
�ðkþqÞÞ; (24)

½a
y

q"aqþk#;Hs	� ¼ ð�ðq þ kÞ � �ðqÞÞay

q"aqþk# þ UN�1
X
pp0

ða
y

q"a
y

pþp0"ap"aqþp0þk# � a
y

qþp0"a
y

p�p0#ap#aqþk#Þ;

(25)

½a
y

q"aqþk#;Hs2d	� ¼ IN�1=2
X
pp0

½Sþ
�p0 ða

y

q"apþp0"dp;qþk

� a
y

p#aqþk#dq;pþp0 Þ � Sz
�p0 ða

y

q"apþp0#dp;qþk þ a
y

p"aqþk#dq;pþp0 Þ	: ð26Þ

From Eqs. (20)–(26) it follows that the localized and itinerant spin variables are coupled. Suitable algebra

of relevant operators should be described by the ‘‘spinor’’
~Si

~si

� �
(‘‘relevant degrees of freedom’’), according

to the IGF strategy. In principle, the complete algebra of the relevant ‘‘spin modes’’ should include the
longitudinal components sz

k and Sz
k: However, the correlations of the longitudinal spin components are

rather small at low temperatures and becomes essential with approaching the Curie temperature. The
calculation of the Green function for the longitudinal spin components is a special nontrivial task [55].
Since we are interested here in the low-energy spin-wave type of excitations, we will consider the transversal
components only.
The model Hamiltonian H ¼ Hs þ Hs2d þ Hd was used in Refs. [56,57] for calculations of the spin-wave

spectra and was called the modified Zener model. In this model, as applied to transition metals, the
itinerant electrons are described by a Hubbard Hamiltonian and the itinerant electron couples the localized
spin (Hund’s rule coupling) by a term Hs2d: Because of the inequivalent spin systems, localized and
itinerant, a consequence of the model is the existence of acoustic and optic branches of the quasiparticle
spectrum of spin excitations. In DMS the local antiferromagnetic interaction Hs2d produces the coupling
between the carriers (which are holes in GaMnAs) and the Mn magnetic moments ðs ¼ 5

2
Þ; which leads to

ferromagnetic ordering of Mn spins in a certain range of concentration. The Kondo physics is irrelevant in
this case, but the fully determined and consistent microscopic mechanism of the ferromagnetic ordering is
still under debates [33,34]. An important question in this context is the self-consistent picture of the
quasiparticle many-body dynamics which takes into account the complex structure of the spectra.
To calculate the spectrum of spin excitations in the sp–d model we shall use the double-time thermal GF

of localized spins [54] which is defined as

Gþ�ðk; t � t0Þ ¼ hhSþ
k ðtÞ;S

�
�kðt

0Þii ¼ �iyðt � t0Þh½Sþ
k ðtÞ;S

�
�kðt

0Þ	�i

¼ 1=2p
Z þ1

�1

do expð�iotÞGþ�ðk;oÞ: ð27Þ

The next step is to write down the equation of motion for the GF. Our attention will be focused on spin
dynamics of the model. To describe self-consistently the spin dynamics of the sp–d model, one should take
into account the full algebra of relevant operators of the suitable ‘‘spin modes’’ which are appropriate when
the goal is to describe self-consistently the quasiparticle spectra of two interacting subsystems. We
introduce the generalized matrix GF of the form

hhSþ
k jS

�
�kii hhSþ

k js
�
�kii

hhsþk jS
�
�kii hhsþk js

�
�kii

 !
¼ Ĝðk;oÞ: (28)
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Here

sþk ¼
X

q

a
y

k"akþq#; s�k ¼
X

q

a
y

k#akþq":

Equivalently, we can do the calculations with the matrix of the form

hhSþ
k jS

�
�kii hhSþ

k ja
y

kþq#aq"ii

hha
y

q"aqþk#jS
�
�kii hha

y

q"aqþk#ja
y

kþq#aq"ii

0
@

1
A ¼ Ĝ

0
ðk;oÞ; (29)

but the form of Eq. (28) is slightly more convenient.
The equation of motion for the GF Ĝðk;oÞ can be exactly transformed to Dyson equation (18) by

applying the formalism of Section 3 (for details see Appendix A)

Ĝ ¼ Ĝ0 þ Ĝ0M̂Ĝ0 (30)

with the self-energy operator M given as

M̂ ¼ ðP̂Þp: (31)

Hence, the determination of the full GF Ĝ has been reduced to that of Ĝ0 and M̂:
5. Generalized mean-field GF

