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Bethe logarithm for the 1 1S and 21S states of helium
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We present variational calculations of the Bethe logarithm for the 11S and 21S states of helium. The
approach is based on the explicit second-order perturbation formula and closely follows the method of
Schwartz. The final values are ln@K0(1

1S)/(1 Ry)#54.370 1579(5) and ln@K0(2
1S)/(1 Ry)#54.366 4091(7).

The latter result reduces the difference between theoretical and experimental values for the ionization potential
of the 21S state to 0.15 MHz.@S1050-2947~99!03305-3#

PACS number~s!: 31.15.Ar, 31.30.Jv
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It is known that the most difficult part in the numeric
calculation of theO(a3) contribution to the Lamb shift in
helium is the Bethe logarithm:

ln
k0

~1 Ry!
5
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n

z^0upun& z2~En2E0!ln$uEn2E0u/~1 Ry!%
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n

z^0upun& z2~En2E0!

.

~1!

It is extremely surprising that the early calculation
Schwartz@1# was the most accurate for over 30 years. T
present work has appeared as a byproduct of our stud
antiprotonic helium atoms@2#. So, not all the stages of th
present work are the most optimal for the calculation. Ho
ever, the final result is the most accurate to date, and
encourages us to present our calculations to the audienc

According to@3#, the two-electron self-energy can be e
pressed in a form
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where c0
2(0)5^d(r1)1d(r2)& is the expectation value~in

atomic units! of the operator@d(r1)1d(r2)#.
To calculate the Bethe logarithm we use an appro

similar to the method of Schwartz@1#. So, we start from the
direct perturbation formula~derived from the Bethe-Salpete
textbook~19.7! @4#!
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Here “5“11“2 is the sum of gradient operators of tw
electrons and@a,b#[ab2ba.

Let us denote the integrand by

I ~k!52^0u@H,“#~E02H2k!21
“u0&,

then noting that the solution of an equation (E02H2k)c1
5“c0 can be presented in a form~asymptotic fork→`)

c152~1/k!“c01U,

one gets after substitutingc1 into I (k) that

I ~k!5
2pZ

k
c0

2~0!2
1

k
w̃~k!,

where

w̃~k!5^0u@H,“#~E02H2k!21@H,“#u0&.

The asymptotic behavior ofw̃(k) for k→` is ~see@1#!

w̃~k!;
4pZ1

2

k F ~2k!1/22Z1 ln k1 (
m50

`

Cm k2m/2Gc0
2~0!.

~3!

Following Schwartz, we want to introduce as well a fun
tion

J~k!5^0u“~E02H2k!21
“u0&,

which relates toI (k) and w̃(k) as
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The first term in the final expression corresponds to the m
renormalization, the second brings the logarithmic te
a3 ln a in Eq. ~2!, and w̃(k) contributes to the Bethe loga
rithm: ln@K0(n,l)/~1 Ry!#.
3394 ©1999 The American Physical Society
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Variational wave functions describing the 11S and 21S
states of a two-electron system are given in a form

c05(
i 51

`

$Ui Re@exp~2a i r 12b i r 22g i r 12!#

1Wi Im@exp~2a i r 12b i r 22g i r 12!#%1~r1↔r2!.

Herea i , b i , andg i are complex parameters generated in
quasirandom manner@5,6#:

a i5 b 1

2
i ~ i 11!Apac@~A22A1!1A1#

1 i H b 1

2
i ~ i 11!Aqac@~A282A18!1A18#J ,

wherebxc designates the fractional part ofx, pa andqa are
some prime numbers, and@A1 ,A2# and @A18 ,A28# are real
variational intervals. Parametersb i andg i are obtained in a
similar way. The numerical values of energies and other c
stants necessary for the Bethe logarithm calculation
shown in Table I.

The perturbed functionsc1 are expanded in the same wa
@7#:

c15(
i 51

`

r1$Û i Re@exp~2a i r 12b i r 22g i r 12!#

1Ŵi Im@exp~2a i r 12b i r 22g i r 12!#%1~r1↔r2!.

As k goes to infinity, the upper limit of the interval for th
parameterb increases proportionally tok1/2. There is no
need to set the upper limit exactly to this value since
convergence is satisfactory, as can be seen from Table
and III.

The following numerical scheme was adopted in@1#. The
whole integration overk was split onto three intervals. Th
first interval was for low energies fromk50 to k550 and

TABLE I. The binding energies and expectation values of
^“2& and 4p@d(r1)1d(r2)# operators for the 11S and 21S states
of helium.

