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1 Introduction

A vast amount of theoretical searches for the relevant mechanism of high temperature su-
perconductivity (HTSC) deals with the strongly correlated electron models [1} -[6]. Much
attention has been devoted to the formulation of successful theory of the electrons (or
holes) propagation in the CuQ; planes in copper oxides. In particular, much efforts have
been done to describe self-consistently the hole propagation in the doped 2D quantum
antiferromagnet 7] - [30]. The understanding of the true nature of the electronic states
in HTSC are one of the central topics of the current experimental and theoretical efforts
in the field [2]. The plenty of experimental and theoretical results shows that the charge
and spin fluctuations induced in the carrier hopping lead to the drastic renormalization
of the single-particle electronic states due to the strong correlation. It makes the problem
of constructing of the correct ground state wave functions and description the real many-
body dynamics of the relevant correlated models of HTSC quite difficult [1] - [31]. The
right picture of dynamical properties is very important issue, because of the most signifi-
cant experimental data of HTSC have a dynamical nature, i.e. depends on frequency, [4].
The dramatic change of the electronic structure caused by the carrier doping is found in
one-particle spectral density(e.g. [32]).

Theoretical description of strongly correlated fermions on two-dimensional lattices and
the hole propagation in the antiferromagnetic background still remains controversial [30].
Furthermore, validity of different variants of perturbation expansions are not quite clear.
The first attempts [7] - [21] to describe the hole propagation have shown clearly that the
results depends strongly on the type of the model (2D Hubbard, t-J model, d-p model,
etc), the choice of the background (RVB, Neel, triangular, etc) and the method of calcu-
lation. The role of quantum spin fluctuations was found to be quite crucial for the hole
propagation [24].

The essence of the problem is in the inherent interaction (and coexistence) between charge
and spin degrees of freedom which are coupled in a self-consistent way. The propagating
hole perturbs the antiferromagnetic background and move then together with the dis-
torted underlying region. In the ”prophetic” language [33] of the gauge theory of holes
in High-Tc superconductors it was called as a kind of quasiparticle carrion”, which
is composed of the hole(electron) and the "cloud” of SU(2) Yang-Mills field around the
hole. The perturbed gauge fields will be then spontaneously broken through Higgs-like
mechanism to describe the situation when antiferromagnet symmetry is broken around
the hole. There were many attempts [1] - [6] to realise this program. The significance of
these attempts is, by no means, very important. However, a definite proof of the fully
adequate mechanism for the coherent propagation of the hole is still lacking. The study
of the hole quasiparticle propagation in the doped phase is still a quite open subject and
is not well understood. In the present paper we will analyse the physics of the doped
systems and the true nature of carriers in the 2D antiferromagnetic background from the
many-body theory point of view. The dynamics of the charge degrees of freedom for
the CuQ; planes in copper oxides will be described in the framework of the spin-fermion
(Kondo-Heisenberg) model [46] and compared with dynamics of other models. We shall
use for this aim the Irreducible Green’s Functions Method [34] - [36]. "



2 Irreducible Green’s Functions Method

A number of perturbation approaches have been used to describe the spin and carrier
dynamics of HTSC. In the present paper we use novel nonperturbative method to attack
the same problem. This method of Irreducible Green Functions(IGF) [34] - [36],(43] rely on
a unified self-consistent calculation of one-particle fermion and spin Green Functions(GF)
including damping effects and finite lifetimes and gives the correct results both for the
weak and strong coupling. The approach we suggest is founded on the number of studies
and has proved to be valuable for the s-f model [37], [38], Heisenberg antiferromagnet [39],
Anderson model [40], [41] and Hubbard model {42], [35]. In this paper it will be attempted
to justify the use of IGF method for the description of the hole propagation in a quantum
antiferromagnet. Our approach is in many respect complimentary and incorporate the
logic of development of the many-body technique [36]. The study of the quasiparticle
excitations in solids has been related deeply with the Green’s Functions method [44]
and has been one of the most fascinated subject for many years. We have developed the
helpful reformulation [34] of the two-time thermodynamic GFs method which is especially
adjusted for the correlated fermion systems on a lattice {43].

