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Variational expansion for antiprotonic helium atoms
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A very accurate variational expansion is suggested for calculation of nonrelativistic energies of the meta-
stable antiprotonic helium atoms He1p̄. This expansion reflects the dual atomic-molecular nature of the
system. Convergence of the results as a function of the increasing sets of basis functions shows an accuracy
better than 10210 a.u., two orders of magnitude better than in our previous calculations.
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The discovery of long-lived antiprotonic states in heliu
@1#, and subsequent precise measurements of some tr
tions between these states@2,3#, presented a new, very inte
esting exotic atomic physics system. When stopped in
lium, an antiproton replaces an electron in the reaction

He1 p̄→He1p̄1e2

taking up the space of the released electron. The majorit
atoms formed decays promptly due to the emission of Au
electron and in collisions with ambient He atoms. Howev
about 3% of stoppedp̄ settle into nearly circular orbits (l
'n21) and live as long as a few microseconds. This
because the system becomes stable against~internal! Auger
transitions: to remove the'25 eV binding energy of the
electron requires ap̄ transition withD l *3. In Table I the
lifetime of the metastable He1p̄ atom is compared with thos
of other well-known atomic systems.

The first theoretical predictions, based on rather sim
atomic @4# and Born-Oppenheimer adiabatic@5# approxima-
tions of the wave function, provided a good qualitative d
scription of the energy-level structure for the He1p̄, but ap-
proached the experimental values with a large dispersio
1000 ppm. These calculations confirmed the dual nature
the antiprotonic helium atoms as exotic systems exhibit
features of both atoms and molecules.

Substantial progress in calculating nonrelativistic energ
has been achieved in@6,7# by using a molecular-type varia
tional expansion. An accuracy of;1028 a.u. has been
reached, which improves on the previous level of precis
by four orders of magnitude. Recently, finite-element@8#,
hyperspherical@9#, and variational@10# calculations of non-
relativistic energies have become available. All of these c
culations support the results of@6#.

The theoretical study of three-body systems is usually c
ried out in several stages. Since the system no longer ha
analytical solution the first stage presents the calculation
nonrelativistic energies with the Schro¨dinger equation. Fur-
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ther stages are relativistic and QED corrections of first, s
ond, and higher orders to the nonrelativistic Hamiltonia
Therefore, the accuracy of the nonrelativistic calculations
termines the overall precision.

The purpose of this work is to increase the numeri
accuracy of the nonrelativistic energies to 10210a.u. Such an
effort is of manifold interest. First, the radiative correctio
for a bound electron and vacuum polarization must be ta
into account@7#. Recent calculations of the fine and hype
fine structures of the antiprotonic helium energy levels sh
a slow convergence of numerical results, which sets the li
on the relative accuracy of the hyperfine splitting to 1024

@11# with our previous basis@6#. Therefore, a more accurat
numerical method is extremely desirable.

The states considered have very high values of the t
angular momentum (L;35) and have an adiabatic behavi
(v p̄!ve). The highL leads to a system of a large number
equations~L11 equations! that couple components of inter
nal degrees of freedom@Eq. ~1!#. This makes the numerica
treatment of the system difficult. On the other hand, the ad
baticity enables the number of components in this equa
to be reduced to a reasonable number.

We could perform a separation of rotational variables
using the molecular expansion based on the symmetr
Wigner D functions@6#

CM
Ll~R,r !5 (

m50

L

DMm
Ll ~F,Q,w!Fm

Ll~R,r ,u!. ~1!

In the case of a semiadiabatic three-body system the ab
method converges quickly with respect tommax<L, where

TABLE I. Comparison of the lifetimes of the hydrogen 2P
state, the helium 23P state, and the antiprotonic helium metastab
states.

H(2P) He(23P) He1p̄

1.631029 s 3.331028 s 1.731026 s
R919 ©1999 The American Physical Society
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mmax is the number of components kept in expansion~1!. If
mmax is smaller than theD l 5 l 2 l 8 of the Auger transition,

@He1p̄#~n,l !→@He21p̄#~n8,l 8!1e2,

the Hamiltonian projected onto this subspace has a pu
discrete spectrum. Expansion~1! was the basis for our pre
vious calculation@6#.