We now proceed to give an explicit expression for the generalized mean-field GF. From the definition
(A.25), the GF matrix in the generalized mean-field approximation reads

Ĝ0 ¼ R�1
ð1� Uws

0ÞI
�1N1=2O2 O2Nws

0

O2Nws
0 �O1Nws

0

 !
; (32)

where

R ¼ ð1� Uws
0ÞO1 þ O2IN1=2ws

0:

Let us write down explicitly the diagonal matrix elements G11
0 and G22

0
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k jS

�
�kii

0 ¼
2Sz

O1 þ 2I2Szwsðk;oÞ
(33)

hhsþk js
�
�kii

0 ¼
O1wsðk;oÞ

O1 þ 2I2Szwsðk;oÞ
(34)

where

wsðk;oÞ ¼ ws
0ðk;oÞð1� Uws

0ðk;oÞÞ
�1 Sz ¼ N�1=2hSz

0i (35)

To clarify the functional structure of the generalized mean-field GFs (33) and (34), let us consider a few
limiting cases.

5.1. Uncoupled subsystems

To clarify the calculation of quasiparticle spectra of coupled localized and itinerant subsystems, it is
instructive to consider an artificial limit of uncoupled subsystems. We then assume that the local exchange
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parameter I ¼ 0: In this limiting case we have
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k jS

�
�kii

0 ¼
2Sz

o� SzðJ0 � JkÞ �
1

2NSz

X
q
ðJq � Jq�kÞð2Kzz

q þ K�þ
q Þ

(36)

hhsþk js
�
�kii

0 ¼ wsðk;oÞ: (37)

The spectrum of quasiparticle excitations of localized spins without damping follows from the poles of the
generalized mean-field GF (36)

oðkÞ ¼ SzðJ0 � JkÞ þ
1

2NSz

X
q

ðJq � Jq�kÞð2Kzz
q þ K�þ

q Þ: (38)

It is seen that due to the correct definition of generalized mean fields we get the result for the localized spin
Heisenberg subsystem which includes both the simplest spin-wave result and the result of Tyablikov
decoupling as limiting cases. In the hydrodynamic limit k ! 0; o ! 0 it leads to the dispersion law
oðkÞ ¼ Dk2:
The exchange integral Jk can be written in the following way:

Jk ¼
X

i

expð�i~k~RiÞJðj~RijÞ: (39)

The expansion in small ~k gives

Jk ¼
X

i

Jðj~RijÞ �
1

2

X
i

ð~k~RiÞ
2Jðj~RijÞ ¼ J0 �

k2

2

X
i

ð~n~RiÞ
2Jðj~RijÞ: (40)

Here ~n ¼ ~k=k is the unit vector. The values Jk�q can be evaluated in a similar way

Jk�q ¼ Jq � ð~krqÞJq þ
1

2
ð~krqÞ

2Jq þ � � � ;

ð~krqÞJq ¼ �i
X

i

ð~k~RiÞJðj~RijÞ expð�i~q~RiÞ;

ð~krqÞ
2Jq ¼ �

1

2

X
i

ð~k~RiÞ
2Jðj~RijÞ expð�i~q~RiÞ: (41)

Combining Eqs. (41), (40), and (38) we get
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X
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ðJq � Jq�kÞð2Kzz
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q ÞÞ ’ D1k
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¼
Sz

2
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N

2S2
z

X
q

cqð2Kzz
q þ K�þ

q Þ

 !
k2;

cq ¼
X

i

ð~k~RiÞ
2Jðj~RijÞ expð�i~q~RiÞ: (42)
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Let us now consider the spin susceptibility of itinerant carriers, Eq. (37), in the hydrodynamic limit k ! 0;
o ! 0: It is convenient to consider the static limit of Eq. (37)

hhsþk js
�
�kii

0jo¼0 ¼
ws
0ðk; 0Þ

1� Uws
0ðk; 0Þ

;

ws
0ðk; 0Þ ¼

1

N

X
q

f qþk# � f q"

�ðqÞ � �ðq þ kÞ � DU

; DU ¼ Uðn" � n#Þ ¼ Um: (43)

To proceed, we make a small-k expansion of the form

�ðq þ kÞ � �ðqÞ ¼ ð~krqÞ�ðqÞ þ
1

2
ð~krqÞ

2�ðqÞ þ � � � ;
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0ðk; 0Þ ¼

1
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X
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ð f q" � f q#Þ �
1