To clarify the foregoing, let us consider the retarded GF of the form

G'(t—t) =<< A(t), B(t') >>= —i0(t — t') < [A()B(t))}, >;ﬁ = %1, (N

The essence of the IGF method is as follows [34]. It is based on the notion of IRRE-
DUCIBLE parts of GFs (or the irreducible parts of the operators, out of which the GF
is constructed) in terms of which it is possible, without recursion to a truncation of the
hierarchy of equations for the GFs, to write down the exact Dyson equation and to obtain
an exact analytical representation for the self-energy operator. Let us consider the sketch
of the method in a symbolic form. To calculate the GF (1) let us write down the equation
of motion for it:

wG(w) =< [4,A%], > + << [A,H]_ | AT >>, (2)
By definition we introduce the irreducible part ir of the GF
(" << [A, H]-|A*T >>) =<< [A, H]_ — 2A|At >> (3)

The unknown coefficient 2 is defined by special constraint, which is in core of the whole
method )
< [[A,}I]Y,A"'],, >=0 (4)
I'rom the condition (4) one can find: :
+
RS A, H]_, At], > 5)
< [A, At), > '

Therefore, irreducible GF (3) is defined so that it cannot be reduced to the lower-order
ones by any kind of decoupling. This procedure extract all relevant {for the problem under

consideration) mean field contributions and put them into the generalized mean field GF,
which is defined as [34]

_ <[AAY], >

G*(w) =2

(6)



It is worthy to note that Generalized Mean Fields can have, in principle, a complicated
structure for the system with strong interaction and complicated many-branch spectrum
and are not reduced to the functional of the mean densities of the particles or quasipar-
ticles. To calculate the IGF in (2), we have to write down the equation of motion after
differentiation with respect to the second time variable #'. The constraint (4) remove the
inhomogeneous term from this equation. If one introduces an irreducible part for the
right-hand side operator , then the equation of motion (2) can be exactly (or identically)
rewritten in the form of the Dyson equation

G=G"+G°MG (7
which has well known formal solution of the form
M= (G -G (8)

The full problem cannot be handled and one makes the approximations. Note that in
contrast to the standard equation-of-motion approach, the decoupling is introduced in the
self-energy operator only. The general philosophy of the IGF method lies ini separation and
identification of elastic scattering effects and inelastic ones. This last point is quite often
underestimated. However, as far as the right definition of quasiparticle damping (i.c. true
quasiparticles) is concerned, the separation of elastic and inelastic scattering processes is
believed to be crucially important for the many-body systems with complicated many-
branch spectrum and strong interaction. It was emphasized especially recently [45], that
the anomalous damping of electrons {or holes) distinguishes cuprate superconduciors from
ordinary metals. It is worth mentioning that, in general, the mean-field renormalizations
can exhibit a quite nontrivial structure. To obtain this structure correctly, one must
construct the full GF from the complete algebra of relevant operators and develop a
special projection procedure for higher-order GF’s in accordance with a given algebra.

3 Hubbard model and t-J model

The model Hamiltonian which is usually reffered as to Hubbard Hamiltonian is given by

U
H = Z t;_,-a?c’,a_,-o + 5- Z NioNi—g (9)

ijo

For the strong coupling limit, when Coulomb integral U >» W, where W is the effective
bandwidth, the Hubbard Hamiltonian is reduced in the low-energy sector to t-J model
Hamiltonian of the form

CH =) (t5(1 - niso)abaje(l —nyo) + HC)+J Y SiS; (10)
ijo ij
This Hamiltonian play an important role in the theory of HTSC. Tle more refined and

detailed derivations does not change the opinion that as regards to essential physics of
HTSC this model is still instructive and workable. Let us consider the carrier motion.



