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Metastable states in the antiprotonic helium atom decaying via Auger transitions

Vladimir I. Korobov
Joint Institute for Nuclear Research, 141980 Dubna, Russia

~Received 17 February 2003; published 13 June 2003!

In the present paper, we perform a systematic calculation of the complex resonance energy for metastable
states in the antiprotonic helium atoms, which decay predominantly via Auger transitions, by using the
complex-coordinate rotation~CCR! method. Special attention is paid to relativistic corrections for the bound
electron related to the Breit interaction. These corrections have been calculated using the CCR wave functions,
which are square integrable. Some higher-order relativistic and QED effects have been included into consid-
eration to get precise theoretical values for transition frequencies.
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I. INTRODUCTION

Metastable states of an exotic atom He1p̄ were of consid-
erable interest in the past years. After first observation
KEK of the delayed annihilation phenomena, when ab
3.6% of antiprotons injected into the helium target@1# sur-
vived as long as a few microseconds, precise spectrosc
measurements of several transition lines both in4He and
3He atoms have been performed at CERN@2,3#. It was ex-
pected that such longevity could be explained by the stab
model suggested by Condo@4#. According to this hypothesis
antiprotons that occupy nearly circular orbits~with n;40)
decay by slow radiative transitions only. Further theoreti
calculations of the transition energies@5# that brought agree
ment between theory and experiment to about 5–10 p
have rigorously confirmed the Condo model.

In the recent precise measurements@6# carried out at
CERN, a daughter state of the measured transition, in g
eral, is a state decaying via Auger channel. That allows
observe a spike in the annihilation time spectra when a la
wavelength is on-resonance. To meet the requirement
these experiments, it is necessary to perform an accu
study of the ‘‘Auger states.’’

Very precise nonrelativistic energies and wave functio
have been obtained for the metastable states which d
dominantly via radiative channels@7#. In this case one can
effectively apply the Feshbach formalism, when the Ham
tonian is projected onto the subspace of closed channels
still provide a sufficiently accurate zero-order approximat
for the wave function. The other advantage is that the s
dard variational technique may be applied. In case when
Auger decay becomes dominant, the state should be con
ered as an essentially resonant one, and more sophistic
methods are required.

In a present calculation, we apply the complex-coordin
rotation ~CCR! method@8# to this problem.

II. THE FESHBACH FORMALISM

The exotic helium atoms under consideration consist o
electron of massme , a helium nucleus of massMHe, and a
negatively charged antiprotonp̄ of massM p̄ . The nonrela-
tivistic Hamiltonian~in atomic unitse5\5me51) reads
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21 , ~1!

whereR andr are the position vectors ofp̄ and of the elec-
tron relative to the helium nucleus, whileT andV denote the
operators of kinetic and potential energy.

The wave function of a state of total angular momentu
L, its projectionM onto z axis of the space-fixed frame, an
total spatial parityl may be written as

CM
Ll~R,r !5 (

l 1 l e5L
Rlr l e$Yl ^ Yl e

%LMGll e

Ll~R,r ,u!, ~2!

where the componentsGll e

Ll(R,r ,u) are functions of the in-

ternal degrees of freedom and are expanded as follows:

Gll e

Ll~R,r ,u!5(
i 51

`

Cie
2a iR2b i r 2g i uR2r u. ~3!

The complex parametersa i , b i , andg i are generated in a
quasirandom manner@7#:

a i5F b b 1

2
i ~ i 11!Apac~A22A1!1A1G

1 i F b 1

2
i ~ i 11!Aqac~A282A18!1A18G , ~4!

bxc designates the fractional part ofx, pa, andqa are some
prime numbers,@A1 ,A2# and @A18 ,A28# are real variational
intervals which need to be optimized. Parametersb i andg i
are obtained in a similar way.

