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The paper addresses the many-body quasiparticle dynamics of the Anderson impurity
model at finite temperatures in the framework of the equation-of-motion method. We
find a new exact identity relating the one-particle and many-particle Green’s functions.
Using this identity we present a consistent and general scheme for a construction of gen-
eralized mean fields (elastic scattering corrections) and self-energy (inelastic scattering)
in terms of Dyson equation. A new approach for the complex expansion for the single-
particle propagator in terms of Coulomb repulsion U and hybridization V' is proposed.
Using the exact identity, the essentially new many-body dynamical solution of SIAM
has been derived. This approach offers a new way for the systematic construction of
the approximative interpolating dynamical solutions of the strongly correlated electron
systems.

1. Introduction

The study of the quasiparticle excitations in solids has been one of the most fasci-
nating subjects for many years.! The subject of the present paper is a microscopic
many-body theory of strongly correlated electron models. A principal importance
of this problem is related with the dual character of electrons in a wide class of
materials (transition metal oxides, intermediate-valence solids, heavy fermions and
high-T, superconductors). The behavior of electrons in these materials exhibit both
localized and delocalized features.? Contrary to the wide-band electron systems (like
simple metals), where the fundamentals are very well known and the electrons can
be represented in a way such that they weakly interact with each other, in these
substances the bands are narrow, the electrons interact strongly and moreover their
spectra are complicated.

The problem of the adequate description of the strongly correlated electron sys-
tems has been studied intensively during the last decade, especially in context of
Heavy Fermions and High-T,. superconductivity.? The understanding of the true
nature of the electronic states and their quasiparticle dynamics are one of the
central topics of the current experimental and theoretical efforts in the field. The
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plenty of experimental and theoretical results show that this many-body quasiparti-
cle dynamics is quite nontrivial. A vast amount of theoretical searches for the suit-
able description of the strongly correlated fermion systems deal with the simplified
model Hamiltonians. These include as workable patterns single-impurity Anderson
model (SIAM)? and Hubbard model.* In spite of certain drawbacks these models
exhibit the key physical feature: the competition and interplay between kinetic
energy (itinerant) and potential energy (localized) effects. A fully consistent theory
of quasiparticle dynamics of both models is believed to be crucially important®
for a deeper understanding of the true nature of the electronic states in the above
mentioned class of materials.

In spite of many theoretical efforts the complete solution of dynamical problem
still lacking for the “simple” Anderson/Hubbard model. One of the main reasons
for this is that it has been recognized relatively recently only” that the simplicity
of the Anderson model manifests itself not in the many-body dynamics (the right
definition of the quasiparticles via the poles of the Green’s functions) but rather
at quite different level — in the dynamics of the two-particle scattering, resulting
in the elegant Bethe-ansatz solution, which gives the static characteristics (static
susceptibility, specific heat etc.). In this sense, as to the true many-body dynamics,
the complete analytical solution of this problem is still a quite open subject. The
present paper is primarily devoted to the analysis of the relevant many-body
dynamical solution of the SIAM and its correct functional structure. We wish to
determine which solution actually arise from both the self-consistent many-body
approach and intrinsic nature of the model itself. We believe strongly that before
numerical calculations of the spectral intensity of the Green function at low energy
and low temperature it is quite important to have the consistent and close analytical
representation for the one-particle GF of SIAM and Hubbard model. To confirm
this let us mention two examples only: (i) recent “exact” dynamical solution® of the
Anderson model, which is in fact the well-known lowest order approximative inter-
polation solution®; (ii) “nonperturbative” self-energy corrections to the Hubbard
model,'® where the self-energy [Eq. (15)] in the second-order in U (cf. Ref. 5) has
been used for the calculation of the corrections to “Hubbard I” solution, which is
essentially strong-U solution and, moreover, is incorrect even in this limit. A proper
many-body description of dynamic correlations is very actual also for the investiga-
tion of the dynamics of many-impurity Anderson model, where standard advanced
many-body methods does not work properly in usual formulation. Recently, a lot
of efforts have been devoted for better understanding of the static and dynamical
properties of the Anderson Model in the context of many impurity case (e.g. Refs. 6
and 11). This field is quite important for description of magnetic properties of
anomalous rare-earth compounds.!271¢ Although the few-impurity Anderson model
has not been studied extensively, with the use of conformal field theories the corre-
sponding Kondo problem has been at this point clarified substantially.'”