The hopping at half-filling is impossible and this model describe the planar Heisenberg
antiferromagnet. The most interesting problem is the behaviour of this system when the
doped holes are added. In the t — J model (/ — o) doped holes can move only in the
projected space, without producing doubly occupied configurations (< ny > + < n| ><
1). There is then a strong competition between the kinetic energy of the doped carriers
and the magnetic order present in the system. According to Ref. {19], it is possible to
rewrite first term in (10) in the following form

H =1t (a}S7 Sfa;1 + afi S} Sya; + hec) (11)
<ij>
This form show clearly the nature hole-spin corvelated motion over antiferromagnetic

hackground. To describe in a self-consistent way a correlated motion of a carrier one need
to consider the following complicated matrix Green's Function(c.f. [37], {38],[35]):

<<aplad >>  <<aglef; >> << aylS >> << aylS] >>

<< aylaf; >> <<aylef >> << aylSf >> << aylS; >> (12)
<< STl >> << S7laf >> << S7ISf >> << S7IS] >>
<< SHaf >> << SFjef >> << SHISH>> << SHST >>

G(i,j) =

It may be shown after most straightforward but tediuos manipulations by using IGF
method that the equation of motion (2) for the GF (12) can be rewritten as a Dyson
equation (7) for two-time thermodynamic retarded GF:

G(i, jiw) = Goli, j;w) + ), Goli, m;w)M(m, n;w)G(n, j;w) (13)

The algebraic structure of the full GF in (13) which follows from (8) is rather complicated.
For clarity, we illustrate some features by means of simplified problem.

4 Hole Spectrum of ¢t — J model

In paper [10] the idea to write down the special ansatz for fermionic operator as a com-
posite operator of dressed hole operator and spin operator has been proposed for the case
J > t. They introduced hole operator k; corresponding to fermion operator af, on the
spin-up sublattice using the ansatz af} = h;S7 and similarly for spin-down sublattice.

Then the Hamiltonian (11) obtain the form

Hy=t) L;kfh(b] + ;) (14)
5]

Here b; and b;' are the boson operators, which results from the Holstein-Primakoff trans-
{formation of spins into hosons. Equation (14) is not convenient form because of its
non-diagonal structure. Caution should be exercised because the new vacuum is a dis-
torted Neel vacuum. :



The equation of motion (2) and (3) for the hole GF can be written in the following form

w << hylh} >> =Y " Lin < By ><< holbf >>= 656 41 Y, Lin(" << haBalhf >>)
(15)
Here B,; = (b} + &;). The "mean-field” GF (6) is defined by

Z(wﬁ,’j - tI,'J' < BJ',' >)G0(i‘:, k;w) = 0jk (16)

Note, that "spin distortion” < By, > does not depend on (R, — R,). According to egs.
(1) - (7), the Dyson equation (13) becomes

G(g,k) = Colg, k) + 3 Golg, /)M, DG(L k) (17)
k1

where self-energy operator is given by

M(j,0) =) Lin(" << haBuj b, Bom >>7) i (18)

The standard IGF-method’s prescriptions for the approximate calculation of the self-
energy (c.f.[35], [37), [38]) can be written in the form

+00 N .
MG, lw) =t Zf,-nlmz dwldel + N(w;) — n(w;)

-0

(19)

W= w; — Wy
1 1
(;Im << anlem >>w,)(;1mG(l,m;w2))

In the present context, the three main weaknesses of the model (14) are the following. (i)
The above presented formalism is relevant for quasi-static hole; (ii) The mass operator
(19) is proportional to ¢? ; (iii) The standard iterative self-consistent procedure of IGF
approach for the calculation of mass operator encounter the need of choosing as a first
iteration ”trial” solution the non-diagonal initial spectral function /mGy. We shall see
below that these drawbacks does not exist for the spin-fermion model.

The initial hole GF in paper [13] was defined as

. é;
Goljs by w) = — -|J-kz'e (20)

which corresponds to static hole, without dispersion. In contrast, the approximation for
the magnon GF yield the momentum distribution of a free magnon gas. After integration
in (19) , the mass operator is given by an expression quite similar to the one encountered in
papers [13], where the Bogolubov-de Gennes equations has been derived. These equations
for the inhomogeneous superconducting samples plays an important role as it was argued
in Ref.[7] in the context of high Tc superconductivity. It can be checked that the present
set of equations (17) - (19) gives the finite temperature generalisation of the results{10],



[13). As we just mentioned, one of its main merits is that it enables one to see clearly the
”composite” nature of the hole states in an antiferromagnetic background, but, unfortu-
nately, in the quasi-static limit. As a consequence, the formulation of the model, which
tends to "reproduce” this composite nature of the carriers from the beginning, appears
naturally if one wants to keep track of the relevant hole quasiparticle dynamics in copper
oxides. This does not necessarily exclude the possibility of complementary studying of
‘the both ¢ — J and spin-fermion models.

