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We present variational calculations of the Bethe logarithm for th& &nd 2S states of helium. The
approach is based on the explicit second-order perturbation formula and closely follows the method of
Schwartz. The final values are[Ky(1S)/(1 Ry)]=4.370 150(5) and IfiKy(2 *9/(1 Ry)]=4.366 4091(7).

The latter result reduces the difference between theoretical and experimental values for the ionization potential
of the 21S state to 0.15 MHz[S1050-294{99)03305-3

PACS numbsd(s): 31.15.Ar, 31.30.Jv

It is known that the most difficult part in the numerical Here V=V;+V, is the sum of gradient operators of two
calculation of theO(«®) contribution to the Lamb shift in electrons andla,b]=ab—ba.
helium is the Bethe logarithm: Let us denote the integrand by

I(k)=—(O|[H,V](Eq—H—k)~1V|0),
S KOPINF(E, Eolnl €~ Eolit Ry) OIS o

In — then noting that the solution of an equatidBy-H —Kk) ¢4
(1Ry)

=V ¢, can be presented in a fortasymptotic fork— )

2. [0lpIm)(Eq—Eo)
(1) 1=—(1UK)Vipo+U,

It is extremely surprising that the early calculation of one gets after substituting, into I (k) that
Schwartz[1] was the most accurate for over 30 years. The 2m7 1
present work has appeared as a byproduct of our study of (k)= ng(m— K w(k),
antiprotonic helium atomf2]. So, not all the stages of the
present work are the most optimal for the calculation. How-,
ever, the final result is the most accurate to date, and th
encourages us to present our calculations to the audience. _ TR

According to[3], the two-electron self-energy can be ex- w(k)=(0I[H.V](Eo~H—k) ~'{H.V]|0).
pressed in a form

\/¥here

The asymptotic behavior afi(k) for k— is (see[1])
AEL A =252 )| 21t e SRy, : S
LAnD= "5 ¥ "Ry * | @022 Zynkt 3 Cok ™| g(0).
2 m=
()

here y3(0)={(8(r,) + & is th i lug : :
\;vto?;?(:lﬁuor(,g; 0f< tfgglépergtf))g 5I(sr t)f 5(?>r<p)e]ctatlon valuén Following Schwartz, we want to introduce as well a func-
1 2)1- ;
To calculate the Bethe logarithm we use an approaclllIon

similar to the method of Schwarfi]. So, we start from the J(k)=(0|V(Ey—H—k)~1V|0)
direct perturbation formuléderived from the Bethe-Salpeter 0 ’
textbook(19.7 [4]) which relates td (k) andw(k) as
2 o (0] V|n)(Eo—En)(n|V|0)
AE s=—5—— dk =— (V¥ —-—
= ap ), K 2 T ECE K (k)= <v> I(k)
1 ) 2wZ 1.
=———f dk (O|V(Ey—H) =1 VO v+ G w(k). 4
X(Eo—H—-k)"'V|0) The first term in the final expression corresponds to the mass
3 renormalization, the second brings the logarithmic term
- 2 @ [« dk (O|[H,V](Eq—H—k) " 1V|0). o_z3ln a in Eq. (2), andw(k) contributes to the Bethe loga-
3mm? Jo rithm: In[Ko(n,1)/(1 Ry)].
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TABLE I. The binding energies and expectation values of the  TABLE IIl. Convergence of\],(k) with the number of basis

(V?) and 4x{ 5(r;)+ 8(r,)] operators for the 1S and 2'S states  functions and comparison with the calculations of Schwartz.
of helium.

No. of
1's 2's terms iny, W(50)/4 W(300)/4  W(3000)/4
No. of terms inyy 600 600 500 4.8375997 2.6048513 1.002786
Binding energy 2.903 724377034 2.145974 046 052 700 4.8375997 2.6048520 1.002800
(V?) —6.125587 70424 —4.310955820922  9QQ 1.002802
4my3(0) 45.501 047 1 32.9103368
[1] 4.8370 2.6045 0.94

Variational wave functions describing the'$ and 2'S . _ .
Then, at intermediate energies frdts50 to k=1000, the

- calculated values fow(k) were used. And finally, an inte-
‘ﬁo:;l {Ui Relexp(—air1 = Birz— 7ir12) ] gration over the high-energy region was carried out with the
help of the asymptotic expansidB).
+W; Imlexp( — air = Bir 2= ¥ir 1) [} + (11 12). However, the calculation af(k) requires solving of the