The problem of an adequate and consistent description of dynamics of single-
impurity and many-impurity Anderson models (SIAM and TIAM) and other models
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of correlated lattice electrons is still not completely solved analytically. It is well
known,! that the proper theoretical description of the dynamical properties of the
Anderson model has a direct relationship with experiment, namely with different
types of photoelectronic studies of f and d electrons in rare-earths and actinide
compounds,'®!® and description of transport properties. Core-level X-ray pho-
toemission and photoabsorption spectroscopies are powerful tools in the study of
electron states in solids. The Anderson model provides a microscopic basis and also
a point of view for discussing this phenomena.?’ There are some points still open to
discussion in this field?*?2 and to settle this issue we need a better understanding, a
first-principles microscopic description of the many-body quasiparticle dynamics of
the Anderson and related models. This problem has been studied intensively during
last decades.?*=3° The paper®® clearly shows the importance of the calculation of
the Green’s function and spectral densities in a self-consistent way. A remarkable
achievement was made recently in papers®!'3? with numerical renormalization group
approach. Their results, though being only numerical, provide an accurate descrip-
tion for the frequency and temperature dependence of the single-particle spectral
densities and transport time.

During the last decades a lot of theoretical papers have been published, at-
tacking the Anderson model by many refined many-body analytical methods.33-43
Nevertheless, the fully consistent dynamical analytical solution in the closed form
for a single-particle propagator of SIAM is still lacking. In this paper the problem
of consistent analytical description of the many-body dynamics of SIAM will be
discussed in the framework of equation-of-motion appproach for two-time thermo-
dynamic Green’s functions. Our main motivation was the fact that an interesting
approach to dynamics of the Anderson model®®3” (and Hubbard model*®) was for-
mulated recently using the modified version of Kadanoff-Baym method. Our aim is
to compare this approach with the equation-of-motion technique for two-time ther-
modynamic Green’s functions, having in mind to find the most suitable technique
for subsequent description of a dynamics of few-impurity Anderson model.

2. Model

The Hamiltonian of SIAM can be written in the form

H= kac;:acka + ZEOafothU
ko 4

U
+ 'é' ZInOanO—a + ZVk(c;:a.fOU + f(‘)‘;ckﬂ)7 (1)
o ko

where ¢} and f are respectively the creation operators for conduction and
localized electrons; ¢, is the conduction electron energy, Eqy, is the localized electron
energy level and U is the intra-atomic Coulomb interaction at the impurity site. V3
represents the s—f hybridization.
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Our goal is to propose the new combined many-body approach for description
of the many-body quasiparticle dynamics of SIAM at finite temperatures. The
interplay and competition of the kinetic energy (€;), potential energy (U) and hy-
bridization (V) affects substantially the electronic spectrum. The renormalized
electron energies are temperature dependent and electronic states have a finite life
times. These effects are most suitable accounted for the Green functions method.!2
The way of derivation of the “exact” solution® gives to us an opportunity to empha-
size some important issues about the relevant dynamical solutions of the strongly
correlated electron models (SIAM, TIAM, Hubbard model, PAM etc.) and to for-
mulate in a more sharp form the ideas of the method of the Irreducible Green’s
Functions (IGF).5 This IGF method allows one to describe the quasiparticle spec-
tra with damping of the strongly correlated electron systems in a very general and
natural way and to .construct the relevant dynamical solution in a self-consistent
way on the level of Dyson equation without decoupling the chain of the equation of
motion for the GFs.

