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A self-consistent Irreducible Green Function (IGF) formalism for the description of
electronic quasiparticles excitations in ¢-band transition metals has been developed. A general-
ized multiband Hubbard model with an additional interatomic interactions has been consider-
ed. The self-consistent set of equations for the Green function and self-energy was obtained.
In the simplest approximation this approach gives correct results in the band limit. The
possibility of extensions to obtain the results appropriate both in the band and in the atomic
limit has been discussed.

PACS numbers: 71.10.+x, 71.28.+d, 71.45.-d

1. Introduction

In the recent years much attention has been given to the theory of correlation effects
in transition metals, their compounds and disordered alloys [1]. The characteristic features
of the d-electrons in transition metals may be deduced from a number of experimental
facts. One of the most important conclusions obtained from analyzing the experimental
data is that the d-electrons exhibit both itinerant and localized properties. Correlation
phenomena are of great importance in determining the properties of these substances,
especially, for describing metallic ferromagnetism of 3d-transition metals, metal-insulator
transitions, intermediate valence phenomena, etc.

There are mainly two methods for dealing with the electronic correlation problems [2].
Correlations are usually introduced in band-structure computations through a local cor-
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rection of the effective one-electron potential. The one-electron approximation of the
conventional band theory has provided a basis for understanding a wide range of solid
state phenomena. The adequacy of the single-particle picture is based on the density function-
al formalism and its extensions, the spin-density functional formalism. The first principal
band structure calculations have been remarkably successful in obtaining various ground-
-state properties not only of nontransition but also transition metals. rare earths and actini-
des [3]. However., it is often not so successful in describing correctly the properties at finite
temperatures.

' In the second and complementary method, one therefore, starts with a model Hamilto-
nian for electrons and tries to calculate both the ground-state and excited-state properties
[1, 4, 5]. This approach has been quite successful in calculating various ground-state pro-
perties of transition metals [I, 6-10]. Unfortunately, detailed investigations of the true
nature of excited electronic states in transition metals including the damping effects and
finite lifetimes began only very recently when it has been recognized that many-body effects
in transition metals are very important for understanding photoemission experiments
[11-14]. For transition metals with their highly localized d-orbitals and hence strong varia-
tion in the d-electron density, the effect of Coulomb correlation on energy bands has
recently been mvestigated in paper [12] within the degenerate Hubbard model by perturba-
tion theory. (see also [11, 13]).

In this paper we present a self-consistent approach to consider the correlation effects
in transition metals. The one-electron approximation is invalid in this case. Thus the use
of sophisticated many-body techniques is required. For this purpose we use the Irreducible
Green-Function (IGF) method developed in papers [15, 16]. The IGF method allows
one to describe the quasiparticle inelastic scattering processes in a many-body system and
to find quasiparticle spectra with damping in a very general way. From a technical point
of view the IGF method is a special kind of the projection-operator approach in the theory
of two-time Green functions [17, 18]

If one introduces irreducible parts of the Green functions (or irreducible parts of the
operators from which the GF is constructed), the equation of motion for the GF can be
exactly transformed into the Dyson equation. The representation of the self-energy operator
in terms of high-order GF is exact, too. To perform the self-consistent calculation of the
self-energy operator, we have to express it approximately in terms of low-order GF’s.
Recently, the IGF method has been applied to a number of solid-state problems [19-22].
A generalized Hubbard model of a d-band (considered in this paper) is more realistic
for transition metals than the one-band Hubbard model considered previously by the IGF
method in paper [16]. The complementary approach for the computation of electronic
excitations in solids within the projection-operator formalism of the Mori-Zwanzig type
has been developed in paper [23]. Unfortunately, explicit results have been obtained for
a system with one orbital per site, which has been described only by the one-band Hubbard
Hamiltonian.

The present paper is organized as follows. In the next Section we introduce the model
Hamiltonian for the system with several orbitals per site. In Sect. 3 we describe the formalism
associated with the irreducible Green function method and derive the exact Dyson equation
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for a single-electron GF. The consideration of the generalized mean-field GF and their
poles is presented in Sect. 4. The seif-consistent approximative calculation of the electron
self-energy operator is developed in Sect. 5. Additionally, in Appendix we contain a special
kind of expansion for the self-energy.