ND2
U

X
q

ð f q" þ f q#Þ
1

2
ð~krqÞ

2�ðqÞ

þ
1

ND3
U

X
q

ð f q" � f q#Þð
~krq�ðqÞÞ

2
þ � � � : ð44Þ

The poles of the spin susceptibility of itinerant carriers are determined by the equation

1� Uws
0ðk;oÞ ¼ 0: (45)

In another form this reads in detail

1 ¼
U

N

X
q

f q" � f qþk#

�ðk þ qÞ � �ðqÞ þ DU � o
:

If we set o ¼ EðkÞ and then put k ¼ 0; we get the equation for the excitation energy Eðk ¼ 0Þ

1 ¼
U

N

X
q

f q" � f q#

DU � Eðk ¼ 0Þ
¼

U

DU � Eðk ¼ 0Þ

DU

U
;

which is satisfied if Eðk ¼ 0Þ ¼ 0: Thus, a solution of Eq. (45) exists which has the property limk!0 EðkÞ ¼ 0
and this solution corresponds to an acoustic spin-wave branch of excitations

EðkÞ ¼ D2k
2
¼ �

U

2NDU

X
q

ðf q" þ f q#Þð
~krqÞ

2�ð~qÞ þ
U

ND2
U

X
q

ðf q" � f q#Þð
~krq�ð~qÞÞ

2;

o ¼ �ðk þ qÞ � �ðqÞ þ DU : (46)

It is seen that the stiffness constant D2 can be interpreted as expanded in 1=DU : For the tight-binding
electrons in s.c. lattice the spin wave dispersion relation D2k

2 becomes

D2k
2
¼ ð3ðn" � n#ÞÞ

�1
X

q

ðf q" � f q#Þ

DU

jrq�ð~qÞj
2 �

ðf q" þ f q#Þ

2
r2

q�ð~qÞ

� 


¼ ð3ðn" � n#ÞÞ
�1 2t2a2

DU

X
q

ðf q" � f q#Þðkx sinðqxaÞ þ ky sinðqyaÞ þ kz sinðqzaÞÞ
2

 

� ta2
X

q

ð f q" þ f q#Þðk
2
x cos qxa þ k2

y cos qya þ k2
z cos qzaÞ

!
: ð47Þ
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5.2. Coupled subsystems

The next stage in the analysis of the quasiparticle spectra of the (sp–d) model is the introduction of the
nonzero coupling I. The full generalized mean-field GFs can be rewritten as

hhSþ
k jS

�
�kii

0 ¼
2Sz

o� Im � SzðJ0 � JkÞ �
1

2NSz

X
q

ðJq � Jq�kÞð2Kzz
q þ K�þ

q Þ þ 2I2Szwsðk;oÞ
; (48)

hhsþk js
�
�kii

0 ¼
ws
0ðk;oÞ

1� U eff ðoÞws
0ðk;oÞ

: (49)

Here the notation is used

U eff ¼ U �
2I2Sz

o� Im
; m ¼ ðn" � n#Þ:

The expression, Eq. (49), coincides with that for the itinerant spin susceptibility, as calculated in Ref. [2]. It
is instructive to consider separately the four different cases,
(i)
 Ia0; J ¼ 0; U ¼ 0;

(ii)
 Ia0; Ja0; U ¼ 0;

(iii)
 Ia0; J ¼ 0; Ua0;

(iv)
 Ia0; Ja0; Ua0:
5.2.1. Kondo lattice model

The first case Ia0; J ¼ 0; U ¼ 0 corresponds to a model which is commonly called the Kondo lattice
model. It can be seen that GFs (48) and (49) are then equal to

hhSþ
k jS

�
�kii

0 ¼
2Sz

o� Im þ 2I2Szws
0ðk;oÞ

; (50)

hhsþk js
�
�kii

0 ¼
ws
0ðk;oÞ

oþ
2I2Sz

o� Im
ws
0ðk;oÞ

: (51)

In order to calculate the acoustic pole of the GF (50), we make use of the small ðk;oÞ expansion. Hence, we
get

hhSþ
k jS

�
�kii

0

�
2Szð1þ m=2SzÞ

�1

o� ð1þ m=2SzÞ
�1

ð1=2ND2
I Þ
P

qðf q" þ f q#Þð
~krqÞ

2�ð~qÞ � ð1=ND3
I Þ
P

q ðf q" � f q#Þð
~krq�ð~qÞÞ

2
h i :

ð52Þ

It follows from Eq. (52) that the stiffness constant D is proportional to the total magnetization of the
system.
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5.2.2. Zener or s– d exchange model

In the second case Ia0; Ja0; U ¼ 0; we get

hhSþ
k jS

�
�kii

0 ¼
2Sz

o� Im � SzðJ0 � JkÞ �
1

2NSz

P
qðJq � Jq�kÞð2Kzz

q þ K�þ
q Þ þ 2I2Szws

0ðk;oÞ
(53)

hhsþk js
�
�kii

0 ¼
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0ðk;oÞ

1�
2I2Sz

o� Im
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0ðk;oÞ

: (54)

In order to calculate the acoustic pole of the GF (53), we make use of the small ðk;oÞ expansion again. We
then get
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ð55Þ

It follows from Eqs. (52) and (55) that the stiffness constant D is proportional to the total magnetization of
the system.