3. Dynamical Properties

At this point it is worthwhile to underline that despite that the fully consistent
dynamical solution of SIAM is still lacking, a few important contributions has been
done previously with the equations of motion for the GFs. To give a more instructive
discussion let us consider the single-particle GF of localized electrons, which is
defined as

G, () <<f00‘(t)7f0+0>>

—i8(t){[foo (£), fo]+)

1 [t

il

I

o . dw exp(—iwt)Gy(w) . (2)

The simplest approximative “interpolating” solution of SIAM has the form?:

— 1 U(n0_0->
Go’(w) - w — E()o- - S(a)) + (w - an — S(w) — U)(w — EOo’ — S(Lu'))
- 1- <n0—0) (n —a)
=B - 5@ N o Be 5@ T (3)
where i
Vi
S(w) = ; R (4)

The values of n, should to be determined through the self-consistency equation

ne = (nos) = —% / dE §(E)Im G, (E,n,), 5)
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where
f(B) = [exp(BE) + 17"

This solution is valid at small V only and was analyzed in detail in Ref. 24 in the
context of screening effects in the core-level spectra of mixed-valence compounds,
where it was shown that solution (3) is valid for V' < 0.5 eV (with core-hole inter-
action). The “atomic-like” interpolating solution (3) reproduces correctly the two
important limits:

1—{no_o) {(no—o)
Ga’ = s =
(w) T Py for V=0 .
1
Go(w) = ————w_ Fou = 5(@) , for U=0.

The important point about formulas (6) is that any approximate solution of SIAM
should be consistent with it. Let us remind how to get solution (3). It follows from
the system of equation for small-V limit:

(w = Eoo — S(){(fool fo- ), = 1+ U foomo-olfou )., » (7)
(w — Ego — U)«fOonO—alf(itr»w ~ (nO—a) + Z Vk«ckanoo'lf(;t;»w ’ (8)
k

(w — ek)«ckano_alf@;»w = Vk«anno—-a,f(;tr»w ’ (9)

The equation (8) is approximative; it include two more terms, which were threated
in the limit of small V' in Ref. 34. The solution (3) has been obtained in Ref. 8 and
presented as an “exact”. We shall see later on that, in fact, all results in Ref. 8 are
approximative and are valid in the lowest order in V.

Another advanced many-body approach to analytical solution of STAM was pro-
posed in Ref. 36. A modified Kadanoff-Baym equation-of-motion technique has
been used in Ref. 36 to get a solution, which have a number of truly remarkable
properties. This solution was first found analytically,3¢ then only recently veri-
fied numerically.?” To find more complex expansion, including both U and V, the
“mean-fields” in Ref. 36 were “introduced” as follows:

«anfo oCk— a|f00» ~ fo—ack -0 <<f00|f00>>

(
«anck_a.fO—alfO—o» (ck ng t7><<f00|f00>>’ (10)

(

ey

Q

«cktffg_—acp—olf(;» fo oCp—~a «Ckalfo(,»,
<<Cka'c:—af0—0'|f(3t;>> Cp_ .fO o><<ckalf00'>>

In fact, the procedure of introduction of the mean field corrections in Ref. 36 remind
(but not coincide) with that of the more systematic IGF method. The inelastic
scattering corrections (self-energy) and elastic ones (mean-field) are separated in

Q
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the IGF method in the most consistent and general way. The Neal’s definition (10)
will be clearer if one rewrite the “effective mean-field” part of the full Neal’s solution
in the following form

Go = TR s Sl(w) ~Z,(@)
T S(w) — U;EZ__U Foo = S(0) = Zo(@) (11)
Here
Zo = = —US(w)-U<1+;(J—‘_/kE)—2)
X | S Vallfizotrmo) = (e fo_,»} _ )

Since the symmetry properties of (C;:o-an'), the connection of the GFs (11) and (3)
can now be made by noting that Z, = 0.

4. Generalized Mean Fields

We now proceed to the details. In the important paper3* the calculation of the
GF (2) has been considered in the limit of infinitely strong Coulomb correlation U
and small hybridization V. It was shown, with the using the decoupling procedure
for the higher-order GFs, that the obtained solution gives the correct result in the
Kondo limit at low temperatures and for some other limits. The functional structure
of the Lacroix’s solution generalize the solution (3). The Ref. 34 deals with the GF
(2). The starting point is the system of equations:

(w— Eyo — S(w))«fOUIfJ;» =1+ U«fOo'"O—U,fdtr» > (13)
(@ = Eog = U){{foono-olf3,)) = (no-o) + Y _ Ve({{cano-o £ )
k

- <<Clc—af(;}_—af00|f6‘;>>
+ (et foo fo-olfo ) - (14)

Using the relatively simple decoupling procedure for higher-order equation of
motion, the qualitatively correct low-temperature spectral intensity has been cal-
culated. The final expression for the GF (2) for finite U has the form

