Crystalline Electric Field Effects in f-Electron Magnetism

Edited by
Robert P. Guertin
Tufts University
Medford, Massachusetts
and
Wojciech Suski and
Zygmunt Zolnierek

PLENUM PRESS • NEW YORK AND LONDON
CONTENTS

SECTION 1: SINGLET GROUND STATE

Singlet Ground State System in Amorphous Rare Earth Alloys (Invited)
A.K. Bhattacharjee and B. Coqblin................................. 1

Magnetic Properties and Neutron Spectroscopy of Intermetallic Praseodymium Compounds (Invited)
F.J.A.M. Greidanus, L.J. de Jongh, W.J. Huiskamp,
A. Furrer and K.H.J. Buschow................................. 13

Pressure Induced Changes in the Magnetism of Crystal Field Split Systems (Invited)
R.P. Guertin... 25

Van Vleck Paramagnets in High Magnetic Fields (Invited)
E. Leyarovski, L. Leyarowska, C. Popov and N. Iliev........ 41

Singlet Ground State and Combined Electron-Nuclear Magnetism in Praseodymium (Invited)
K.A. McKewen, W.G. Stirling and C. Vettier..................... 57

Study of the Crystalline Electric Field in Praseodymium Intermetallics (Invited)
W. Matz, B. Lippold, E.A. Goremychkin, A. Andreeff,
H. Greissman and T. Frauenheim................................. 69

Magnetic Excitations in TbP under Hydrostatic Pressure
A. Loidl, K. Knorr and C. Vettier................................ 83

Transport Properties of the Intermetallic PrAl3
H. Müller, E. Hegenbarth, W. Matz, E. Mrosan and
A. Schmeltzer... 89
SECTION 3: THEORY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linewidth of Crystal Field Excitations in Metallic Rare Earth Systems (Invited)</td>
<td>91</td>
</tr>
<tr>
<td>K.W. Becker and J. Keller</td>
<td></td>
</tr>
<tr>
<td>Electronic Structure of LaIn₃ and LaSn₃</td>
<td>111</td>
</tr>
<tr>
<td>A. Hasagawa</td>
<td></td>
</tr>
<tr>
<td>The Application of the Self-Consistent Mori Formalism to Analyze the Dynamical Response of van Vleck Systems in the Vicinity of the Curie Point</td>
<td>137</td>
</tr>
<tr>
<td>L. Kowalowski, A. Lehmann-Szewykowska, M. Thomas and R. Wojciechowski</td>
<td></td>
</tr>
<tr>
<td>The Origin of the Crystal Field for 4f² Ions in Insulators</td>
<td>157</td>
</tr>
<tr>
<td>F. Anisimov and R. Dagya</td>
<td></td>
</tr>
<tr>
<td>Conduction Electron Effects on Localized Spin Excitations in the RKKY-Theory of Magnetism</td>
<td>177</td>
</tr>
<tr>
<td>V. Christoph, A.L. Kuzensky and T. Frauenheim</td>
<td></td>
</tr>
<tr>
<td>Magnetic Field Dependence of the Conduction Electron Mass in Prasodymium</td>
<td>197</td>
</tr>
<tr>
<td>P. Fulde and R.M. White</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 4: LATTICE EFFECTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonon Coupling Mechanisms in Intermetallic Rare Earth Compounds (Invited)</td>
<td>217</td>
</tr>
<tr>
<td>B. Lüthi, M. Nikach, R. Takke, W. Assmus and W. Grill</td>
<td></td>
</tr>
<tr>
<td>Quadrupole Interaction at 169 Tm in Cubic TmZn</td>
<td>237</td>
</tr>
<tr>
<td>G.A. Stewart</td>
<td></td>
</tr>
<tr>
<td>Field Dependence of the Magnetic Anisotropy of Gadolinium at 4.2 K under High Pressures</td>
<td>257</td>
</tr>
<tr>
<td>J.J.M. Franse, R. Gersdorf and E. Koeps</td>
<td></td>
</tr>
<tr>
<td>Magnetostriction of an Yttrium Monocrystal Doped with Terbium Impurities</td>
<td>277</td>
</tr>
<tr>
<td>P. Furer, G. Creuzet and A. Pirt</td>
<td></td>
</tr>
<tr>
<td>Crystal Field Splitting and Thermal Expansion in Dilute Magnesium-Rare Earth Crystals</td>
<td>297</td>
</tr>
<tr>
<td>M.H. de Jong, J. Bijvoet and P.F. de Châtel</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 5: TETRAGONAL MATERIALS