To get a Feshbach-type closed-channel solution,
needs to retain in expansion~2! components with smalll e

~angular momentum of an electron! and if l e
(max),D l , where

D l 5 l 2 l 8 is the smallest energetically possible change of
antiproton orbital angular momentum in the Auger transitio

@He1p̄#n,l→@He21p̄#n8,l 81e2,
©2003 The American Physical Society01-1
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TABLE I. Variational parameters and number of basis functions@ni , where i stands forl e5 i in Eq. ~2!, and ntot is a sum over

components# for different subsets of the variational wave function of the~38,33! state of4He1p̄. Intervals@A1 ,A2# and@A18 ,A28# correspond
to real and imaginary parts of a randomly chosen parametera i @see Eq.~4! for details#, intervals@B1 ,B2# and@B18 ,B28# to b i , and intervals
@G1 ,G2# and @G18 ,G28# to g i . Prime numbers arepa52, pb53, pg55, andqa57, qb511, qg513.

ntot n0 n1 n2 n3 A1 A2 A18 A28 B1 B2 B18 B28 G1 G2 G18 G28

i 51 500 450 50 0 0 59.0 91.0 1.00 4.50 1.00 5.60 0.00 0.00 0.00 1.50 0.00
i 52 650 450 150 50 0 53.0 84.0 2.00 5.00 0.00 2.20 0.00 0.00 0.00 0.80 0.00
i 53 530 30 270 230 0 60.0 100.0 1.50 4.50 0.00 0.80 0.00 0.00 0.00 0.30 0.00
i 54 820 20 250 420 130 65.0 110.0 1.50 4.50 0.00 0.40 0.00 0.00 0.00 0.15 0.00
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then the subspace spanned over these basis functions
subspace of closed channels for this resonant state. A
tailed discussion can be found in Ref.@7#.

As it has been obtained in previous calculations@3,9,10#,
the radiative width for the metastable antiprotonic heliu
states is about 10212 a.u. So the states withD l<3 predomi-
nantly decay via the Auger transition, while states withD l
>4 have a radiative decay as a dominant channel and
lifetime for these states is about few microseconds. On
other hand, the Auger width of the states withD l 53 is of the
order of 1028– 1029 a.u. In this case, the zero-order wav
function obtained within the closed-channel approximat
only would be of approximate relative accuracy of;1024

that is limiting the relative accuracy of mean values of va
ous operators related to relativistic and QED correctio
Thus this approximation is insufficient for a precise determ
nation of transition energies to compare with experimen
measurements.

III. COMPLEX-COORDINATE ROTATION

The Coulomb Hamiltonian is analytic under dilatatio
transformations,

(U~u! f )~r !5emu/2f ~eur !, H~u!5U~u!HU21~u!, ~5!

for real u and can be analytically continued to the compl
plane. The complex-coordinate rotation method@8# ‘‘rotates’’
the coordinates of the dynamical system (u5 iw), r i j
→r i j e

iw, wherew is the parameter of the complex rotatio
Under this transformation, the Hamiltonian~1! changes as a
function of w,

Hw5Te22iw1Ve2 iw, ~6!

whereT andV are the kinetic energy and Coulomb potent
operators. The continuum spectrum ofHw is rotated on the
complex plane around branch points~‘‘thresholds’’! to ‘‘un-
cover’’ resonant poles situated on the unphysical sheet of
Reimann surface in accordance with the Augilar-Balsl
Combes theorem@11#. The resonance energy is then det
mined by solving the complex eigenvalue problem for t
rotated Hamiltonian,

~Hw2E!Cw50. ~7!

The eigenfunctionCw obtained from Eq.~7! is square inte-
grable and the corresponding complex eigenvalueE5Er
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2iG/2 defines the energyEr and the width of the resonance
G, the latter is being related to the Auger rate aslA5G/\.

The use of a finite set ofN basis functions defined by Eqs
~2! and ~3! reduces problem~7! to the generalized algebrai
complex eigenvalue problem

~A2lB!x50, ~8!

where A5^CwuHwuCw& is the finite N3N matrix of the
Hamiltonian in this basis, andB is the matrix of overlapB
5^CwuCw&.

It is known that to get an accurate solution for an Aug
state of the antiprotonic helium is a rather difficult proble
due to a very narrow width of the state and different sca
for antiproton and electron orbitals. In our calculations,
use a general strategy of a multilayered variational wa
function as is described in Ref.@12#. In the case of antipro-
tonic helium metastable states, a trial wave function conta
four basis sets. First two sets are required for better appr
mation of the closed-channel solution. Parameters of a t
set are adjusted in a way to better represent excited elec
intermediate states, and the last set corresponds to ele
continuum. An example of a wave-function configuration f
the ~38,33! state of 4He1p̄ is presented in Table I. We us
conventional atomic notation to identify a state, namely,
proximate quantum numbers of the antiprotonic orbital, (n,l )
~while an electron for these states is situated roughly in
ground 1s state!.