1
(Sfoolfor ) = w — Ego — S(w) + US; (w)

U(’no_g> -+ UFl (W)

t K@) (@ = Foy = S(@) + USi @)’ (15)
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where F, S; and K are certain complicated expressions, which can be easily derived.
We shall write down explicitly the infinite U approximate GF34:

— o) —F,
<<f00|f3;>> =5 _1 EO(:LO— S)(w) - (ZLZ)(W) ' 1o

The following notations have been used

fO Ck— o’
F=V) Sora (17)
(el chs) (f&oCh—0)
y=VEY e vy e 1
z; Ekj e~ SW) Z pry—y (18)

The functional structure of the single-particle GF (16) is quite transparent. The
expression in numerator of (16) plays a role of “dynamical mean-field,” which is
proportional to (f;" ,ck—,). In the denominator instead of bare shift S(w) (4) we
have an “effective shift” S' = S(w)+ Z1(w). The choice of the specific procedure of
decoupling for the higher-order equation of motion specify the selected “generalized
mean fields” (GMF's) and “effective shifts.” This is a central statement of the present
considerations which we shall illustrate below in detail.

5. Interpolating Solution

It will be quite revealing to discuss briefly the general concepts of constructing of
interpolative dynamical solution of the strongly correlated electron models. The
very problem of the consistent interpolation solution of the many-body electron
models was formulated explicitly by Hubbard* in the context of Hubbard model
and by Kim*® in context of STAM. Hubbard clearly pointed out one particular
feature of consistent theory, insisting that it should give exact results in the two
opposite limits of very wide and very narrow bands. It was argued by Hubbard,**
“that this was a desirable feature of a theory which was intended to interpolate
between these limits.” The same remarks were made by Kim*® for STAM.

The functional structure of required interpolating solution can be clarified if one
considers the atomic (very narrow band) solution of the Hubbard model:

at —N_g N_g 1
= = 19
G ( ) —to +w—t0—U w—to—Eat(w) ( )
where 7
a Neo
5w = ey - (20)
w—tg
Let us consider the expansion in terms of U:
T w)mn_oU+n_,(1 --n_(,)U2w 1t +0(U). (21)
— o
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The well-known “Hubbard I” solution can be written as

1 1
T o—ek)—T%(w)  (GM)T+to—elk)

Gy, (22)

The partial “Hubbard III” solution, which called “alloy analogy” approximation

has the form:
n_,U
1- (U -3(w)Gw) "

Yw) = (23)
Equation (23) is possible to get from (20) taking into account the following rela-
tionship:
1 . 1
w — t() 1-— N_g

G(w) — S(W)GW). (24)

The Coherent Potential Approximation (CPA) provides a basis for physical inter-
pretation of equation (23), which correspond to elimination of the dynamics of —¢o
electrons. In analogy with (21) it is possible to expand:

n_U
1- (U - Z(w))G(w)

~n_oU+n_oUU-Z)G(w—-)+0(U). (25

The solution (16) does not reproduce correctly the U-perturbation expansion
(cf. Ref. 41) for the self-energy of the GF (2):

M, (w) ~ U{ng_o) + U? / dE, / dE,

f(E1)f(E2)(1 — f(E5)) + (1 — f(Ex)(1 — f(E2))f(Es)
X/dEg w—F ~FE;+ E3

x Im GU(EI )Im G_U(Eg)lm G_U(E3) . (26)

It will be shown in separate publication elsewhere that it is possible to find certain
way to incorporate this U? perturbation theory expansion in the functional structure
of the interpolating dynamical solution of SIAM in a self-consistent way on the level
of the higher-order GFs. A heuristic semi-empirical approach for constructing such
a solution for SIAM and periodic Anderson Model (PAM) has been proposed in
Ref. 39 and for Hubbard model in Ref. 46. The advanced many-body dynamical
solution of papers,36:37 which correctly reproduces (6), does not incorporate (in one
expression) (26), too. The IGF approach®*! with the using of minimal algebra of
relevant operators allows one to find an interpolating solution for weak and strong
Coulomb interaction U and to calculate explicitly the quasiparticle spectra and
their damping for both limits. The U-perturbation expansion (26) is included in
the IGF scheme in a self-consistent way. That means that one can use the suitable
iteration procedure for the system of equations?!:
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1