5 Spin-Fermion Model

As far as the CuO,-planes in the copper oxides are concerned, it was argued [46] that a
suitable workable model model with which one can discuss the dynamical properties of
charge and spin subsystems is the spin-fermion ( or Kondo-Heisenberg) model {47]. This
model allows for motion of doped holes and results from d-p model Hamiltonian [2]. We
consider the interacting hole-spin model for a copper-oxide planar system described by
the Hamiltonian

H=H+Hx+Hy (21)
where H, is the doped hole Hamiltonian
Hy=- Y (tahaj, + HC) =3 e(k)at,ak (22)
<ij>e ko

where az', and a;, are the creation and annihilation second quantized fermion operators,
respectively for itinerant carriers with energy spectrum

e(q) = —4tcos(1/2q;)cos(1/2g,) = tni(q). : (23)
The term H; in (1) denotes Heisenberg superexchange Hamiltonian

S5 = 1 -
Hy=Y" J8.5,= o > J(9)5:5, (24)
g

<mn>

Here §n is the operator for a spin at copper site 7, and J is the n.n. superexchange
interaction’

J(q) = 2J[cos(g.) + cos(gy)] = J12(q) (25)

Finally, the hole-spin (Kondo type) interaction Hx may be written as (for one doped
hole)

Hg =) K&:5;= N"Y*Y" 5" K(q)[S=iat, artq-0 + 205201, 0k1000)  (26)

kg o

This part of the Hamiltonian was written as the sum of a dynamic(or spin-flip) part and
a static one. Here K is hole-spin interaction energy

K(q) = Klcos(1/2¢;) + cos(1/2g,)] = K3(q) (27)



and sign factor z, is given by

s = (+or—) for o= (T or |)

We start in this paper with the one doped hole model (21), which is considered to have
captured the essential physics of the multi-band strongly correlated Hubbard model in
the most interesting parameters regime ¢ > J,|K’|. We apply the IGF method to spin-
fermion model (21). It will be shown that we are able to give a much more detailed and
self-consistent description of the fermion and spin excitation spectra than in papers {47}
- [53], including the damping effects and finite lifetimes.

6 Hole Dynamics in the Spin-Fermion Model

The two-time thermodynamic Green Functions to be studied here are given by
Glko,t — ') =<< aro(t), af (1) >>= —i0(t — 1') < [asa (D af, (1)]4 > (28)

Xt (mn,t —t") =<< SH), ST >>= —i0(t — 1) < [SE(N.87(1)- > (29)

Yll n
In order to evaluate the GFs (28) and (29) we need use the suitable information about
a ground state of the system. For the 2D spin 1/2 quantum antiferromaguet in a square
lattice the calculation of the exact ground state is a very difficult problem [2] - [6]. In
this paper we assume the two-sublattice Neel ground state. According to Neel model. the
spin Hamiltonian (24) may be expressed as [34],[39]

Hy= Y3 008,050 (30)

<mn> o,

Here (a, 8) = (a, b) are the sublattice indices.