Since the antiprotonic helium resembles the atomic s
tem as well, one may construct the wave function as a c
bination that inherits some features of atomic systems as
as of molecular systems. Thus, the bipolar harmonic exp
sion @12# ~coordinates are shown in Fig. 1!,

CM
Ll~R,r !5 (

l 11 l 25L
Rl 1r l 2$Yl 1

^ Yl 2
%LMGl 1l 2

Ll ~R,r ,u!,

~2!

could be chosen for the angular part of the wave function
exponential expansion@13,14#,

Gl 1l 2
Ll ~R,r ,u!5(

i 51

`

Cie
2a iR2b i r 2g i uR2r u, ~3!

for the description of components of internal degrees of fr
dom. Herea i , b i , and g i are generated in a quasirando
manner. To meet the requirements of the molecular natur
this system the functions of type cos(niR)e2aiR should be
introduced for the antiprotonic orbital instead ofe2a iR. Then
it can be proven that the subspace,

Hm5 (
m850

m

DMm8
Ll

~F,Q,w!Fm8
Ll

~R,r ,u!,

coincides with the subspace spanned by the functions,

FIG. 1. Coordinate system for the variational wave function
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H̄m5 (
l 250

m

Rl 1r l 2$Yl 1
^ Yl 2

%LMGl 1l 2
Ll ~R,r ,u!,

and we can retain in expansion~2! the components withl 2
< l max.

Finally we get

CM
Ll~R,r !5 (

l 250

l max

Rl 1r l 2$Yl 1
^ Yl 2

%LMGl 1l 2
Ll ~R,r ,u!,

l 11 l 25L
~4!~4!

Gl 1l 2
Ll ~R,r ,u!5(

i 51

`

@Ci cos~n iR!

1Di sin~n iR!#e2a iR2b i r 2g i uR2r u.

This expansion is reminiscent of that used in@15#, where the
complex exponentse2(a i1 in i )R have been introduced into
Eq. ~3!. In both cases the problem is reduced to the equa
of type

A2lB50,

with real (2n32n) matricesA andB. In our case we get 2n
different eigenvalues, whereas in@15# only the n twofold
eigenvalues can be obtained, and the wave function of
studied state is complex.

The convergence of this variational method is demo
strated in Table II. At present the major limitation
the computational time, which is about 20 h on an IB
RS/6000 workstation for a basis set ofN51400. Table
II shows that the achieved precision is about 10210a.u.

TABLE II. Convergence of the new variational expansion wi

the number of basis functions.4He1p̄ ~37,34!.

N Enr

400 22.911 180 654 8
600 22.911 180 925 0
800 22.911 180 932 1

1000 22.911 180 933 3
1200 22.911 180 933 86
1400 22.911 180 934 02
TABLE III. Nonrelativistic energies of the states in thep̄ 4He1 atom.N51200.

v50 v51 v52 v53 v54 v55

L532 23.353 757 863 4
L533 23.216 244 232 3 23.105 382 669 3
L534 23.093 466 901 6 22.996 335 441 9 22.911 180 933 9
L535 22.984 020 954 3 22.899 282 178 3 22.825 146 804 3 22.760 233 341 2 22.703 283 213 0
L536 22.886 682 390 2 22.813 115 395 6 22.748 859 922 9 22.692 624 845 9 22.643 248 902 9 22.599 707 672 2
L537 22.800 372 315 5 22.736 841 191 6 22.681 394 129 3 22.632 832 902 6 22.590 101 200 1
L538 22.724 124 791 9 22.669 551 749 1 22.621 891 875 7 22.580 051 405 5
L539 22.657 056 943 1 22.610 401 281 8 22.569 547 479 9
L540 22.598 340 648 3 22.558 586 074 3
L541 22.547 176 612 9
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close to the natural width 10211a.u. of these states define
by the radiative lifetime. This method improves upon o
previous molecular-type variational calculations@6# and
more recent calculations@8–10# by more than two orders o
magnitude.

Results of numerical calculations are presented in Ta
III. Only the radiative dominated decay states are retain
since the Auger dominated states are short-lived and pos
a width that is greater than 10210a.u., and these states shou
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be treated in a way that is similiar to what is described
@16#. The masses of particles adopted for numerical calcu
tions arema57294.299,mp̄51836.1527.
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