5.2.3. Modified Zener model

The third case Ia0; J ¼ 0; Ua0 corresponds to a model which is called the modified Zener lattice
model [56]. It can be seen that in this case GFs (48) and (49) are equal to

hhSþ
k jS

�
�kii

0 ¼
2Sz

o� Im þ 2I2Szwsðk;oÞ
(56)

hhsþk js
�
�kii

0 ¼
ws
0ðk;oÞ

1� U eff ðoÞws
0ðk;oÞ

: (57)

The results obtained here coincide with those of Bartel [56]. The excitation energies for the localized spin
and spin densities of itinerant carriers are found from the zeros of the denominators of hhSþ

k jS
�
�kii

0 and
hhsþk js

�
�kii

0 which yield identical excitation spectra, consisting of three branches, the acoustic spin wave
EacðkÞ; the optical spin wave EopðkÞ; and the Stoner continuum EStðkÞ

EacðkÞ ¼ Dk2;

EopðkÞ ¼ E
op
0 � D 1�

UEop

ID

� �
k2; E

op
0 ¼ Iðm þ 2SzÞ; EStðkÞ ¼ �ðk þ qÞ � �ðqÞ þ D:

5.2.4. Generalized spin-fermion exchange model

The most general is the fourth case, Ia0; Ja0; Ua0: The total GF of the coupled system is given by
Eq. (48). The magnetic excitation spectrum follows from the poles of the GF (32)

R ¼ ð1� Uws
0ÞO1 þ O2IN1=2ws

0 ¼ 0

and consists of three branches—the acoustic spin wave EacðkÞ; the optical spin wave EopðkÞ; and the Stoner
continuum EStðkÞ:
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Let us consider, as a first approximation, the last term in its denominator which is the dynamic spin
susceptibility of itinerant carriers in the static limit without any frequency dependence. The GF, Eq. (48),
then becomes equal to
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k jS
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�kii

0 �
2Sz

o� Im � SzðJ0 � JkÞ �
1

2NSz

P
q ðJq � Jq�kÞð2Kzz

q þ K�þ
q Þ þ 2I2Szwsðk; 0Þ

: (58)

It is possible to verify that in the limit k ! 0
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1

2SzN
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Then for o; k ! 0 Eq. (58) becomes
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This expression can be expected to be qualitatively correct in spite of the primitive approximation. The
spectrum of Stoner excitations is given by

EStðkÞ ¼ �ðk þ qÞ � �ðqÞ þ D: (61)

In addition to the acoustic branch there is an optical branch of spin excitations. This can be seen from the
following: For k ¼ 0 we get for R ¼ 0 the quadratic equation in o with two solutions, o ¼ 0 and o ¼

Iðm þ 2SzÞ ¼ E
op
0 : In the hydrodynamic limit, k ! 0; o ! 0 the GF (47) can be written as
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�kii
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2Sz
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where the acoustic spin wave energies are given by
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For the optical spin wave branch the estimations can be carried out as in paper [2]

EopðkÞ ¼ E
op
0 � Dopk2: (64)

In the GMF approximation the density of itinerant electrons (and the band splitting D) can be evaluated by
solving the equation

ns ¼
1

N

X
k

½expðbð�ðkÞ þ Un�s � ISz � �F ÞÞ þ 1	�1: (65)

Hence, the stiffness constant D can be expressed by the parameters of the sp–d model Hamiltonian.
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6. Effects of disorder in DMS

We now proceed to a simple and qualitative discussion of the effects of disorder in DMS to give just a
flavor of ideas how the disorder can be included in the IGF scheme. The full treatment of disorder effects
requires the consideration of damping effects and will be considered separately.
The main aim of the investigation of DMS is to give a successful microscopic picture of the ferromagnetic

ordering of localized spins induced by the interaction with the spin density of itinerant charge carriers. As it
has been stated above, a suitable model, which may be used for investigation of this problem (at least at the
initial stage), is a modified Kondo lattice model (8)