To calculate the electronic states induced by hole-doping in the spin- fermion model ap-
proach we need to calculate the energies of a hole introduced in the Neel autiferromagnet.
To be consistent with (30) and (12) we define the single-particle fermion GF as

. _ << aq(ko)lat (ko) >> << a.(ka)|af (ko) >> )
Glko,w) = <<< ay(ka)at (ko) >> << ay(k ]u: a) >>> (31)

Note, that the same fermion operators a,{ic), anniliilates a ferimion with spin ¢ on the
(a)-sublattice in the i-th unit cell has been used in paper [18]. The equation of motion
for the Fourier transform of the clements of GF (11) are written as

> (wbay — €P(k)) << ay(ko)laf(ko) >>= bup— << Alkaa)|a} >>  (32)
"

where

Alko,a) = 1/22]{ S aalk + p— o) + 2,85 ag(k + po)) (33)



We make use of the general Irreducible Greerr Function(IGF) approach [35],{36](see Sec-
tion 2) to threat the the equation of motion (32). It may be shown that equation (32)
can be rewritten as the Dyson equation (7) for two-time thermodynamic retarded GF

G(ko,w) = Go(ko,w) + Go(ko,w)M (ko,w)G(ko,w) (34)

Here Go(ko,w) = Q7" describes the behaviour of the electronic subsystem in the Gener-
alized Mean-Field(GMF) approximation (for the detailed discussion of the GMF concept,
see [35],[36]). The  matrix have the form

_((w—calko))  —e(k)
n&m“‘( —e(k) (w—mwﬂ) o

where
ealko) = (k) = 2, N7 N K(p) < 52, > 6,0 = e*(k) — 2,KS. (36)

P
S,=N" <52 >

is the renormalized band energy of the holes.
The elements of the matrix GF Gy(ho,w) are found to he

u?(ko) vi(ko)

Go'(hoyw) = w—e4(ko)  w—e.(ko) (37)
@ _u(ka)u(ka) u(ko)v(ka) ...
Gt (ko,w) = o elke) " o elke) G (ko,w) (38)
1bb _ _ v?(ko) u?(ko)
Go'(koyw) = w—ey(ko)  w—c_(ko) (39)
where xS KS
zy, _ O .
ut(ko) = 1/2(1 — z,%),zﬂ(ka) =1/2(1 + z,m), (40)
ex(ko) = £R(E) = ((¢*(k)? + K252)? (41)

the simplest assumption is that each sublattice is s.c. and e**(k) = O0(a = a,b). In spite
that we have worked in the GFs formalism, our expressions (37) -(39) are in accordance
with the results of the Bogolubov (u,v)-transformation for fermions, but, of course, the
present derivation is more general.

The mass operator M in Dyson equation (34), which describes hole-magnon scattering
processes, is given by as a "proper” part [35] of the irreducible matrix GF of higher order

M(ko,w) = () << A(ka,a)|A*(ka,a) >>0) ) << A(ka,a)| A (ka, b) > >0
DEI= ) << A(ko, b)|A*(ko,a) >>6) 7 << A(ka, b)|A+(ka, b) >>17)

| (12)
To find the renormalization of the spectra e1(ko) and the damping of the quasiparticles
it is necessary to determine the self-energy for each type of excitations. From the formal
solution (8) one immediately obtain

Gi(ko) = (w — ex(ko) — T*(koyw)) ™! (43)



Here the self-energy operator is given by

T*(ko,w) = AXM® £ B(M® + M) 4+ ATM® (44)

4= (tio)
B = u(ko)v(ko)

Equations (43) determines the quasiparticle spectrum with damping (w = E —T") for the
hole in the AFM background. Contrary to the simplified calculations of the hole GF in
Section 4, the self-energy (42) is proportional to K2 but not ¢?(c.f.eqn. (19))

where

21 + N(w;) — n{ws)

400
M*(ko,w) = NTTK? Y f dw) dw (45)
? -0

W —w —wy
(Fag " (@,w1)gap(k + ¢ — 0,w2) + F5(a,w1)9as(k + ,w2))

Here functions N(w) and n(w) are Bose and Fermi distributions, respectively, and the
following notations have been used for spectral intensities

ij 1 i (oi
Fhlqw) = ——;Im << Sl8L 5 >>0 (46)
1
gap(ko,w) = —;Im << aq(ko)laf (ko) >>u; 1,7 =(+,—,2)

The equations (45) and (34) forms the self-consistent set of equations for the determining
of the GF (31). It need hardly be remarked that the advantages of the present formulation
permits:

1)to make much more exact statements about interacting hole-spin system

ii)to calculate in controlled manner beyond the Hartree-Fock approximation,

iii) with IGF method we can make a one-to-one correspondence between each complete
set of contractions arising in each term of diagrammatic expansion(c.f. [48]; [49]).
Coupled equations (45) and (34) can be solved analytically by suitable iteration procedure.
In principle, we can use, in the right-hand side of (45) any workable first iteration step
for of the relevant GFs and find a solution by repeated iteration. It is most convenient to
choose as the first iteration step the simplest two-pole expressions, corresponding to the
GF structure for a mean field, in the following form

Gop(ko,w) = Rib(w — Ey (ko)) + R_6(w — E_(ko)) . (47)

where R, are the certain coefficients depending on u(ko) and v(ks). The magnetic
excitation spectrum corresponds to the frequency poles of the GFs (29). In view of the
discussion elsewhere of the spin dynamics of the present model, we shall content ourselves
with the simplest initial approximation for the spin GF occuring in (45) (c.f. [39])

1 —a
3.5 og (6,w) = Lyb(w — 2owq) — L8(w + 2zow;) (48)



Here wy is the energy of the antiferromagnetic magnons and Ly are the certain coefficients
(see [39]). We are now in a position to find an explicit solution of coupled equations
obtained so far. This is achieved by using (47) and (48) in the right- hand-side of (45).
Then the hole self-energy in 2D quantum antiferromagnet for the low-energy quasiparticle

band E_(ko) is

K S, 2, 1+ N(wy) —n(E_(k—q)) Nw)+n(E_(k+4q))
(ko) = ZC w—w, ~ E_(k—q) w+wq—E_.(k+(1)) (49)
+2K2522 D? N(wasp)(1 4+ N(wy)) + n(E-(k + p))(N(wg) — N(wg4))
N - W+ wysp —wg — E_(k +p)

qr

Here we have used the notations
O = (U + V)% D2 = (UUpsp — ViVoss)?

where the coefficients U; and V, appears as a results of explicit calculation of the mean-
field magnon GF {39].

A very remarkable feature of this result is that our expression (49} accounts for the hole-
magnon inelastic scattering processes with the participation of one or two magnons. It will
be important for the consideration of Cooper pairing processes as we will show elsewhere.
The self-energy representation in a self-consistent form (45) provide a possibility to model
the relevant spin dynamics by selecting spin-diagonal or spin-off-diagonal coupling as a
dominating or having different characteristic frequency scales. As a workable pattern, we
consider now the static trial approximation for the correlation functions of the magnon
subsystem (39] in the expression (45). Then the following expression is readily obtained

M (ko) = & Z/ = (< 5255k > gap(k +q - 0,) (50)

+ < (820)"(S3)" > Gaslk + 40,))
Taking into account (49) we find the following approximative form

- K? o~ x"Ha) +x7(g)
(ko) ~ o > m(l = 1(9)) _ (51)
The dynamics of spin-1/2 Heisenberg antiferromagnet with nearest-neighbor exchange
constant J, on a two-dimensional square lattice deserves a more detailed discussion. This
will be done in the near future.

It should be noted, however, that in order to make this kind of study valuable as one
of the directions to studying the mechanism of HTSC the binding of quasiparticles must
be taking into account. This very important problem [46],[48],(54] deserves the separate
consideration. In spite of formal analogy of the our model (21) with that of a Kondo
lattice, the physics are different( c.f. [55]). There is a dense system of spins interacting
with a smaller concentration of holes. As many authors have mentioned, for the obtain-
ing the magnon exchange mediated superconductivity {of the non-s-wave character most

10



probably) the suitable effective interactions between two fermions, which is relevant for
the case, is two-magnon exchange-type of interaction. Whese the fermion-magnon bound
state formation has to be suppressed or not for promotion of the appearance of the su-
perconductivity is not quite clear problem [56]. This question is in close relation with the
right definition of the magnon vacuum for the case when K # 0.