Neutron Diffraction Studies of Magnetic Ordering in Rare Earth and Actinide Intermetallics of the CeAl₂Si₂ Type (Invited)
J. Glociakiewicz

Quadrupole Effects in the Lattice Parameters and Magnetic Ordering Temperatures of RECu₂Si₂ (REE=Rare Earth) (Invited)
W. Schlaitz, J. Baumann, G. Neumann, D. Plümacher and K. Regentgen

Influence of the Crystal Field on Dy³⁺ Ions in Dy₂MoSi₂ Compounds as Revealed by Investigations of Their Magnetic Properties and Nuclear Hyperfine Interactions
E.A. Gorlich, R. Kmiec, B. Janus and A. Szytuła

Magnetic Properties of RCo₂Si₂ and RCo₂Ge₂ Compounds
M. Kolenda, A. Szytuła and A. Zygmont

Tm Mossbauer Study of TmCu₂Si₂
G.A. Stewart and J. Zygowski

Magnetic Properties of TbCo₂Si₂ and TbCo₂Ge₂
J. Glociakiewicz, S. Siek, A. Szytuła and A. Zygmont

Magnetostriiction of Rare Earth Impurities in Y₁Cu₂Si₂
N. Rausman, H.U. Rögener and D. Wohlfahrt

SECTION 6: CERIUM COMPOUNDS

Electronic Transport Properties of Metallic Ce Systems (Invited)
F. Steglich, K.H. Wiemand, W. Klümpe, S. Horn and W. Lieke

Fermi Surface and p-f Mixing Mechanism in CeSb (Invited)

Mechanism of Unusual Magnetic Anisotropy in the Cerium Monopnictides (Invited)
K. Takegahara, H. Takahashi, A. Yanase and T. Kasuya

Equilibrium and Dynamic Behaviors of Cubic Ce³⁺ Systems with Anisotropic Coqblin-Schrieffer and Crystal Field Interactions (Invited)
D. Yang and B.R. Cooper

Large Pressure Effects on the Magnetic Phase Diagrams of CeSb and Ce₁₋ₓYₓSb Compounds

Crystal Field Excitations in Ce₆₋ₓInₓ Compounds
H. Wehr, K. Knorr, A.P. Murani and W. Assmus

Magnetoresistivity of Cerium Compounds
Y. Lassailly, A.K. Bhattacharjee and B. Coqblin

Low Temperature Magnetic Phase Transitions of CeBi and CeSb Studied by Magnetoelectrics
T. Nakajima, T. Suzuki, M. Sera and T. Kasuya

Anomalous Behavior of Cerium in RMg₃ and RNiAg₂ Compounds
R.M. Galera, A.P. Murani and J. Pierre

SECTION 7: RARE EARTH METALLIC AND SEMI-METALLIC COMPOUNDS

Magnetism and Crystal Fields in Ternary Superconductors (Invited)
G.K. Shenoy, C.W. Crabtree, D. Marchos, A. Behroozi, B.D. Dunlap, D. Hinks and D.R. Noakes

A Novel Kind of Metal-Rich Lanthanide Compound (Invited)
A. Simon

Magnetic Properties and Quadrupole Interactions in Pr₄Ag
P. Morin and D. Schmitt

Experimental Determination of the Electrostatic Contribution to the Crystalline Electric Fields in Non-cubic Metals
R.A.B. Devine and Y. Berthier
Crystal Field Influence on the Specific Heat and Schottky Effect in Rare Earth Monosulfides
L.N. Vasil'ev, A.V. Golubov, A.G. Gorobetz, V.S. Oscotsky, I.A. Smirnov and V.V. Tikhonov........... 467