The numerical solution of Eq.~8! was obtained using the
inverse iteration method. The variational intervals for t
nonlinear parametersa,b,g in Eq. ~3! were optimized
manually using two components~with l e50,1) in the varia-
tional expansion~2!. Equation~8! was then repeatedly solve
with these optimized values for a set of rotational parame
w50, . . .,0.20 and dilatation parametersadl50.99,1,1.01
using basis sets withN52200–2500. Here the dilatation i
defined as a transformation of all coordinates of the dyna
cal system:r i j →r i j adl . The number of components kept i
expansion~2! was taken to be equal to 4, except for the ca
of the (32,31) state of4He1p̄, whenD l 54 and the number
of components should be equal to 5 in order to include c
tinuum states. Inclusion of higherl e components in Eq.~2!
does not improve the result within achieved accuracy.

The results for the (38,33) state are plotted in Fig. 1, fro
which one can extract precise parameters for this resona
1-2
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Er522.847 324 042~3! a.u.,

G/253.714~3!31025 a.u.

The uncertainty in the calculated parameters of the reson
is about 1029 a.u. That is somewhat less accurate than i
case of states with a dominance of the radiative decay m
The reason for that is an absence of simple criteria for cho
ing optimal variational parameters as in case of the stand
variational principle for bound states.

From these calculations, the Auger decay rates can
extracted. Table II contains the Auger rates obtained by
approach expounded above, which are compared with
perimental measurements and other theoretical calculati
It is required to note that beyond the Auger decay, ot
effects such as collisional quenching have influence on
perimental data. As is seen from the table, our results ar
a rather good agreement with previous theoretical calc
tions. Especially, good agreement is with our previous ca
lations @14#, except for one case of (37,33) state, which h
been marked in Ref.@14# as not converging. It is worth say
ing that in the early calculation, a different type of bas
functions has been used and a Feshbach-like formalism
been applied to get the Auger width.

FIG. 1. ~Color online! Rotational paths for the (38,33) state
4He1p̄. The point on the plot where the paths are nearly station
determines a position of the resonance on the complex plane
rameters of the resonance for this state derived from the plot
Er522.847 324 042(3) a.u. andG/253.714(3)31025 a.u.
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IV. LEADING-ORDER RELATIVISTIC CORRECTIONS
FOR THE RESONANT STATES

In this work, we will consider the spin-independent pa
of a transition energy only. The major contribution beyo
the nonrelativistic transition energy comes from the relat
istic correction for the bound electron,

Erc5a2K 2
pe

4

8me
3

1
4p

8me
2 @ZHed~rHe!1Zp̄d~r p̄!#L . ~9!

The other terms of the Breit Hamiltonian, which have
be considered, are the following: the relativistic correction
the kinetic energy for heavy particles~including the Darwin
term for an antiproton!,

Ekin52a2K pHe
4

8mHe
3

1
pp̄

4

8mp̄
3 2

Zp̄

8mp̄
24pd~r p̄!L ; ~10!

the retardation~or the transverse photon exchange!,

Eret52a2(
i . j

ZiZj

2mimj
K pi•pj

r i j
1

r i j ~r i j •pi !pj

r i j
3 L ; ~11!

and the nuclear finite-size correction,

EFSC5(
2pZi~Ri /a0!2

3
^d~r i !&, ~12!

whereR is the root-mean-square radius of the nuclear cha
distribution. The rms radius for the helium nucleus and an
proton is, respectively, R(4He)51.673(1) fm, R( p̄)
50.862(12) fm.

The last three contributions are less than the leading c
tribution from Eq.~9! by three or four orders of magnitude
That means that they can be calculated using the clo
channel zero-order wave function, since a relative accur
of ;1024 is sufficient for these corrections. On the contra
the leading contribution requires more accurate zero-or
approximation, which can be obtained within the framewo
of the complex-coordinate rotation approach.

In this case a perturbation theory has to be formulat
which can be applied to resonant states. The relevant th
is provided by the theorem proved by Simon@17#.