. _equation
Herea;, B;, andy; are complex parameters generated in a q

guasirandom manngb,6]: 1
(EO_ H _k)U: - E[H,V]lpo,

1
ai%i(i+1Np_aJ[(Az—Al>+Al]
which defines the functiob) singular atr;—0. That is slow-
ing down the convergence of the computed valuevigk)
' with respect to the number of terms in the variational expan-
sion of U. On the contrary, even for higk the calculated
where| x| designates the fractional part ©f p, andq, are  value forJ(k) is stable and very accurate, and, in spite of
some prime numbers, ar[d\;,A;] and [A],A;] are real strong cancellations during evaluation w{k) via Eq. (4),

variational intervals. Parametegs and y; are obtained in a  he value ofW(S 000) obtained througdi(k) is several digits

similar way. The numerical values of energies and other conmore accurate than that obtained through direct calculation

stants necessary for the Bethe logarithm calculation are, W(k) (see Table Ill. For the asymptotic region, the fitting
shown in Table I.

The perturbed functiong, are expanded in the same way of fl\(e fo seven unknown para_tmete(tg_ In expan5|or_(3) IS
applied to get more accurate integration over the infinite in-

1
+i Ei(i+1)@][(Aé—Ai)+Ai]

7% terval of k—e.
o In Table IV different calculations of the Bethe logarithm
gi= >, 14U, Rgexp —air1— Bif,— i 1] for the ground state are listed. As can be seen from the table,
=1 the present result improves substantially the theoretical value
- of In[Ko(119/(1 Ry)].
Wi Imlexp(—airy = Biry = ¥ir) I} +(rier). The computed value for the'S state is

As k goes to infinity, the upper limit of the interval for the
parameters increases proportionally t&2. There is no

need to set the upper limit exactly to this value since the

convergence is satisfactory, as can be seen from Tables I can _be used to get an improved thgoretlcal value 1_‘or the
and IlI. ionization energy of the 2S state of helium. In the previous

The following numerical scheme was adopted i The calculation[11] of this state the Bethe logarithm value of

whole integration ovek was split onto three intervals. The 4-3663298) a.u.[10] has been used. Comparing these two
first interval was for low energies frok=0 to k=50 and values we see that a correction to the ionization energy due

IN[Ko(21S)/(1 Ry)]=4.366 409 17).

TABLE II. Convergence of(k) with the number of basis func-  TABLE 1V. Comparison of theoretical = calculations  of
tions and comparison with the calculations of Schwartz. In[Ko(1°S)/(1 Ry)] for the ground state of helium.
No. of Schwartz[1] (1961 4.3704)
terms ing, J(0) J(15) J(50) Goldman and Drak8] (1983 4.364
Bakeret al.[10] (1993 4.37012
300 3.000000000 0.3257138056 0.1120514947 Bhatia and Drachmafg] (1998 4.367
500 3.000000000 0.3257138058 0.1120514948 Present work 43701579
[1] 3.00051 0.32573 0.112 04 @Approximate analytical expression: Kp/(1 Ry)

=In[19.769 267Z— 0.006 15%], based on an expansion ov&r?.
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to the Bethe logarithm improvement is1.43 MHz. Adding TABLE V. Comparison with recent calculations by Balatral.
this correction to the theoretical value [df1] we finally get  [13].
—960 332 040.88) + (mc®a® and higher-order 11S state 2'S state
terms that are not calculatedHz, (5) ~ Our work 4.370157%) 4.36640917)
Bakeret al. [13] 4.3701592) 4.3664091)

which is to be compared with the experimental vallig]

—960332041.005) MHz. achieved. The numerical error in the value of the Bethe loga-

. . . rithm for the 2'S state corresponds to the level of 0.02 MHz.
This shift reduces the difference between theory and experi- Recently, we become aware of new calculations by Baker

ment to the bounds of expenmental uncertainty: G.0515 et al. [13] that are in excellent agreement with our results
MHz. However, it is worthwhile to mention here that anOI(See Table V.

estimate of contribution that comes from not yet calculate
terms in Eq.(5) varies from 1 MHZ 11] to 25 MHz[12] (see This work has been partially supported by INTAS Grant
the paper of Drake and Martifnl2]). But discussion of No. 97-1032 and by Russian Foundation for Basic Research
higher-order terms is beyond the scope of our work. TheGrant No. 96-02-17279, which is gratefully acknowledged. It
main goal was to reduce the error bar€ifmc®a®) terms at  is a great pleasure for us to thank J. Baker for making his
least to the level of the experimental uncertainties and it wasesults available prior to publication.
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