Interpretation of the ζ-Holmium Sesquiselenide Magnetic Susceptibility
L. Pawlak, M. Duczmal and S. Pokrzywnicki......................... 473

Electronic Structure and Crystal Field in Sm$_3$Se$_4$ and Sm$_3$Te$_4$

Strong Crystal Field Effects in TmN$_5$
D. Gignoux, B. Hennion and A. Naït Saada...................... 485

Magnetic Properties of Some Solid Amorphous Rare Earth Alloys
A. Apostolov, H. Hristov, T. Mydlarz, M. Mihov and V. Skumrılęv.............................. 493

SECTION 8: URANIUM COMPOUNDS

Magnetic Phase Diagrams of Some Uranium Monoplutnictides and Monochalcogenides (Invited)

Ligand Field of Uranium (4+) Antiprismic Cluster in LCAO MO Approach
J. Mulaš and Z. Gajek.............................. 519

Magnetic Structure and Lattice Deformation in UO$_2$
V.L. Aksenov, T. Frauenheim and V. Sikora............................. 525

Crystal Field and p-f Mixing Effects in Uranium Pnictides
K. Takegahara, A. Yanase and T. Kasuya............................ 533

Magnetic Properties of the Uranium Trichalcogenides
B. Janus, W. Suski and A. Blaise............................. 539

Magnetization of U$_3$P$_4$ in Magnetic Fields up to 500 kOe
K.G. Gurtovoj, A.S. Lagutin, R.Z. Levitin and V.I. Ozhogin............................ 545

Temperature Dependence of Magnetization in U$_3$P$_4$
and U$_3$As$_4$ Single Crystals

LIST OF SENIOR AUTHORS.. 557
LIST OF PARTICIPANTS.. 561
SUBJECT INDEX.. 569
MATERIALS INDEX.. 577
CONDUCTION ELECTRON EFFECTS ON LOCALIZED SPIN EXCITATIONS IN THE
RKKY-THEORY OF MAGNETISM

V. Christoph, A.L. Kuzemsky and Th. Frauenheim

Joint Institute for Nuclear Research, Dubna, 10100 Moscow
P.O. Box 79, USSR

INTRODUCTION

The magnetic scattering of thermal neutrons is a unique technique for establishing both the static and the dynamic properties of magnetic correlations. For interpreting neutron inelastic magnetic scattering data on heavy rare earth metals, the calculations of the magnetic susceptibility and the magnetic excitation spectrum are of particular interest1-11. In rare earth metals the exchange interaction between the localized $4f$ electrons and the extended (conduction) electrons (RKKY exchange) is basic for understanding their magnetic and electric properties1.

In order to avoid the difficulties connected with crystal field and anisotropy effects, we restrict our consideration to rare earth metals like Gd. Recent detailed experimental and theoretical examinations311 confirm the spin moment of the Gd ion to be a good quantum number. The d-band, having a width of 5-7 eV, lies well above the $4f$ level and is about one fourth occupied. The density of states of the d-electrons at the Fermi level is much higher than the density of states of the $s(p)$ electrons512. The general conclusion drawn from these investigations was that the conduction electrons, which play an essential role in the mechanism of RKKY exchange in the heavy rare earth metals, cannot be considered as free s-electrons as assumed in early papers513, but rather as similar to tight-binding d-electrons in transition metals514. In particular, the magnetic excitation spectrum of Gd has been calculated15 taking into consideration the d-like character of the extended electrons. Starting with an APW calculation of the band structure and wave functions, the RKKY exchange matrix elements were obtained. Agreement of the calculated magnon spectrum with the experimental one15 could be
obtained by reducing the calculated values by a scale factor of about four. In a more recent paper, the generalized spin susceptibility has been calculated using the KKR method.