2. The Hamiltonian of the model

A better understanding of the electronic correlation in solids really dates from
Hubbard’s introduction of the new Hamiltonian [4] that could be used to analyze major
aspects of both the insulating and metallic states of solids in which electronic correlations
are important. To simplify the problem, many treatments of the correlation effects are
effectively restricted to a nondegenerate band. Most of them take only account of an intra-
-atomic integral, assuming its dominant role in magnetic properties. The model Hamilto-
nian which is usually referred to as the Hubbard Hamiltonian includes the intra-atomic
Coulomb repulsion and the one-electron hopping energy. The Hubbard model has been
investigated by many authors with various assumptions (see, e.g. [3, 4-10]). It is usually
a rather difficult task to solve this model with a reasonable accuracy and correctly describe
a simultaneous electron correlation in different d-states.

In this paper we want to develop a more realistic approach. An important point is to
find a model which includes the different orbital states explicitly and to study the role of
additional (to the Hubbard intra-atomic) terms for transition metals. Let us start with
the second quantized form of the total Hamiltonian for an electron in a solid:

H = z I”’" ;r;w jva+% Z <ia jﬁ]V'm“} né)aw jpe’ Qmya’ Ansas (l)
ijuva ijmnagydaa’
where
ia, jp|VImy, né)
= [[ drdr'®}(r—R)®}(r' = R))V,(Ir—r )@ (r '~ R, )®s(r—R,)
and

o = jdr@ (r— R}(~— 2!—-V2+V,(r)) Py(r—R)). )

Here, V,(r) is the effective potential composed of the ionic potentials of single atoms,
and V,([r—r'l) is the effective electron-electron interaction potential screened by s- and
d-electrons. The af,, and a,,, are creation and annihilation operators, respectively, for
electrons at site ““/”" in d-orbital @ = 1, ..., 5 with o spin. As the d-functions are well localized,
so using Hubbard argument we limit ourselves to the intra-atomic interactions and the
Hamiltonian (1) takes form:

N B
Hl = L f a-fr:mama'i"f Z U nl‘w‘nia—a’
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where the interaction parameters are:
UQ = Cia, iaiV]ia, iey, Uy = {ict, ifiV]iB, ia),
S = io, iBIV]ia, iy = i, i Vi, if). (4)

In the following we assume that all the d-orbitals are equivalent [8] and hence the inter-
orbital integrals U,; and #,; become independent of the orbital indices (also U?, does
not depend on the value of x). We assume also that the interorbital hopping vanishes, i.e.
r,?j{’ = 0,4l7;. Additionally, for our case of equivalent d-orbitals we have condition for inte-
grals U?, Uand #, namely U'” = U+2# [8]. The approximation of the interaction inte-
grals by the constant values is not so bad if we remember that, for example, the anisotropy
in the values of the exchange integrals for Ni is of the order of 159% [10].

In order to demonstrate how the IGF method works for a more complicated case we
include in the Hamiltonian an additional term describing the direct interatomic exchange
interaction (I = I;,0,5)

Hy, = —3 Z ‘r.‘_;ﬂ‘}‘agﬂia.—:' '“E.m' g )

ijaca’

1]

We note that s-clectrons are not explicitly taken into account in our model Hamiltonian
H = H,+ H,, so the hybridization effects are neglected. They are, however, implicitly
taken into account by screening effects and effective d-band occupation.

3. The Dyson equation for the orc-electron two-time Green function

For the calculation of the electronic quasiparticle spectrum of the described model
with Hamiltonian H = H, + H, let us consider the equation of motion for the one-electron
two-time temperature Green Function (GF):

G(i, j, t—1') = —iB(t—1t") {[@io(t), alpo(t)] D
= (ag(1); alg (1)) (6)

with commonly used notation [24].
First performing the time ¢ differentiation of Eq. (6) we get the equation for the Fourier
transform G7(ij; ©) = <Ka,,1a55,> o+

Y, T(im)G(nj; ) = 6,8,5+ Y. {Via""paotuyalafsd

ny ny
(2) (3 |
T pin ”«anmnnﬁ —a | a}&e) +2 VE';: il Apa —oa:ﬂ —ongal a}.ﬂcr))

ap p?5|4)aﬂ(<<aiﬂannﬂaia}ﬂc>> + «aiﬂ-oaz&'— aanﬂu!a}ﬂa>>)}9 (?)
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where *
T(in) = 06,05~ 1302 Vi "™ = (U=5) (1-0,5)3,,,