H ¼
X

ij

X
s

tija
y

isajs �
X

i

2Ini~si
~Si: (66)

Here ni projects out sites occupied by Mn atoms, i.e.,

ni ¼
1 if site i is occupied by Mn

0 if site i is occupied by Ga:

(

This model is relevant for the doped II–VI or III–V compound. The essential feature of the model is that
it describes a mechanism of how the spins of carriers (electrons or holes) become polarized due to the
local antiferromagnetic exchange interactions with localized spins. In AIII

1�xMnxBV the main magnetic
interaction is an antiferromagnetic exchange between the Mn spins and the charge-carrier spins. The
superexchange term Hd ¼ � 1

2

P
ij Jij

~Si
~Sj is antiferromagnetic too, but is as a rule rather small in the

concentration range of interest ðx � 0:05Þ: In the case of Mn-doped III–V compounds the antiferromag-
netic superexchange interaction will generally reduce the ferromagnetic ordering temperature. As a result,
the carrier-induced ferromagnetism in DMS arises due to the effective ferromagnetic interaction between
the Mn spins. In other words, the ferromagnetism in this system is most probably related to the
uncompensated Mn spins and is mediated by holes. The density of Mn ions cMn is greater than the hole
density p, cMnbp: The optimal interrelation of both the magnitudes is a delicate and subtle question
and was recently analyzed in paper [49]. It was shown that the concentration of free holes and
ferromagnetically active Mn spins was governed by the position of the Fermi level which controls
the formation energy of compensating interstitial Mn donors. The experimental evidence has been
provided that the upper limit of the Curie temperature is caused by Fermi-level-induced hole saturation.
In order to provide a suitable treatment of the spin quasiparticle dynamics it is necessary to take into
account the effects of disorder since the Mn ions are assumed to be distributed randomly with
concentration c. This is positional disorder. There is variation of site-energy of nonmagnetic origin due to
the substitution of A atom with Mn ion. The detailed nature of the disorder is not fully clear. In paper [49],
it was shown that the dominant fraction of the Mn atoms was on either substitutional sites or specific
sites shadowed by the host atoms. This reveals that the majority of the Mn atoms are on specific
(nonrandom) sites commensurate with the lattice, but this does not necessarily imply that all of the
Mn atoms are in substitutional positions. For x40:05 an increasing fraction of Mn spins does not
participate in ferromagnetism. It can be related with an increase in the concentration of Mn interstitials
accompanied by a reduction of T c:There are indications of an increase in Mn atoms in the form of
random clusters not commensurate with the GaAs lattice. However, these results require independent
confirmation. The conclusion that there is a maximum in Tc due to that the Fermi level pinning is a
conjection only. There are evidences that the largest values of T c have been found to be considerably larger
than 110K [33,34,45].



ARTICLE IN PRESS

A.L. Kuzemsky / Physica B 355 (2005) 318–340 333
It follows from Eq. (66) that the spin dynamics of a modified KLM will be described by the GFs in the
lattice site representation for a given configuration
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i jS

�
j ii hhsþi js

�
j ii

and instead of Eq. (28) the lattice GF should be considered
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i jS
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j ii hhSþ

i js
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j ii
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�
j ii hhsþi js

�
j ii

 !
¼ ĜijðoÞ: (67)

In order to provide a simultaneous and self-consistent treatment of the quasiparticle dynamics including the
effects of disorder, a sophisticated description of disorder should be done. Most treatments remove disorder
by making a virtual-crystal-like approximation in which the Mn ion distribution is replaced by a
continuum. A more sophisticated approach for treating the positional disorder of the magnetic impurities
inside the host semiconductor is the CPA [58]. The CPA replaces the initial Hamiltonian of a disordered
system by an effective one which is assumed to produce no further scattering [58]. It describes reasonably
well the state of itinerant charge scattering in disordered substitutional alloys A1�xBx:
In order to simplify the discussion, we will deal with a much simpler and less sophisticated description.