In this Section we has considered the simplest possibility, assuming that dispersion rela-
tion €**(k) = 0 (a = a,8). In paper [57] a model of hole carriers in an antiferromagnetic
background has been discussed, which explains many specific properties of cuprates. The
effect of strong correlations is contained in the dispersion relation of the holes. The
main assumption is that the influence of antiferromagnetisim and strong correlations is
contained in the special dispersion relation, e(k), which was obtained using a numerical
method. The best fit corresponds to[57]

e(k) = —1.255 + 0.34 cos k, cos k, + 0.13(cos 2k, + cos 2k,) (52)

As a result, the main effective contribution to ¢(£) arises from hole hopping between sites
belonging to the same sublattice, to avoid distorting the antiferromagnetic background.
Our analitycal approach is similar in spirit to numerical approach of the paper[57]. Our
IGF method is essentially self-consistent, i.e. do not depends on the special initial form
for the hole propagator. For the self-consistent calculation by iteration of the self-energy
{45) we can take as the fist iteration step the expression (47) with the dispersion relation
(52). This must be done for the calculation mean-field GIF (33) and dispersion relation
(41) too. This approach will be discussed elsewhere.

7 Conclusions

In summary, in this paper we have presented calculations for normal phase of HITSC,
which are describable in terms of the spin-fermion model. We have characterized the true
quasiparticle nature of the carriers and the role of magnetic correlations. It was shown
that the physics of spin-fermion model can be understood in terms of competition between
antiferromagnetic order on the CuQ,-plane preferred by superexchange J and the itiner-
ant motion of carriers. It appears plausible that similar arguments apply to calculation of
the static hole states for t — J model since the latter are intimately related to that of spin-
fermion model. It is thus highly advisable to investigate comparative hole quasiparticle
dynamics of the both models. In the present paper we do not presented all the details as
regards for different possibilities of the definition of the relevant gencralized mean fields
in this formalism. Carrying this procedure to other possibilities lcads to a much more
rich set of solutions for the spin-fermion model. In the light of this situation it is clearly
of interest to-explore in details how the hole motion relate with that of the Zhang-Rice
singlet and other compozite "carrions” in the framcwork of the present formalism. Con-
sidering that the carrier-doping results in the HTSC for the realistic parameters range
t > J, K, corresponding the sitnation in oxide superconductors. the careful examination
of the collective behaviour of the carriers for ‘a moderately doped svstem must be per-
formed [58]. It seems that this behaviour can be very different from that of single hole
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case. The problem of the coexistence of the suitable Fermi-surface of mobile fermions and
the antiferromagnetic long range or short range order has to be clarified. The volume of
the Fermi surface is an important problem, which was discussed recently[59]. The ques-
tion was considered how to model doped cuprates. Should one model them by a system of
quasi-particles which corresponds to the doped holes and populate the dispersion relation
calculated for a single hole (rigid-band approximation).This is very intriguing problem,
which deserves the careful analysis. Finally, in the present paper we have considered the
simplified spin-fermion model , taking into account a Kondo-like spin coupling K between
the oxygen hole and two nearest copper spins, arising from the strong d-p hybridization
of the three-band extended Hubbard model {2}-{5]. However hybridization induces effec-
tive spin-preserving hopping and spin-exchanging hopping terms also, implicitly taking
into account the charge-transfer processes. The picture of the charge-transfer processes
is modified greatly by taking into account the long-range screened Coulomb interaction
within d-p model{60]. Work is in progress to refine the present approach for calculating
of two-hole dynamics and the binding of quasiparticles for more general models.
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Dynamics of Carrions in the Spin-Fermion Model o

The “spectrum. of hole quasiparticles ‘(carrions) and the role of magnetic
correlations has been consndered in the framework of spin-fermion (Kondo-
- Heisenberg) model by means of the ‘equation-of-motion method. The hole
quasiparticle dynamics has been discussed for t-J model and compared with that of
for spin-fermion model to determine how the one- and two-magnon processes define
the true nature of carriers in HTSC. For this Kondo Heisenberg-type model it was
clearly pointed out on the self-energy level, beyond Hartree-Fock approximation,
that two-magnon processes can play a role for the formatnon of the supcrconductmg 4

state. C , : : e
.The investigation has bccn pcrformcd at the Bogohubov Laboratory of
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