VR = [(U+25)3,5+ U(1 =6,4) 10,
Vi = —2(1=6,5)5:,
Vl_f"”ﬂﬂ = "‘!’55(1"‘65")523. (8)

To treat the many-body problem in a self-consistent way we follow here the IGF
method [15, 16]. In the weak correlation limit (which seems to be realistic for transition
metals — UQ/W < 1, # =~ 0.2U [9, 12]) we introduce, by definition, the irreducible parts
of the GF in the r.h.s. of Eq. (7)

(aipa“;{m’ Agve’ ia},ﬁal» == <<(uiuuagm' akw’}irta}-ﬂm})
+ <nkv'> «aiﬂdla}ﬁd|>> 7 <aiMaIva'> (akvc'ia}ﬁu'l))’ (9)

in which all possible mean-field contributions are removed. The choice of the IGF’s is
" determined by the conditions

<[(a|'m‘"kw’)ir! aﬁﬁm]f) = 0. (10)
From Egs (9) and (10) we find
<[(aipqntvﬂ')ir! a}ﬂm]f) = <[(af;.|ankvn'
_-<Hkvd'>aiﬂa“<ainaalva’>akvur')9 a}ﬂdl]f> = 0. {ll)

So, the IGF’s are defined so that they cannot be reduced to the low-order ones by any kind
of decoupling. This reduction procedure is of fundamental importance in the present
method because it allows us to extract all relevant (for problem under consideration)
mean-field renormalizations and to put them into the “zero-order™ (generalized mean-
-field) Green function. To demonstrate the possibilities of our method, we explicitly write
the so-called “anomalous” correlation functions corresponding to spin-flip processes [25].
However, it must be stressed that because of the spin rotational invariance of our Hamilto-
nian we have {a,,4;3-,> = 0. In the remaining part of this paper we do not take spin-flip
terms into consideration. Thus, in the case of weak electron correlation it will be enough
to define a very simple mean-field extraction. In the general case the mean-field renormaliza-
tions may have a very nontrivial structure, and a special projection procedure should be
developed for higher-order GF’s as it has been done for the Hubbard model in the strong
correlation limit, for the theory of superconductivity in transition metals and their disorde-
red alloys [19-20] and for the magnetic polaron problem at finite temperatures [21].

Using the definition (9) in Eq. (7) the equation of motion can be exactly transformed
to the following form:
Y. [0840,,—E(iID]GP(lj; w) = 6,04+, {Vi"™

Iy

v
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2V At o8y o100) 10150 + Vil P [ (@vattiva) 10350
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where the renormalized energy EZ* (il) is given by the expression
E3(il) = 10— V"™ areala)

oL \H ( {“m'jav<”£uﬂ> 57,\ (2)“‘(”!1:—6))

H

3 4
2V{ ]Iv<ah au?‘v fi/ !/ )ﬂv(<arvaﬂ!va>

_<aiv—oa?u—a>)_- z {4)1v<”3r¢>5tl (13)

i

Now we proceed to derive the Dyson equation. To calculate the IGF’s (AT Bt
in Eq. (12), we have to write the equation of motion after differentiation with respect to the
second time variable . Then conditions (9) remove the inhomogeneous terms in these
equations. If one intreduces irreducible parts for the right-hand side operators by analogy
with expression (9), the equation of motion (12) can be exactly rewritten in the following
form:

G¥#(ij: ) = GPij: w)+ ¥ GHOim; w)PL(mn; w)GPO(nj; w), (14)

nmpy

where the generalized mean-field Green function G'9 reads

Y. [0640,— EF(D]G (1 @) = d,50;. (15)
Iv

The scattering operator P is given by the expression

P‘;IB(U! (,LJ) = E rl’/(”“"\&(amza mua) |(anﬁa np:a)".>>l/v(1)“l’G

mupv

Vﬂ}zv«(amzo‘nmva‘] \(anﬂa np = a‘}“>>VSfZ)ps
+ V" agme- )| (@paTtnue) " HVai **
+ Vi{rlfjav<(am:annp-o‘)ir| (azﬂﬂnnu“o’)ir».[zﬂ(jz}pﬂ N (16)