The approximation discussed below should be considered as a first, crude approximation to a theory of
disorder effects in DMS. Since the detailed nature of disorder in DMS is not yet established completely, we
will confine ourselves to the simplest possible approximation. Let us remind that the IGF method is based
on the suitable definition of the GMF [9]. To demonstrate the flexibility of the IGF method, we show below
how the mean field should be redefined to include the disorder in an effective way. The previous definition
of the irreducible spin operator, Eq. (31), should be replaced by

ðSz
qÞ
ir
¼ Sz

q � chSzidq;0; ða
y
pþqsapsÞ

ir
¼ a

y
pþqsaps � hay

psapsidq;0: (68)

Here hSzi ¼ N�1=2S̄z corresponds to the configuration average. The average hSzi denotes the mean value of
Sz for a given configuration of all the spins. We omitted here the variation of site energy of nonmagnetic
origin. The consequences of this choice manifest themselves. It means precisely that in a random system the
mean field is weaker as compared to a regular system. The approximation is conceptually as simple as an
ordinary mean-field approximation and corresponds to the VCA. The situation is then completely
analogous to the previous one considered in the preceding sections. For the configurationally averaged GFs
we get
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: (70)

These simple results are fully tractable and are the reason for their derivation.
It is worth noting that in the case of the modified Zener model, which contains the correlation (Hubbard)

term, the effects of disorder should be considered on the basis of a similar model [59]

H ¼
X

ij

X
s

tija
y

isajs þ U
X

i

nini"ni# �
X

i

2Ini~si
~Si: (71)

The Coulomb repulsion is assumed to exist only on lattice sites occupied at random by Mn atoms. The
approach mostly used [59] to calculate a stiffness constant within a random version of the Hubbard model
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was based on the random phase approximation, where the electron–electron interaction in the Hartree-
Fock approximation and the disorder in the CPA were taken into account. It is therefore very probable that
within this approach the formation of magnetic clusters can be reproduced; the formation of the clusters is
thus strongly enviromental dependent. However, the calculation of the spatial GF, Eq. (67), for the model,
Eq. (71), is rather a long and nontrivial task and we must avoid considering this problem here. We hope,
nevertheless, that the description of the disorder effects, as given above, gives a good first approximation as
far as the IGF method is concerned. A more detail consideration of the state of itinerant carriers in DMS,
including a more sophisticated treatment of disorder effects will be carried out separately.
7. Conclusions

In summary, we have presented an analytical approach to treating the spin quasiparticle dynamics of the
generalized spin-fermion model, which provides a basis for description of the physical properties of
magnetic and diluted magnetic semiconductors. We have investigated the influence of the correlation and
exchange effects on interacting systems of itinerant carriers and localized spins. The workable and self-
consistent IGF approach to the decoupling problem for the equation-of-motion method for double-time
temperature Green functions has been presented. The main achievement of this formulation is the
derivation of the Dyson equation for double-time retarded Green functions instead of causal ones. That
formulation permits one to unify convenient analytical properties of retarded and advanced GF and the
formal solution of the Dyson equation which, in spite of the required approximations for the self-energy,
provides the correct functional structure of single-particle GF. The main advantage of the mathematical
formalism is brought out by showing how elastic scattering corrections (generalized mean fields) and
inelastic scattering effects (damping and finite lifetimes) could be self-consistently incorporated in a general
and compact manner. In this paper, we have confined ourselves to the elastic scattering corrections and
have not considered the damping effects. This approach gives a workable scheme for definition of relevant
generalized mean fields written in terms of appropriate correlators. A comparative study of real many-body
dynamics of the generalized spin-fermion model is important to characterize the true quasiparticle
excitations and the role of magnetic correlations. It was shown that the magnetic dynamics of the
generalized spin-fermion model can be understood in terms of combined dynamics of itinerant carriers, and
of localized spins and magnetic correlations of various nature. The two other principal distinctive features
of our calculation were, first, the use of correct analytic definition of the relevant GMF and, second, the
explicit calculation of the spin-wave quasiparticle spectra and its analysis for the two interacting
subsystems. This analysis includes all of the interaction terms that can contribute to essential physics. Thus,
the present consideration is the most complete analysis of the quasiparticle spectra of the spin-fermion
model of magnetism within the generalized mean-field approximation. These applications illustrate some of
subtle details of the IGF approach and exhibit their physical significance in a representative form.
As it is seen, this treatment has advantages in comparison with the standard methods of decoupling of

higher order GFs within the equation-of-motion approach, namely, the following: At the mean-field level,
the GF one obtains, is richer than that following from the standard procedures. The generalized mean fields
represent all elastic scattering renormalizations in a compact form. The approximations (the decoupling)
are introduced at a later stage with respect to other methods, i.e., only into the rigorously obtained self-
energy.
The physical picture of elastic and inelastic scattering processes in the interacting many-particle systems

is clearly seen at every stage of calculations, which is not the case with the standard methods of decoupling.
Many results of the previous works are reproduced mathematically more simply.
The main advantage of the whole method is the possibility of a self-consistent description of quasiparticle