<<f00|f6t7>> = w— EOcr - U'n_g _ S(L&)) _ M(')’o ? (27)

*°  dE,dE,dE

My~ [ SR B - f(B) - £(E)

+ F(E2)F(E5)| oo (E1)g00 (E2)g0—(E3), (28)
gor = —=Tm{( oo £ ) - (29

If we take for the first iteration step in (28)
Joos = 6(E - Epe — Un~o-) s (30)

we obtain
Mgy(w) = U2 f(Eos + U::agot:.ij(fic;+ Un_,))

=U?N_,(1~N_,)G%(w), (31)

where N_, = f(Eg, + Un_,). This is well known “atomic” limit of the self-energy
in the sense of equation (25). The correct second-order contribution in the local
approximation for the Hubbard model has the form*®

& o Gollmoolnoo)

n_s(l —n_,) (32)

The same arguments should be valid for SIAM too.

6. Complex Expansion for a Propagator

We now proceed with analytical many-body consideration. One may attempt to
consider the suitable solution for the STAM starting from the following exact rela-
tion, which was derived in Ref. 41:

(foolfez)) = ¢° + 9°Pg°, (33)
9" = (w— Eoo = S(w)7", (34)
P = U(’no_g) +U? <<fogn0_a|f6';n0_a» . (35)

The advantage of the equation (33) is that it is purely identity and does not include
any approximation. Having emphasized the importance of the role of the equation
(33), let us see now what is the best possible fit for the higher-order GF in (35).
We proceed by considering the equation of motion for it:
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(U) - EOa - U)«annO—olf(?;-nO—o»

= (no_0) + 3" Vi({{chono—ol fi o)
k

+ (et _, foo fo—ol fif 00 ) — {ckmo fo o foo | foamo—c ) - (36)

We can think of it as defining the new kinds of elastic and inelastic scattering
processes that contribute to the formation of the generalized mean fields and self-
energy (damping) corrections. The construction of the suitable mean fields can be
quite nontrivial®® and it is rather difficult to get it from an intuitive physical point
of view. To describe these contributions self-consistently let us consider, in analogy
with Ref. 34, the equations of motion for the higher-order GF's in the R.H.S. of (36).

(w — ex){chono—ol foy 00 )

= V«annO—alf(;tynO—‘a» + Z V(«ckaf(?;gcp—alfa;no—a»
4

= {ekoci_y fomalfihmo—o))) (37)
(w — € — EOU + EO—U)«ck—of(_)f’—oan'f(;tynO—a»

= _(fJ_gck—an00> - V<<f0z7n0—a|fg¢-7n0—a»

+ Z V(«ck—afotacpa |f(?¢_7n0—a>>

- «ck—ac;;—afﬂalfa;no—a») ) (38)
(w+ex — Eoo — Eo—o — UY(cF_, foo fo—o|fofno—0 )

= _<C2——af00'f6{:7f0_0') + V«annO—G'f(;;"O——a»

+ Z V(«C:_a.cpafo—ﬂ |f6';n0—”>>
r

+ {i_o fooCp—sl fimo-o))) - (39)

Now let us see how to proceed forth to get the suitable functional structure of the
relevant solution. The intrinsic nature of the system of the equations of motion
(37)-(39) suggest to consider the following approximation:

(w - ek)<<ckan0—alf(;|;n0—a>> ~ V«an'nO—dlf(?—anO—U» 5 (40)
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(w ~ ek — Bog + Eo—s){(Ck-0 fo—o foo | oz 00 ))
~ —(fo_sck-omnos) = V({foono—-o|fdyno-o))
— {ee—oti_g foolfoono—a ) , (41)
(w + € — Eoo — Eo—o = U){(c{_ foa ool folymo-o)
~ —{(cf_, foo fon fo—o) + V({ foono—o| foym0—0 )

+ ety fooCr—ol foomo-o))) - (42)

It is transparent that the construction of the approximations (40)~(42) are related
with the small-V expansion and is not unique, but very natural. As a result we find
the explicit expression for the GF in (35)

(no—o) — Fy(w)
U)—Eoo. -—U—Sl(UJ) '