Here we present for brevity the scattering operator only for a part of Hamiltonian (3), i.e.
without iwo last terms. The fuil scattering operator can be written directly.
If we go further and write down the Dyson equation

G¥(ij; w) = G*ij; w)+ ¥ GHO(im; w)MY (mn; 0)GP(nj; ®) (17)

notpy

we get the following eguation for M:

P(mn; w) = M (mn; @)+ Y, M¥(mi; @)G¥O(ij; @)P5'(jn; @) (18)
ijap
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from which it follows that in complete analogy to the diagrammatic technique the self-
-energy operator M.” (mn; w) is defined as a proper (connected) part of the scattering
operator P(mn; w)

MY (ij; o) = (P5'(ij; )" (19)

It should be emphasized that for the retarded (and advanced) GF’s the proper part has
only a symbolic character. However, one may use the causal, instead of retarded, GF at
any step in the calculations because the equation of motion has the same form for all three
(retarded, advanced, and causal) GF’s. In a certain sense there is a possibility of controlling,
in the diagrammatic language, the relevant decoupling procedure in approximative self-
-energy calculations. Thus, in contrast to the standard equation-of-motion approach the
determination of the full GF, G, has been reduced to the determination of the mean-
-field GF, G'”, and the self-energy operator M. The reason for this method of calculations
is that the decoupling is only introduced into the seif-energy operator, as wiil be clear
from the next Sections.

4. Electronic states in mean-field approximation

The question now is how to describe our system in terms of the quasiparticle picture.
For a translationally invariant system, to describe the low-lying cxcitations of the system
in terms of quasiparticles, one has to choose eigenstates such that they all correspond to
a definite momentum. For the degenerate band model we need the transformation relations
between second quantized operators a;,, and a,,, connecting the electron state with an
orbital symmetry o centered at atomic site R; and the Bloch state [nk)>, where n is the
band index. The exact transformation recads (see, e.g. [26]):

Une = N"V2Y b, (k) exp (— ik - R)a;,,. (20)
- L i
i

However, for the sake of simplicity we shall follow the approximative approach and use
the following transformation:

g = N7'2 3 exp (—ik - Ry, (1)

The second quantized operators in Eq. (21) generate five artificial uncoupled bands for
which « = 1,2, ..., 5. When coupled by b,.(k) they reproduce the realistic bands labelled
by n, as given by Eq. (20). Introducing the Fourier transforms G™® (k:w), G™(k; ¢)
and M7" (k;w) we can rewrite (14) in the form:

G (k; w) = GPOk; w)+ ¥ G ks 0)M2(k; )G (k: w). (22)

v

From the symbolic solution of the Eq. (22) it is seen that the problem of calculating the
single-particle GF G (k; w) is reduced to the one of calculating the generalized mean-field
G¥¥ (k; w) and the self-energy M (k; w). For example, for the Hubbard model we have
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(see Eq. (15)

EX(K) = (6,(R)+UONT" Y (Ngpe )40 (23)
q
where
t; =N = X g,(k)exp (—ik - (R,—R))). (24)
k

The spectrum of electronic low-lying excitations without damping follows immediately
from the poles of the single-particle mean-field Green function G' (G'® denotes a matrix
in the space of band indices) — det {w1—E,| = 0. For the most important (diagonal in
the band indices) case we obtain

EK) = 60 +(U =) T (146, )Nt ¥ [(U+203,,
" u
U =3, )IN,—ot N Y 1k = g) (L= (tgay))

+IOIN"' Y <0} + quolquods (25)

where N,, = V'Y (ng,_,0.
q

It follows from Eq. (25) that in a complete analogy with the one-band cdse one can
define the band splitting 4” in the following form:

4" = EXk)—E}(k) = UPNZ— N+ £ Y (1-0,) (Ny—N,)
I
FIONT' Y (Catf 4 qurtqar) = Ok + quBqui?)- (26)
q

The last expression generalizes the standard Hartree-Fock band splitting expression.