spectra and their damping in a unified and coherent fashion. However, in the present paper, for the sake of
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clarity, we concentrated on the clear presentation of the quasiparticle many-body dynamics within a
generalized mean-field approximation. This explains why we confine ourselves to consideration of disorder
effects in the simplest VCA. The consideration of disorder effects beyond VCA includes many intrinsic
specific problems and deserves a separate investigation. The irreducible GFs methods will be generalized to
treat these problems in separate publications.
Thus, this new picture of an interacting spin-fermion system on a lattice is far richer and gives more

possibilities for analysis of phenomena which can actually take place. In this sense, the approach we suggest
produces a more advanced physical picture of the quasiparticle many-body dynamics. Our main results
reveal the fundamental importance of the adequate definition of generalized mean fields at finite
temperatures which results in a deeper insight into the nature of quasiparticle states of the correlated lattice
fermions and spins. The key to understanding of the situation in DMS lies in the right description of the
interplay of interactions and disorder effects for coupled spin and charge subsystems. Consequently, it is
crucial that the correct functional structure of generalized mean fields is calculated in a closed and compact
form. The detailed consideration of the state of itinerant charge carriers in DMS along this line will be
considered separately.
Appendix A. Dyson equation for the s–d model

In this Appendix, we present details of the derivation of the Dyson equation (30) for the sp–d model. Let
us consider the equation of motion for the GF Ĝðk;oÞ Eq. (28). By differentiation of the GF hhSþ

k ðtÞjBðt
0Þii

with respect to the first time, t, we find

ohhSþ
k jBiio ¼

2N�1=2hSz
0i

0

( )

þ
I

N

X
pq

hhSþ
k�qða

y

p"apþq" � a
y

p#apþq#Þ

� 2Sz
k�qa

y

p"apþq#jBiio þ N�1=2
X

q

JqhhðS
z
qSþ

k�q � Sz
k�qSþ

q ÞjBiio ðA:1Þ

where

B ¼
S�
�k

s��k

( )

Let us introduce by definition irreducible ðirÞ operators as

ðSz
qÞ
ir
¼ Sz

q � hSz
0idq;0; ða

y
pþqsapsÞ

ir
¼ a

y
pþqsaps � hay

psapsidq;0 (A.2)

ððSz
qÞ
irSþ

k�q � ðSz
k�qÞ

irSþ
q Þ

ir
¼ ððSz

qÞ
irSþ

k�q � ðSz
k�qÞ

irSþ
q Þ � ðfq � fk�qÞS

þ
k (A.3)

From the condition (12)

h½ððSz
qÞ
irSþ

k�q � ðSz
k�qÞ

irSþ
q � ðfq � fk�qÞS

þ
k Þ;S

�
�k	�i ¼ 0

one can find

fq ¼
2Kzz

q þ K�þ
q

2hSz
0i

; (A.4)
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Kzz
q ¼ hðSz

qÞ
ir
ðSz

qÞ
ir
i; K�þ

q ¼ hS�
�qSþ

q i: (A.5)

Using the definition of the irreducible parts the equation of motion, Eq. (A.1) can be exactly transformed to
the following form:

O1hhS
þ
k jBiio þ O2hhsþk jBiio ¼

N1=2

I

� �
O2

0

( )
þ hhA1jBiio (A.6)

where
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hSz
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X
q
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2hSz
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� Iðn" � n#Þ; (A.7)

O2 ¼
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N
; (A.8)
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1
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X
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f qs ¼
X
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�ðqsÞ ¼ �ðqÞ � zsIN�1=2hSz
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X
ðn" þ n#Þ; 0pn̄p2:

The many-particle operator A1 reads

A1 ¼
I

N

X
pq
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y
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and it satisfies the conditions

h½A1;S
�
�q	�i ¼ h½A1;s��q	�i ¼ 0:

To write down the equation of motion for the Fourier transform of the GF hhsþk ðtÞ;Bðt
0Þii; we need an

auxiliary equation of motion for the GF of the form hha
y

p"apþk#ðtÞ;Bðt0Þii: For this we have to write the
equation of motion for it after differentiation with respect to the first time variable t and extract the
corresponding irreducible parts. Then, we obtain, after the Fourier transformation, the following equation:
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Let us use the following notation:

A2 ¼ � IN�1=2
X

qr

½Sþ
�rða

y

p"aqþr"dpþk;q � a
y

q#apþk#dp;qþrÞ
ir
� ðSz

�rÞ
ir

�ða
y
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y
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y
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y
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y
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y

q�r#aq#apþk#Þ
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ðA:11Þ

op;k ¼ ðoþ �ðpÞ � �ðp þ kÞ � DÞ; (A.12)