In the present report the generalized spin susceptibility and the magnon spectrum of Gd metal has been calculated. The tight-binding d-like character of the conduction electrons and the electron-electron and electron-phonon interaction are taken into account in a unified manner. The contributions of different interactions to the magnon damping are estimated, and the lower temperature dependence of the magnon width is calculated. As has been noted, the magnon lifetime investigations in Gd at low temperature should give information on different interactions and their roles and significance in the heavy rare earth metals.

RARE EARTH METAL MODEL

Neglecting crystal field and anisotropy effects, we describe the rare earth metal by localized 4f spins, interacting with d-like tight-binding conduction electrons. We take into consideration the electron-electron and electron-phonon interactions in the framework of a model given by S. Barisic et al. The Hamiltonian is a generalization of the well known Hubbard Hamiltonian and has been investigated in detail in Ref. 20.

The total Hamiltonian is:

\[
\hat{H} = \hat{H}_{dd} + \hat{H}_{d-p} + \hat{H}_{ph}
\]

where

\[
\hat{H}_{d} = \sum_{k} \sum_{\sigma} E(k) \hat{c}_{k \sigma}^{+} \hat{c}_{k \sigma} + \frac{U}{2N} \sum_{k} \sum_{\sigma} \sigma_{k \sigma} \hat{c}_{k \sigma}^{+} \hat{c}_{k \sigma} \hat{c}_{-k \bar{\sigma}} \hat{c}_{-k \bar{\sigma}} - \sum_{k} \sigma_{k \sigma} \sigma_{-k \bar{\sigma}}
\]

is the Hubbard Hamiltonian. For the tight-binding d-electrons we use \(E(k) = \frac{2t(k \alpha) \cos(k_{x})}{\alpha} \), where \(t(k \alpha) \) is the hopping integral between next nearest neighbors, and \(\alpha_{k} \) (\(\alpha = 1, 2, 3 \)) denotes the lattice vectors in a simple lattice with inversion center. The second term in (2) describes the Coulomb interaction of electrons with opposite spins at the same lattice site. The RKKY Hamiltonian describing the interaction of the total 4f spin \(\hat{S} \) with the spin density of the conduction electrons has the form

\[
\hat{H}_{d-p} = -\frac{J}{\tilde{N}} \sum_{k \sigma} \sum_{q} \{(\alpha_{k+q}^{+} \hat{c}_{k+q \sigma}^{+} - \alpha_{k}^{+} \hat{c}_{k \sigma}^{+}) \hat{S}_{-q}^{+} + \alpha_{k+q}^{+} \hat{c}_{k+q \sigma}^{+} \hat{S}_{-q}^{+}, c.c.\}
\]

where \(J \) is the local RKKY exchange integral. In general the exchange integral strongly depends on the wave vectors \(k \) and \(q \) having maximum values at \(k = q = 0 \). For simplicity we restrict ourselves to a local exchange. The generalization to non-local exchange is straightforward. For the electron-phonon interaction we use:

\[
\hat{H}_{ph} = \sum_{k \sigma} \sum_{q \nu} \nu^{k+q}(k+q) \alpha_{q \nu} \hat{c}_{k \sigma}^{+} \hat{c}_{k+q \alpha}^{+} \hat{c}_{k+q \alpha} \hat{c}_{k \sigma} - \frac{2t_{\alpha}(q \nu)}{\nu \alpha} \hat{c}_{k \sigma}^{+} \hat{c}_{k+q \alpha}^{+} \hat{c}_{k+q \alpha} \hat{c}_{k \sigma}.
\]

In (5) \(q \) and \(\alpha \) are the Slater coefficients originating in the exponential decrease of the d-functions. \(N \) is the number of unit cells in the crystal, and \(\nu \) is the ion mass. \(\nu \alpha(q \nu) \) (\(\nu = 1, 2, 3 \)) are the polarization vectors of the phonon modes.