5. Electronic quasi-particle and their damping

Now let us take into consideration the damping effects and finite lifetimes. Hence,
our next task consists in obtaining self-consistent approximate expression of the electron
self-energy operator. In the general case, to find the damping of the electronic states, one
needs the following expression for the single-particle Green function:

GT(ke: @) = {[G3" (ks )] ' = LIk )} @D
Here 7 (k; w) is a functional of M." (k:w)
YOk 0) = F[MZ'(k; )] (28)

If we confine ourselves to the most important diagonal case, we find that the renormalized
electron energies are self-consistent solutions of the equation

2(k) — E(0)— Re Y.5(ks 52(K)) = 0. (29)
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Hence, if k labels a quasiparticle electronic state, the spectral functions
go(k; @) ~ Im G3(k; w) (30)

will have strong maxima at energies of the quasiparticle state.

Thus, now we have to find the matrix elements of self-energy M to complete our solu-
tion of the problem.

Here and in the following we present, for brevity, the results obtained only for a part
of our Hamiltonian, namely for Hamiltonian without its three last terms. The results for
full Hamiltonian can be written directly. In the quasimomentum representation we obtain:

Mk o) = N™2Y T (K 0h4puelip +groligns) |

uv pgrs

. t irgep(1)ng
x(ak+rﬂaaruaar+spa) » V

ir

(1)av 1 T ir (2)up
+V «(ai+p¢uap+qwaaqvo'} l (ak+sﬂ¢altn-a'“r+sn~—¢)l »CV o

(2 i F A1
+ I"{ Mv«(uk-f-ma;i-qv—aagv—ﬂ)"' (a;-!'sﬂ'cazuaardvnla‘)"»cyl e

2 i ir 2 '
A st vl T vaps ol VPR, (31)

where functions ¥?* are equivalent to these defined in Eq. (8) but without 4;; factors.
It is convenient to write down {A[4*) in terms of the correlation functions in the
form

+ a;

+ + + 1 do’ ..
«ak+mﬂp+qmdqwlak+tﬂ¢urunar+wc> = ) -_wl' (e + l)

2n W
—-®
+ @ :
x I dtem‘<az+sﬂd(r)azu—a(t)ar+s_u—a“)ak+p¢ca:+qvaaqvo>' (32)
—w®

It is reasonable to use the following pair approximation (for a low density of quasiparticles)
for the correlation function in the r.h.s. of Eq. (32) in terms of single-particle correlation
functions

T \ ir,
(aki'sﬂa(‘)ajn —a(r)ar+snwa(f)ak+paaa1 +gqv— ﬂaqv- o)lr £
~ T 2 e
Zed (alt +pﬂ¢(t)ak+p¢¢> <a:y.‘-ﬂ‘(r)aqv—a> <ap+ qna(t)a:"-qv-‘u')bk +5.k +porqér+l.p-rq! (33)

i.e. we approximate to three-point correlation function by the product of all possible two-
-point correlators with different time arguments (the simultaneous averages have already
been taken into account in G'?). Taking into account the spectral theorem we obtain
from Egs (31-33): '

MP#k,0) = N2 Y 5 V0 kpq; w)V' O, (34)

uvpg i=1,2
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where
o dwdw,dw :
1 (kpq; ©) = (— —) ﬂ a;_;!-—i : i,; {n(@,) [1 —n(@;)—n(w,)]
+n(@,)n(w,)} {Im G;'(p* q; w,) - Im G)(g; w,) Im GF(k+ p; w,)
+1Im G{(p+q; 0,) Im G(q; w,) Im G¥(k+p; w;)}, (35)
0\ o dw,do,dw
"""I’ k o — TR | —
) = ( :rt_) JJ] W+w, —W,— W, |”(w|)[ n(®2)

—n(w;)]+n(@)n(w,)} Im G (p+q: @) Im GJ'(q; w,)Im Gk +p; w) (36)

and n(w) are the Fermi distribution functions.

Equations (22) and (34) form a closed self-consistent system (in our approximation)
of equations for the single-particle electron GF for the generalized multiband Hubbard
model described by Hamiltonian # = H, without two last terms in H,. In principle, we
may use, in the r.h.s. of Eq. (34), any relevant initial GF and find a solution by repeated

integration,
For the first iteration step we choose the following simple one-pole expression (cf.