Theorem.Let H be a three-body Hamiltonian with th
Coulomb pairwise interaction, andW(u) be a dilatation ana-
lytic perturbation. LetE0 be an isolated simple resonanc

y
a-
re
TABLE II. Comparison of theoretical Auger decay rateslA and experimentally measured decay rates~in

s21) for the 4He1p̄ atom.

State D l Expt. @13# @14# @15# @16# CCR

~38,33! 2 3.85(26)31011 3.131011 331011 3.0831011 3.071(3)31011

~37,33! 3 1.11(16)31011 5.73109 331010 4.4131010 4.21(2)31010

~38,34! 3 1.11(7)3108 1.33108 1.43108 1.344(4)3108

~34,32! 3 1.45(16)3108 2.23108 2.33108 1.843108 2.260(3)3108
1-3
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energy @discrete eigenvalue ofH(u)]. Then for smallb,
there is exactly one resonance ofH1bW nearE0 and

E~b!5E01a1b1a2b21•••

is analytic nearb50. In particular,

a15E8~0!5^Cu* uW~u!uCu&/^Cu* ,Cu&. ~13!

Some remarks are necessary.
In the complex scaling theory~such as the CCR ap

proach!, a resonance is defined as a complex eigenvalu
H(u). Thus one needs to establish a relation between
definition of ‘‘resonance’’ and the one generally used in
erature, where resonance is understood as a ‘‘pole’’ of
scattering amplitude on the unphysical sheet of the Reim
surface of energy. This definition of resonance, particula
is required in QED perturbation theory. For some physi
cases, it may be proved@18# that these two definitions coin
cide.

It is obvious that operators encountered in Eq.~9! are
dilatation analytic,

du~r !5d~r !e23u, pu
45p4e24u.

However, they are not ‘‘small’’ perturbations in a sense of t
Simon theorem requirements. It is a general practice in Q
to regularize these operators in some or the other way,
only requirement is to preserve a ‘‘dilatation analyticity

TABLE III. Relativistic corrections to the energy and Auge

width of the (38,33) state of the4He1p̄ atom.

Re Im

ENR 22.847324042(3) 3.714(3)31026

pe
4 48.7142(4) 0.0089(4)

d(r
He

) 1.60580(1) 0.00029(1)
d(r p̄) 0.05392 0.000015
Erel 22.847384174(5) 3.702(5)31026
06250
of
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property. And then after performing all calculations, regul
ization should be removed to get finite results.

An example of such calculations is shown in Table I
from which it is seen that relativistic correction to the Aug
decay rate is about 0.3% and, probably, can be detecte
experiment. The uncertainty in the relativistic correction f
the bound electron in this case is about 30% greater than
numerical uncertainty in the nonrelativistic energy. In t
case of states with the multipolarity of the Auger transiti
D l 53, the final uncertainty is primarily defined by the u
certainty in the leading term of the relativistic corrections

V. HIGHER-ORDER CORRECTIONS
AND FINAL RESULTS

Beyond the relativistic leading-order corrections d
scribed in a previous section there are a few other contr
tions, which are essential to get reliable theoretical values
transition energies.

The first and the most simple one is the correction due
the anomalous magnetic moment of electron,

Erc-QED5
4pa2

8me
2

2ae^ZHed~rHe!1Zp̄d~r p̄!&, ~14!

where

ae5
a

p

1

2
1S a

p D 2F197

144
1

p2

12
2

p2

2
ln 21

3

4
z~3!G

51.159 652 231023.

It may be included into the Breit Hamiltonian, but we find
convenient to treat it separately.

The next two are the one-loop self-energy contribution
a nonrecoil limit@19,20#,
TABLE IV. Multipolarities of the Auger transitionD l , nonrelativistic energiesEnr ~in atomic units!,
Auger widthsG ~in atomic units!, expectation values of operatorspe

4 , d(rHe), andd(r p̄) for the Auger states

of the 4He1p̄ atom.