{foono-olfom0-0)) = (43)

Here the following notations have been used

1 1
+
—ex—Eo, +Ey_q wter~Eos —Eg_e —U

Si1(w) = Sw)+ Y [V , (44)
1) = S+ DI )

F; =) (VR +V?Fy), (45)
k

= (ct_, foo Fofy foo) 4 (fif o ck—onos) (46)
2 W¥et—~Fop~—Foy-U ' w—er~FEgy +Egy’

o {ex=oct_, fool fofymo—o)) L Koo forcrolfizmo-a)) (a7
w_ek_E00'+E0_g w+6k—E00-—E0__o—U

Now one can substitute the GF in (35) by the expression (43). This will give to us
the new approximative dynamical solution of SIAM where the complex expansion
in both U and V have been incorporated. The important observation is that this
new solution satisfies both limits (6). For example, if we wish to get a lowest order
approximation up to U2, V2, it is very easy to notice that for V = 0:

-+
<<f00‘3:—ack—a|f0+ano_,>> ~ (ch_oCh—c){no-0) ,

W — Eog -U (48)
<<C C+ f |f+ n >> ~ (ck—-ac:._a-><n0—0'>
k—0Cg_oJ001JosT0-0)) =~ w—FEog~U

This results in the possibility to find explicitly all necessary quantities and, thus,
to solve the problem in a self-consistent way.
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There are numerous other possibilities that lead to a more advanced and sophis-
ticated solutions. It will be shown in separate paper that the system of equations
(40)-(42) lead us to a possibility to incorporate the U-perturbation expansion (26)
in our new solution for the GF (35).

7. Irreducible Green Functions Approach

After developing some of the basic facts about the correct functional structure of
the relevant dynamical solution of the SIAM we are looking for, we shall give a
more instructive considerations. Thus we are led to search the most suitable choice
for “generalized mean fields” (GMF) and “effective shift” for SIAM. An advanced
many-body method that had led to the discovery of such GMF and interpolating
solutions of the Anderson/Hubbard model was proposed in Refs. 47, 5, 6 and 41.
It turns out that the various solutions of the Anderson/Hubbard model are in fact
given by this IGF method for various different choice of the relevant generalized
mean fields. The Neal’s approach remind (but not coincide with) that of the more
systematic IGF method. In what follows, we shall pretend to combine the above
mentioned circle of ideas in a more consistent and unified scheme.

The essense of the method of IGF is as follows. The introduction of the irre-
ducible parts of the GFs results in separation of all suitable renormalizations of the
“generalized mean fields” (GMF). As a result, without having to make any trunca-
tion of the hierarchy of equations for the GF's, one can write down a Dyson equation
(in terms of retarded GFs)

G = GMF + GMF MG (49)

and obtain an exact analytical representation for the self-energy operator M in
terms of higher-order GFs

M= (GMF)1 - Gg1. (50)

Approximate solutions are constructed as definite approximations for the self-
energy, in another words on the level of the higher-order GFs. It was demonstrated
in Refs. 5 and 41 how to get relevant approximations for the self-energy by means of
suitable approximation for high-order GF. In the present work we will use an essen-
tially new method. We shall write an equation of motion for the higher-order GF
and then, using an exact relation between initial and higher-order GF's, derive com-
plex expansion in U and V for one-particle propagator. 1t is necessary to emphasize
that there is an intimate connection between adequate introductions of mean fields
and internal symmetries of the Hamiltonian. Though we do not want to go here
into the mathematical subtleties of defining the correct mean fields for different
models, we shall mention only that GMF can exhibit a quite nontrivial structure,
especially for the strongly correlated case.>® To obtain this structure correctly, one
must construct the full GF from the complete algebra of relevant operators.
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It was shown in Ref. 41, using the minimal algebra of relevant operators, that the
construction of the GMFs for STAM is quite nontrivial for the strongly correlated
case and it is rather difficult to get it from an intuitive physical point of view.

In this paper we want to continue this line of consideration dealing with a more
extended new algebra of operators from which the relevant matrix GF will be con-
structing. In the same spirit it belongs to the most important intentions of this
work to provide the basis for future consideration of the self-consistent interpola-~
tion dynamical solutions of a few-impurity Anderson model, which will be done in
separate papers elsewhere.