Eq. (23)):
1
— — Im G(k; w) & Hw—EL(K))d,p. 37
T
Then we obtain

U(Uiz Nk
M*(k; w) = (S,ﬂ{ Z - a b 1pq)
N w+E—a(P+q)_E_ﬁ.(q)——E‘:(k+p)

rq

(U f)2+9”22 N;"(kpq) (1—-9,,) ]{ 38)
~N? o+E” (p+q)—E" (g —E3(k+p)

Pq
where
N:ﬁ(kpﬂ = ";+¢_,[1 _'"gﬂm"' ";—e] +ﬂ£+pan;-m
ng, = {exp [(EX(p)—Eg)/kT]+1}"". (39)

po

As a limiting case for a simple one-band Hubbard model we directly obtain from (38)
the second-order perturbation result

M, (k; ®) = e Z T +a=oll = Mo~ Mg—o) + M+ pa'la~e (40)
: N w+£_,(p+q)—£-a(‘f)—ga(k+l’)

rq
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6. Summary

We have presented in this paper the calculations of the electron Green function and
self-energy for the case of the multiband transition metal described by the Hamiltonian with
intra- and inter-orbital direct and exchange Coulomb interactions as well as with interatomic
exchange Coulomb interaction included. We have used the irreducible Green function
method in its simple formulation with a correct resuit in the band limit. Great advantage
of this method lies in developing it to obtain the results appropriate both in the band and
in the atomic limit [27]. This can be made by taking into consideration the equation of
motion for the irreducible operators introduced in Eq. (9). Our resulting expressions for
the Green function and the self-energy form the closed set of self-consistent equations.
The self-consistency has been achieved after introducing simple decoupling of the three-
-point correlation function appearing in the exact expression for the self-energy. This
procedure can be compared with the perturbation theory and diagram technique with the
Hartree-Fock function as a bare function. In conclusion, the IFG method can be very
useful in investigation of the many-body electronic effects even in very complicated systems.
However, to take the vertex corrections into account one has to consider the equation of
motion for the irreducible operators defined in Eq. (9) and form all possible one-particle
and two-particle averages with different times in decoupling of the corresponding three-
-point correlation functions in the self-energy operator.

APPENDIX
The perturbation theory for self-energy

In paper [12] it was mentioned that an expansion of self-energy to higher orders in
the Coulomb integral U would improve the description of the correlation effects. There-
fore, we want to describe briefly how the special kind of expansion for the self-energy can
be made in a very simple workable way. Following paper [16] we may write (the diagonal
case)

Vo e ik e R

z Gk o) = RO+ k)

2 L I3k o) |
~ (1 - A2k — — A.l
(=N = BN+ — - oo (A.1)

where

I'ik; w) = —Im M%*(k; ), (A.2)
EXk) = EX(k)+ Re M*(k; E*(K)). (A.3)

The unknown coefficient (I — A%(k)) in (A.l1) must be determined from a normalization

condition
+ oo

=21 J Im G*(k; w)dw = 1. (A.4)
i

— a0
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Then we obtain

I i N2*(kpq) (U E £+ U? N2(kpq) (1-5,,)
Sl N? Z Qm(kpq) E (k) N? Z Q" (kpq)—EX(k) ’ A-5)

rav

where
XP(kpg) = —e(p+q)+eg(k+p)+e(q) (A.6)

For the occupation numbers we obtain:

5 NZ%(kpq)
= n(E*(k))+ U’N
e Z (e Z[sz“’(kpq) EW]

x [n(@*(kpq)— n(E(K))]

| ) NI(kpg) (1-5,,)
U pfiNEE Yy et T e
HWU=A 4] [ (kpq)— B0

x [n(Q"(kpg)— n(E3(k))]. (A7)

The first term in Eq. (A.7) describes the mean-field renormalization effect, and next two
terms represent the effects of inelastic scattering. The partial density of states in this approx-

imation is given by

Diw) = N7? Z (1= AXK))d(w—E2 th)
+N7'Y {UONT? Y NI (kpg)d(w—Q2*“(kpq))
k Pe

(U- ,f)z—;-Uz , ) ,
+ E 1 -6, )N kpg)d(w— Q2" (kpq)). A8
-~ E,(k)]z (1 =04)N;(kpg)o(w (kpg)) (A.8)
If we use Eq. (A.8) for the calculation of the self-energy by substitution of Eq. (A.8) into
the r.h.s. of Egs (35), (36) we straightforwardly obtain a perturbation-type expansion
for the self-energy up to order U‘®®, U® and 7.
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