State D l Enr G/2 pe
4 d(rHe) d(r p̄) b(n,l )

~39,34! 3 22.77101156918(4) 0.99331028 51.5750 1.69187 0.04717 4.4305
~38,34! 3 22.836524596427(4) 1.62631029 48.0002 1.58482 0.05533 4.4440
~38,33! 2 22.847324042(3) 3.71431026 48.7142 1.60580 0.05393 4.4386
~37,33! 3 22.922449847(2) 5.0931027 44.8819 1.49053 0.06262 4.4554
~36,33! 3 23.00797908793(2) 2.9331029 41.2334 1.38199 0.07292 4.4741
~36,32! 2 23.019058205(5) 6.76031026 42.1265 1.40809 0.07052 4.4673
~35,32! 3 23.1166797896(2) 6.9731028 38.3699 1.29586 0.08121 4.4882
~34,32! 3 23.227676372722(3) 2.73331029 34.5306 1.18087 0.09256 4.5127
~34,31! 2 23.238577980(1) 5.89631026 35.6145 1.21282 0.08942 4.5023
~33,31! 3 23.36465178245(3) 1.45331028 31.9300 1.10252 0.10112 4.5395
~32,31! 4 23.50763503077540(4) 5.1310213 28.3087 0.99382 0.11308 4.56020
~31,30! 3 23.679774778770(4) 4.75431029 26.0710 0.92622 0.12144 4.57894
1-4
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TABLE V. Multipolarities of the Auger transitionD l , nonrelativistic energiesEnr ~in atomic units!, Auger
widthsG ~in atomic units!, expectation values of operatorspe

4 , d(rHe), andd(r p̄) for the Auger states of the
3He1p̄ atom.

State D l Enr G/2 pe
4 d(rHe) d(r p̄) b(n,l )

~38,33! 3 22.7562177355(3) 3.3831028 52.2796 1.71296 0.04549 4.4279
~37,33! 3 22.82196302536(3) 4.2631029 48.6427 1.60404 0.05369 4.4414
~37,32! 2 22.83307489(1) 8.1231026 49.2841 1.62261 0.05220 4.4369
~36,32! 3 22.9087979751(1) 5.831029 45.6212 1.51328 0.06138 4.4527
~35,32! 3 22.99540435174(2) 8.1731029 41.6764 1.39520 0.07159 4.4712
~35,31! 2 23.00689318(1) 1.76731025 42.4005 1.41545 0.06868 4.4648
~34,31! 3 23.10612885528(1) 8.1310210 38.6976 1.30553 0.08006 4.4858
~33,31! 3 23.21950724327(1) 8.2831029 34.7441 1.18716 0.09174 4.5110
~33,30! 2 23.230815869(2) 1.12631025 35.8104 1.21828 0.08832 4.498
~30,29! 3 23.685380849484(3) 1.46931028 25.9971 0.92377 0.12145 4.57885
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Ese5
4a3

3me
2 F ln

1

a2
2 ln

k0

R`
1

5

6
2

3

8G ^ZHed~rHe!1Zp̄d~r p̄!&

1
4a4

3me
2 F3pS 139

128
2

1

2
ln 2D G^ZHe

2 d~rHe!1Zp̄
2d~r p̄!&

2
4a5

3me
2 F3

4G^ZHe
3 ln2~ZHea!22d~rHe!

1Zp̄
3 ln2~Zp̄a!22d~r p̄!&, ~15!

and the one-loop vacuum polarization:

Evp5
4a3

3 F2
1

5G^ZHed~rHe!1Zp̄d~r p̄!&

1
4a4

3 F5pme

64 G^ZHe
2 d~rHe!1Zp̄

2d~r p̄!&. ~16!

The only quantity that needs numerical evaluation is
Bethe logarithm, which arises from the ultrasoft photon co
tribution and can be expressed as@21,22#

ln
k0

R`
5

^J~H2E0!ln@~H2E0!/R`#J&

^J~H2E0!J&
,

whereJ5( izivi5( izipi /mi is a nonrelativistic electric cur
rent operator for a dynamical system. The denominator
be easily expanded:

^0uJ~E02H !Ju0&52^0uJ@H,J#u0&/2

52pFz1z2S z1

m1
2

z2

m2
D 2

^d~r12!&

1z1z3S z1

m1
2

z3

m3
D 2

^d~r13!&

1z2z3S z2

m2
2

z3

m3
D 2

^d~r23!&G .

06250
e
-

n

The numerical evaluation of the Bethe logarithm was carr
out following the scheme used in Ref.@23# and is based on
the closed-channel variational approximation for the ze
order wave function.

The ma5 order recoil corrections@20# are smaller than
error bars in calculated values of the leading-order terms
have not been included into consideration.