We now return to the IGF method again and consider how to generalize solu-
tion (3) with IGF approach in a self-consistent way. Let us consider the following
equation of motion in the matrix form

Y F(p,k)Go(p,w) =1+ V,D(p,w) (51)

where ( is initial 4 x 4 matrix GF and D is the higher-order GF:

Gi1 G2 Giz Gus
Ga1 Ga2 Goz Gy

Gy =
Gs1 Gs2 Gszz G (52)
G41 G42 G43 G44
Here the following notations have been used
Gu = (crolei, ) s G2 = ((crolfor ) 5
Gz = <<Cka'|.fa—7n0—a>>§ Gy = <<Cka‘cz_gn0——o>>;
Ga1 = {(foolcf, )); Gaz = {(foolfor ) s
Gas = {foo | fihno=o ) 5 G = {foolef mo-s ) ; (53)
53
G31 = {(foono—clci, ) Gs2 = (fooTo—olfsh ) ;

G33 = ((foono—o|fohmo—0 ) ; G34 = {{foono-slcy,no—s ) ;
Ga = «Clw"O—olCza» ) Ga2 = «Ckano—o|f(;2>> ;
G = ((ckomo-olfoono-o)) s Gas = (cromo—olef,mo_s)).
We avoid to write down explicitly the relevant 16 GFs from which matrix GF D

consist of for the brevity. For our aims here it will be enough to proceed forth in
the following way.
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The equation (51) results from the first-time differentiation of the GF G and is
a starting point for the IGF approach. Let us introduce the irreducible part for the
higher-order GF D, by definition, in the following way (cf. Refs. 5 and 41):

DZ}T =Dg— ZLﬁaGaﬁ; (a,8) =(1,2,3,4) (54)

o

and define the GMF GF according to

> EF(p kG (pw) =1, (55)

P

then we will be able to write down explicitly the Dyson equation (49) and the exact
expression for the self-energy M (50) in the matrix form:

0 0 0 0
" 00 0 0 1
M, (k,w) =I"1)_V,V, 0 0 Mg M It (56)
i 0 0 Mz My
Here matrix [ is given by
1 0 0 <n0—o)
0 1 <n0—a) 0
0 (no—o) (n0—0) 0
(’no_a) 0 Q (no_,,)
and the matrix elements of M have the form:
Msz = {AY (p)|Bi™(9))) Msq = ((AY (p)|BY (, ),

My = (AT (k,p)|BY (@),  Maa = (A5 (k,p)|BY (k. q))) »
where

Ai(p) = (C;_gfwfo—a —Cpo fo o foo)s
As(k,p) = (Cho fo—oCpo — Chaliy fo—0);
Bi(p) = (fohei—o foca — £ fo—oCp-0)i
Ba(k,p) = (¢}, ¢ foo = &b, fo—aCp—0) -

Since self-energy M describes the processes of inelastic scattering of electrons (c-c,
f-f and c-f types), its approximate representation would be defined by the nature
of the physical assumptions about this scattering.
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To get an idea about the functional structure of our GMF solution (55) let us
write down the matrix element G35 :

G%F = <<f00’n0—-0|f6l;-n0—0'>>
_ {no—o)
© w~ EMF U — SMF(y) - Y (w)
(no—o)Z(w)
T OB U - (0) — Y@ - Fe 5@ Y
V) - R, S5 o

VpL V|2 L2
Zw)=Sw) Y —E+ > L"_' o SWIL + 3 VL. (60)
P P

MF
w—¢€
» p

Here the coefficients L*', L*2, L3! and L3 are the certain complicated averages
(see definition (54)) from which the functional of the GMF is build. If we insert
our GMF solution (58) in (35) we shall get an essentially new dynamical solution
of SIAM, which is constructed on the basis of the complex (combined) expansion
of the propagator in both U and V parameters and which reproduces the exact
solutions of SIAM for V' = 0 and U = 0. It generalizes (even on the mean-field
level) the solutions of Refs. 34 and 36.