1 1S 2 1S

No. of terms inc0 600 600
Binding energy 2.903 724 377 034 2.145 974 046 05
^“2& 26.125 587 704 24 24.310 955 820 922
4pc0

2(0) 45.501 047 1 32.910 336 8

TABLE II. Convergence ofJ(k) with the number of basis func
tions and comparison with the calculations of Schwartz.

No. of
terms inc1 J(0) J(15) J(50)

300 3.000 000 000 0.325 713 805 6 0.112 051 494
500 3.000 000 000 0.325 713 805 8 0.112 051 494

@1# 3.000 51 0.325 73 0.112 04
a

n-
re

e
II

results of a calculation forJ(k) were integrated numerically
Then, at intermediate energies fromk550 to k51000, the
calculated values forw̃(k) were used. And finally, an inte
gration over the high-energy region was carried out with
help of the asymptotic expansion~3!.

However, the calculation ofw̃(k) requires solving of the
equation

~E02H2k!U52
1

k
@H,“#c0 ,

which defines the functionU singular atr i→0. That is slow-
ing down the convergence of the computed value forw̃(k)
with respect to the number of terms in the variational exp
sion of U. On the contrary, even for highk the calculated
value for J(k) is stable and very accurate, and, in spite
strong cancellations during evaluation ofw̃(k) via Eq. ~4!,
the value ofw̃(3 000) obtained throughJ(k) is several digits
more accurate than that obtained through direct calcula
of w̃(k) ~see Table III!. For the asymptotic region, the fittin
of five to seven unknown parametersCn in expansion~3! is
applied to get more accurate integration over the infinite
terval of k→`.

In Table IV different calculations of the Bethe logarith
for the ground state are listed. As can be seen from the ta
the present result improves substantially the theoretical va
of ln@K0(1

1S)/~1 Ry!#.
The computed value for the 21S state is

ln@K0~2 1S!/~1 Ry!#54.366 409 1~7!.

It can be used to get an improved theoretical value for
ionization energy of the 21S state of helium. In the previous
calculation @11# of this state the Bethe logarithm value o
4.366 329~8! a.u. @10# has been used. Comparing these tw
values we see that a correction to the ionization energy

TABLE III. Convergence ofw̃(k) with the number of basis
functions and comparison with the calculations of Schwartz.

No. of
terms inc1 w̃(50)/4 w̃(300)/4 w̃(3000)/4

500 4.8375997 2.6048513 1.002786
700 4.8375997 2.6048520 1.002800
900 1.002802

@1# 4.8370 2.6045 0.94

TABLE IV. Comparison of theoretical calculations o
ln@K0(1

1S)/~1 Ry!# for the ground state of helium.

Schwartz@1# ~1961! 4.370~4!

Goldman and Drakea @8# ~1983! 4.364
Bakeret al. @10# ~1993! 4.37012
Bhatia and Drachman@9# ~1998! 4.367
Present work 4.370 157 9~5!

aApproximate analytical expression: lnK0 /~1 Ry!
5 ln@19.769 267(Z20.006 15)2#, based on an expansion overZ21.
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to the Bethe logarithm improvement is21.43 MHz. Adding
this correction to the theoretical value of@11# we finally get

2960 332 040.86~2!6~mc2a6 and higher-order

terms that are not calculated! MHz, ~5!

which is to be compared with the experimental value@12#

2960 332 041.01~5! MHz.

This shift reduces the difference between theory and exp
ment to the bounds of experimental uncertainty: 0.1560.15
MHz. However, it is worthwhile to mention here that a
estimate of contribution that comes from not yet calcula
terms in Eq.~5! varies from 1 MHz@11# to 25 MHz@12# ~see
the paper of Drake and Martin@12#!. But discussion of
higher-order terms is beyond the scope of our work. T
main goal was to reduce the error bars inO(mc2a5) terms at
least to the level of the experimental uncertainties and it w
-

-
,

A

ts.
ri-

d

e

s

achieved. The numerical error in the value of the Bethe lo
rithm for the 21S state corresponds to the level of 0.02 MH

Recently, we become aware of new calculations by Ba
et al. @13# that are in excellent agreement with our resu
~see Table V!.

This work has been partially supported by INTAS Gra
No. 97-1032 and by Russian Foundation for Basic Resea
Grant No. 96-02-17279, which is gratefully acknowledged
is a great pleasure for us to thank J. Baker for making
results available prior to publication.

TABLE V. Comparison with recent calculations by Bakeret al.
@13#.

1 1S state 21S state

Our work 4.3701579~5! 4.3664091~7!

Bakeret al. @13# 4.370159~2! 4.366409~1!
.
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