The main results of this work are summarized in Tab
IV and V, the nonrelativistic energies and expectation valu
of various operators required for the determination of tran
tion energies. For the helium-4 case, one state of a mult
larity D l 54 is presented, namely, the (32,31) state. This
because it was suspected that this state has an anomal
small Auger lifetime due to a configuration mixture effe
@15#, when the closed-channel state~with l e50) is strongly
coupled with excited electron configurations. As is seen fr
this calculation, which includes excited electron configu
tions in the variational trial function, that is not the case. T
numerical uncertainty in the nonrelativistic energy is point
out in parentheses as an uncertainty in the last digit.

Table VI shows contribution of different relativistic an
QED corrections to the final energy difference of t
(37,34)→(38,33) transition. As already mentioned, the lea
ing contribution comes from the relativistic Breit correctio
for the bound electron. The next to leading is the bou
electron self-energy. Recoil and finite size corrections
almost negligible in comparison with uncertainty. It is not

TABLE VI. Contributions from different relativistic and QED
corrections to the energy of the (37,34)→(38,33) transition.

Enr 5 420 158 166~20!

Erc 5 243 753~30!

Erc-QED 5 360
Ese 5 5 929~5!

Evp 5 2189
Ekin 5 24
Eret 5 265
Efsc 5 4

Etotal 5 420 120 448~40!
1-5
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TABLE VII. Transition frequencies~in GHz! between metastable states in the antiprotonic helium a
for transitions to the Auger dominant decay states.

Transition This work Experiment@6# Kino @16#

4He1p̄ (32,31)→(31,30) 1 132 609.218~5! 1 132 609.2~5!

(33,32)→(32,31) 1 012 445.630~2! 1 012 445.52~15! 1 012 445.7~4!

(35,33)→(34,32) 804 633.053~3! 804 633.11~10! 804 632.385~6!

(37,34)→(36,33) 636 878.159~5! 636 878.12~2!

(39,35)→(38,34) 501 948.765~5! 501 949.01~10! 501 948.8~1!

(40,35)→(39,34) 445 608.57~2! 445 607.7~1.6!
(34,33)→(35,32) 655 062.100~5!

(35,34)→(36,33) 562 441.00~1!

(36,34)→(37,33) 486 104.88~3! 486 102.7~5! 486 104.43~7!

(37,34)→(38,33) 420 120.45~4! 420 121.9~7! 420 121.53~1!

(37,35)→(38,34) 412 885.129~6! 412 885.16~8! 412 885.1~1.9!
3He1p̄ (31,30)→(30,29) 1 171 220.81~1!

(34,32)→(33,31) 822 809.178~6! 822 808.8~1.5!
(36,33)→(35,32) 646 180.434~6! 646 180.2~8!

(38,34)→(37,33) 505 222.293~5! 505 221.27~1!

(39,34)→(38,33) 446 900.43~1!

(33,32)→(34,31) 668 082.055~6!

(34,33)→(35,32) 570 479.583~7! 570 479.7~8!

(35,33)→(36,32) 490 639.54~1!

(36,33)→(37,32) 421 834.0~1!

(36,34)→(37,33) 414 147.518~6! 414 148.34~1!
c
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is
worthy that the final uncertainty in other cases is mu
smaller and inclusion of these contributions is essential.

Transition energies for some transitions, which end up
a state with a dominance of the Auger decay, are presente
Table VII. Theoretical data include all the relativistic an
QED corrections listed in Eqs.~9!–~12!, ~14!–~16!. The nu-
merical uncertainty in theoretical predictions is finally det
mined by the numerical uncertainty of the daughter state
further improvement requires significant computational
forts to increase substantially an accuracy of the variatio
wave function for the Auger decaying states.

In conclusion, we would like to say that while the the
retical results presented here are rather accurate, still the
curacy is limited mainly by the numerical uncertainty. Thu
for a precise study of the three-body QED bound states
seems more preferable to deal with states and transiti
which lay higher in (n,l ) region. That corresponds to th
.
, H
tt.

.
, T
.

J

06250
h

n
in

-
d

-
al

ac-
,
it
s,

states, in which the radiative decay rate exceeds significa
~by some orders of magnitude! the Auger~or resonance! de-
cay rate. Especially, that is concerned with the two-pho
Doppler-free high-precision spectroscopy, which may all
us to determine precisely the antiproton mass, and/or
check the higher-order relativistic and QED effects.
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