At this point it is worth to discuss some of the issues involved in deciding whether
or not the solution of Ref. 8 is “exact”. Let us consider the first equation of motion
(51), before introducing of the irreducible GFs (54). Let us put simply in this
equation the higher-order GF D = 0! To distinguish this simplest equation from
the GMF one (55) we write it in the following form

> F(p, k)G (p,w) = I. (61)

4

The corresponding matrix elements in which we are interested in here reads

1—(ng_, -0
G = (oot ) = sy =l @
G35 = {{foono—ol|fihno—s)) = - Eoini_.;zw) 7 (63)
G32 = {foono—o|fe) = G3s - (64)

The conclusion is rather evident. The results of Ref. 8 follows from our matrix GF
(52) in the lowest order in V, even before introduction of GMF corrections, not
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speaking about of the self-energy corrections. The two GFs G3, and GY; are equal
only in the lowest order in V. It is quite clear, that the full solution

Gt = [(GMF)~! - M] (65)

which includes the self-energy corrections (56), is much richer.

In fact, it is very easy to rewrite the system of the equations of motion (2)-(4)
of Ref. 8 in the completely equivalent form, which coincide with equation (33). As
was mentioned above, identity (33) has been derived in Ref. 41. Here we used this
identity in quite another way than in Ref. 41 to get the new complex expansion
for the single-particle propagator. The identity (33) permit also to reformulate
the problem of the derivation of the suitable interpolative solution of the SIAM,
including the U-perturbation expansion, on the rather different then the single-
particle GF level, on the level of the higher-order GFs as it will be shown in a
separate publication.*®

It is worthwhile to underline that our 4 x 4 matrix GMF GF (52) gives only
approximative description of the suitable mean fields. If we shall consider more
extended algebra, we shall get the more correct structure of the relevant GMF. A
more rigorous mathematical derivation of this relevant algebra, showing its central
importance for the self-consistent dynamical solution of STAM, will be presented
elsewhere.

8. Discussion

In summary, we presented in this paper a consistent many-body approach to ana-
lytical dynamical solution of SIAM at finite temperatures and for the broad interval
of the values of the model parameters. We used an exact result (33) to connect the
single-particle GF with the higher-order GF to obtain a complex combined expan-
sion in terms of U and V for the propagator, which is similar to that of Ref. 36
but differs in a more correct identification and separation of elastic (mean fields)
and inelastic (damping) contributions to the self-energy. To summarize, we there-
fore reformulated the problem of searches for appropriate many-body dynamical
solution for SIAM in a way which provides us with an effective and workable scheme
for the constructing of advanced analytical approximative solutions for the single-
particle GFs on the level of the higher-order GFs in a rather systematic and a
self-consistent way. This procedure has the advantage that it systematically uses
the principle of interpolating solution within equation-of-motion approach for the
GFs. The leading principle, which we have used here was to look more carefully for
the intrinsic functional structure of the required relevant solution and then to for-
mulate approximations for the higher-order GFs in accordance with this structure.

The main results of our IGF study are the exact Dyson equation (49) for the
full 4 x 4 matrix GF (52) and the new derivation of the GMF GF (55). The
approximative explicit calculations of the inelastic self-energy corrections are quite
straightforward but tedious and too extended for the presentation here. It will be
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done in the following paper soon. Here we want to emphasize the essentially new
point of view on the derivation of the Generalized Mean Fields for SIAM when we
are interested in the interpolating finite temperature solution for the single-particle
propagator. Our final solution ((33) with (58)) has the correct functional structure
and differs essentially from our previous solution in Ref. 41 where the different
algebra of the relevant operators has been used.

Of course, there are important criteria to be met (mainly numerically), such
as the question left open, whether the present approximation satisfies the Friedel
sum rule (this question left open in Refs. 36 and 34 too). A quantitative numer-
ical comparison of self-consistent results (e.g. the width and shape of the Kondo
resonance in the near-integer regime of the SIAM) would be crucial too. In the
present paper we have concentrated on the problem of correct functional structure
of the single-particle GF itself. The numerical calculations will be done in separate
publication elsewhere. Our main result reveals the fundamental importance of the
adequate definition of the Generalized Mean Fields at finite temperatures, which
results in a more deep insight into the nature of quasiparticle states of the correlated
lattice fermions. We believe that our approach offers a new way for the systematic
constructions of the approximative dynamical solutions of SIAM, TIAM, PAM and
other models of the strongly correlated electron systems. The work in this direction
is in progress.
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