For the vibrating ion system we have

\[
\hat{H}_{ph} = \frac{1}{\nu \beta} \sum_{q \nu} \left(\nu \beta^{2} \hat{p}_{\nu} \hat{p}_{\nu} + \nu \beta \hat{p}_{\nu} \hat{p}_{\nu} \nu \beta \hat{q}_{\nu} \hat{q}_{\nu} \right)
\]

where \(P_{\nu} \) and \(Q_{\nu} \) are the normal coordinates and \(\nu \beta \) are the acoustical phonon frequencies. Thus, as in the Hubbard model, the d- and s-(p)bands are replaced by one "effective" band in our model. However, the s-electrons give rise to screening effects and are taken into account by choosing proper values of \(J \) and \(\nu \) and the acoustical phonon frequencies \(\nu \beta(q \nu) \).

GENERALIZED SPIN SUSCEPTIBILITY

We are interested in the Fourier transform of the generalized susceptibility of the localized f-spins \(\langle \langle k | S_{+}^{k} | k \rangle \rangle \) where

\[
\langle \langle k \rangle | S_{-}^{k} | k \rangle \rangle = -i \theta(t) \langle \langle k \rangle | S_{-}^{k} | k \rangle \rangle
\]

is the usual double-time commutator Green's function and \(\hat{S}_{-}^{k} \) is the Fourier transform of the f-spin \(\hat{S}_{k}^{+} \). For the calculation of \(\langle \langle k \rangle | S_{-}^{k} | k \rangle \rangle \) we use the irreducible Green's function technique already applied to the Hubbard model in the atomic and band limits.

The method of calculation is based on using the generalized matrix Green's function

\[
\bar{G} = \left(\begin{array}{cc} L_{S_{+}}^{k} & L_{S_{+}^{k}}^{S_{-}} \\ L_{S_{-}}^{k} & L_{S_{-}^{k}}^{S_{+}} \end{array} \right),
\]

where the Fourier components of the conduction electron spin densities, \(\alpha_{k}^{+} \hat{q}_{k \alpha}^{+} \hat{q}_{k \alpha} \) and \(\alpha_{k}^{+} \hat{q}_{k \alpha}^{+} \hat{q}_{k \alpha} \), have been introduced. It may be shown that the equation of motion for \(G \) [Eq. (8)] may be exactly transformed to the Dyson equation by using the irreducible Green's functions with an explicit representation of the mass operator. The exact Dyson equation is given by

\[
\bar{G} = \bar{G}_{0} + \bar{G}_{0} \bar{M} \bar{G}_{0},
\]
where \hat{M} is the mass operator and \hat{G}_0 is the mean field Green's function. Hence the determination of \hat{G}_0 has been reduced to the determination of \hat{M} and \hat{M}, when the mean field Green's function \hat{G}_0 coincides with the RPA-result.

Damping of Spin Waves in the Coupled Local Moment-Electron System

In order to estimate the damping of the localized spin excitation spectrum due to electron-magnon and electron-phonon scattering, we calculate the local spin susceptibility for small k and ω

$$\langle \langle \vec{S}_k^+ | \vec{S}_{-k}^- \rangle \rangle = \frac{2N}{\omega - \epsilon_k - \Delta(k,\omega)} \frac{2N}{\omega - \epsilon_k - \Delta(k,\omega)} \Sigma(k,\omega)$$

(10)

which contains the matrix elements of the mass operator $\hat{M}^2 = (M^2)_{ij}$ in a linear approximation

$$\Sigma(k,\omega) = M_{11}^2 + (M_{12} + M_{22}) \frac{J^2 N \chi_0}{1-\xi^2}$$

(11)