D ¼ 2IN�1=2hSz
0i � Uðn" � n#Þ ¼ 2ISz � Um ¼ DI þ DU ; (A.13)

ws
0ðk;oÞ ¼ N�1

X
p

ðf pþk# � f p"Þ

op;k
: (A.14)

Now we consider the GF hhsþk ðtÞ;Bðt
0Þii: Similarly to Eq. (A.6), we have

� N1=2Iws
0ðk;oÞhhS

þ
k jBiio þ ð1� Uws

0ðk;oÞÞhhs
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k jBiio

¼
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þ
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p

1
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Here the following definition of the irreducible part for the Coulomb correlation term was used:

ða
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y

q�r#aq#idq�r;qa
y

pþr"apþk#: ðA:16Þ

The operator A2 satisfies the conditions

h½A2;S
�
�k	�i ¼ h½A2; s��k	�i ¼ 0

In the matrix notation the full equation of motion for the GF Ĝðk;oÞ can now be summarized in the
following form:

ÔĜðk;oÞ ¼ Î þ
X

p

F̂ðpÞD̂ðp;oÞ; ðĜðk;oÞÞyðÔÞy ¼ ðÎÞy þ
X

p

ðD̂ðp;oÞÞyðF̂ðpÞÞy; (A.17)

where

Ô ¼
O1 O2

�IN1=2ws
0 ð1� Uws

0Þ

 !
; Î ¼

I�1N1=2O2 0

0 �Nws
0

 !
; (A.18)

D̂ðp;oÞ ¼
hhA1jS

�
k ii hhA1js��kii

hhA2jS
�
�kii hhA2js��kii

 !
; F̂ðpÞ ¼

N�1 0

0 o�1
p;k

 !
: (A.19)

To calculate the higher-order GFs in (A.17), we differentiate its r.h.s. with respect to the second-time
variable ðt0Þ: Let us give explicitly one of the four equations. After introducing the irreducible parts as
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discussed above we get

hhAijS
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�kiioO1 ¼
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Here the symbolic notation for the three equation of motions was used with i ¼ 1; 2; 3: The quantity Ai in
the l.h.s. of (A.20) should be substituted by

Ai ¼

A1 ¼ ððSz
qÞ
irSþ

k�q � ðSz
k�qÞ

irSþ
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ir;
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ir;

A3 ¼ 2Sz
k�qa

y
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8>>><
>>>:

In the matrix notation the full equation of motion for the GF D̂ðk;oÞ can now be written in the following
form:

ÔD̂ðp;oÞ ¼
X

p0

F̂ðp0ÞD̂1ðp
0;oÞ; (A.21)

where

D̂1 ¼
hhA1jA

y

1ii hhA1jA
y

2ii

hhA2jA
y

1ii hhA2jA
y

2ii

 !
: (A.22)

Combining both (the first- and second-time differentiated) equations of motion, we get the ‘‘exact’’ (no
approximation has been made till now) ‘‘scattering’’ equation

ÔĜðk;oÞ ¼ Î þ
X
pp0

F̂ðpÞP̂ðp; p0ÞF̂ðp0ÞðÔ
y
Þ
�1: (A.23)

This equation can be identically transformed to the standard form Eq. (16)

Ĝ ¼ Ĝ0 þ Ĝ0

X
pp0

Î
�1
FðpÞP̂ðp; p0ÞFðp0ÞÎ

�1

 !
Ĝ0;

Ĝ ¼ Ĝ0 þ Ĝ0P̂Ĝ0: (A.24)

Here we have introduced the generalized mean-field (GMF) GF G0; according to the following definition:

Ĝ0 ¼ Ô
�1

Î : (A.25)

The scattering operator P has the form

P̂ ¼ Î
�1 X

pp0

F̂ðpÞP̂ðp; p0ÞF̂ðp0ÞÎ
�1
: (A.26)

Here we have used the obvious notation

P̂ðp; p0;oÞ ¼
hhA1jA

y

1ii hhA1jA
y

2ii

hhA2jA
y

1ii hhA2jA
y

2ii

 !
: (A.27)
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As is shown above, Eq. (A.24) can be transformed exactly into the Dyson equation (18)

Ĝ ¼ Ĝ0 þ Ĝ0M̂Ĝ0 (A.28)

with the self-energy operator M given as

M̂ ¼ ðP̂Þ p: (A.29)
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