Here we have used the notations

$$\langle \langle \vec{S}_o^z \rangle \rangle = \langle \langle \vec{S}_o^z \rangle \rangle \left(1 + \frac{N_0^2 - N_1^2}{2N^2} \right)$$

$$\chi_0 = \chi_{0,k}^2 = \frac{1}{N} \sum_{q} \left| f_{q,k} + f_{-q,k} \right|^2$$

$$\omega_{q,k} = \omega + \xi(q) - \xi(q+k) - \Delta$$

$$\Delta = 2JN^2 \langle \langle \vec{S}_o^z \rangle \rangle$$

The spectral density of the spin wave excitations with wave vector k then reads

$$g(k,\omega) = -\frac{1}{\pi} \text{Im} \langle \langle \vec{S}_k^+ | \vec{S}_{-k}^- \rangle \rangle = \frac{2N}{\omega - \epsilon_k - \Delta(k,\omega)} \frac{2N}{\omega - \epsilon_k - \Delta(k,\omega)} \Sigma(k,\omega)$$

(13)

where

$$\Delta(k,\omega) = 2N \langle \langle \vec{S}_o^z \rangle \rangle \text{Re} \Sigma(k,\omega)$$

$$\Gamma(k,\omega) = -2N \langle \langle \vec{S}_o^z \rangle \rangle \text{Im} \Sigma(k,\omega) + \Gamma_0$$

(14)

describes the shift and the damping of the acoustical magnons.

Finally we estimate the temperature dependence of $\Gamma(k,\omega)$ due to the mass operator terms in (11). Considering the first contribution in (11) at low temperatures we obtain

$$\text{Im} \hat{M}_{11}^2 \frac{\omega}{k^2}$$

(15)

The other electron-magnon contributions to $\Gamma(k,\omega)$ can be treated in the same way, where M_{12}, M_{22} and the electron-magnon contribution to M_{22} are proportional to T also. For the electron-phonon contribution to M_{22} we find

$$\text{Im} \hat{M}_{22}^2 \frac{\omega}{k^2} \frac{\omega}{k^2}$$

(16)

Hence the damping of the acoustical magnons at low temperatures can be written as

$$\Gamma(k,\omega) \bigg|_{k,\omega \to 0} \propto T^3$$

(17)

where the coefficients Γ_i ($i=1,2,3$) vanish for $k=\omega=0$. For the case when $J=0$, the electron-electron term Γ_1 vanishes in (17).

DISCUSSION

In the present paper the spectrum of the elementary magnetic excitations and their lifetimes have been calculated for the microscopic model of heavy rare earth metals. In the model used the electron-electron interaction of the extended (conduction) electrons and the electron-phonon interaction in the Barisic-Lubbe-Friedel manner have been taken into account. Neglecting the damping terms the result obtained (10) coincides with that of L.C. Bartel, obtained in the RPA. Furthermore, using a generalized matrix Green's function here the expressions for the spin susceptibility of the conduction electrons and mixed terms have been derived. Therefore, starting with this formalism the contribution of the extended (conduction) electrons to the total magnetization of the rare earth may also be considered.

The temperature dependence of the acoustical magnon damping is given mainly by the electron-magnon and electron-phonon interactions. The electron-electron contribution Γ_1 is almost temperature independent, but vanishes at $J=0$, also. It should be emphasized here that the real electronic structure of a rare earth metal such as Gd is much more complicated than given by our tight-binding model. For a realistic first principle calculation of the stiffness constant about ten bands should be included. Furthermore, the dependence of the RKKY exchange integral $J(k,\hbar k)$ on the wave vector should be taken into account. Nevertheless, taking into consideration all interactions playing a part in the rare earth metals, this estimate of the temperature dependence of the magnon damping should...
be reasonable. Unfortunately there are no neutron scattering measurements of the low temperature magnon damping in Gd17. Such measurements and their theoretical interpretation would greatly improve our understanding of the interactions in the heavy rare earth metals.

REFERENCES

COMMENTS

GREIDANUS: What is your argument for the statement that in the neutron spectrum of PrAl\textsubscript{3}, the observed linewidth cannot be explained by dispersion effects?

FRAUENHEIM: I believe that dispersion averaging is important only if you average over the whole Brillouin zone, but not if you average over the directions in a polycrystal at a fixed momentum trans-