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Metastable states in the antiprotonic helium atom decaying via Auger transitions
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In the present paper, we perform a systematic calculation of the complex resonance energy for metastable
states in the antiprotonic helium atoms, which decay predominantly via Auger transitions, by using the
complex-coordinate rotatiofCCR) method. Special attention is paid to relativistic corrections for the bound
electron related to the Breit interaction. These corrections have been calculated using the CCR wave functions,
which are square integrable. Some higher-order relativistic and QED effects have been included into consid-
eration to get precise theoretical values for transition frequencies.
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I. INTRODUCTION H=T+V
. — . 1 1 1 2 2 1
Metastable states of an exotic atomHpewere of consid- = V3 V2 VoV, — =~
erable interest in the past years. After first observation at 2y 2uy " Mpe R r [R—r|
KEK of the delayed annihilation phenomena, when about P, P
3.6% of antiprotons injected into the helium targ&t sur- My =Mt Myt p =M+ mg 7, @

vived as long as a few microseconds, precise spectroscopic _
measurements of several transition lines both*e and whereR andr are the position vectors qf and of the elec-
3He atoms have been performed at CERN\B]. It was ex-  tron relative to the helium nucleus, whileandV denote the
pected that such longevity could be explained by the stabilitypperators of kinetic and potential energy.
model suggested by Cond4]. According to this hypothesis, The wave function of a state of total angular momentum
antiprotons that occupy nearly circular orbiigith n~40) L, its projectionM onto z axis of the space-fixed frame, and
decay by slow radiative transitions only. Further theoreticalkotal spatial parityh may be written as
calculations of the transition energigs that brought agree-
ment between theory and experiment to about 5-10 ppm LA _ Il Y
have rigorously confirmed the Condo model. Y (R’r)_lﬂze::L Rre{Yi@Y }imGi (Rr.0), (2
In the recent precise measuremefp® carried out at
CERN, a daughter state of the measured transition, in gerwhere the componen'@hz(R,r,G) are functions of the in-
eral, is a state decaying via Auger channel. That allows tqernal degrees of freedom and are expanded as follows:
observe a spike in the annihilation time spectra when a laser
wavelength is on-resonance. To meet the requirements of *
these experiments, it is necessary to perform an accurate G,L,‘(R,r,a)zz Cie @R~ ir=ilR=rl, 3
study of the “Auger states.” ‘ =1
Very precise nonrelativistic energies and wave function :
have been obtained for the metastable states which dec%—ﬂgsicg:&% Iggr?rrg;tfﬁs" Bi, andy; are generated in
dominantly via radiative channel§]. In this case one can '
effectively apply the Feshbach formalism, when the Hamil-
tonian is projected onto the subspace of closed channels that a=
still provide a sufficiently accurate zero-order approximation
for the wave function. The other advantage is that the stan-
dard variational technique may be applied. In case when the +i
Auger decay becomes dominant, the state should be consid-
ered as an essentially resonant one, and more sophisticated _ i
methods are required. [xJ_ designates the fractional part »fp,, andq, are some
In a present calculation, we apply the complex-coordinatdfime numbers[A;,A,] and[A;,A;] are real variational

rotation (CCR) method[8] to this problem. intervals which need to be optimized. Paramej@rsnd v;
are obtained in a similar way.

To get a Feshbach-type closed-channel solution, one

1
h;(iﬂ)@J(Az—AlHAl

1
Ei(i+1)\/q—a(A§—Ai)+A1 , (4)

Il. THE FESHBACH FORMALISM needs to retain in expansid2) components with small,
o o _ (angular momentum of an electroand if| ™ < Al, where
The exotic helium atoms under consideration consist of an\| =| —|” js the smallest energetically possible change of the

electron of massne, a helium nucleus of madd ., and a  antiproton orbital angular momentum in the Auger transition,
negatively charged antiprotgm of massM{;. The nonrela- o o
tivistic Hamiltonian(in atomic unitse=A=m,=1) reads [He"pl, —[He pl, 1 e,
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TABLE |I. Variational parameters and number of basis functipns, wherei stands forl,=i in Eqg. (2), and n,, is a sum over
componentsfor different subsets of the variational wave function of (88,33 state of*He" p. Intervals[ A, ,A,] and[A;,A}] correspond

to real and imaginary parts of a randomly chosen parametisee Eq(4) for detaild, intervals[B,,B,] and[B;,B5] to 8;, and intervals
[G1.G;] and[G;,G,] to y; . Prime numbers arp,=2, ps=3, p,=5, andq,=7, q;=11, q,=13.

Not  No ng n, N3 Aq Az Al A, B: B> B1 B G, G, Gi G,
500 450 50 0

i=1 0 590 91.0 100 450 100 560 000 0.00 0.00 150 0.00 o0.00
i=2 650 450 150 50 0 53.0 840 200 500 000 220 0.00 0.00 0.00 0.80 0.00 0.00
i=3 530 30 270 230 0 600 1000 150 450 0.00 0.80 0.00 0.00 000 030 0.00 o0.00
i=4 820 20 250 420 130 650 1100 150 450 0.00 040 000 000 0.00 0.15 0.00 o0.00

then the subspace spanned over these basis functions is—al'/2 defines the energl, and the width of the resonance,

subspace of closed channels for this resonant state. A dé-, the latter is being related to the Auger ratenas=1"/%.

tailed discussion can be found in RET]. The use of a finite set dfl basis functions defined by Egs.
As it has been obtained in previous calculatip8®,10, (2) and (3) reduces problen(7) to the generalized algebraic

the radiative width for the metastable antiprotonic heliumcomplex eigenvalue problem

states is about 102 a.u. So the states withl <3 predomi-

nantly decay via the Auger transition, while states with

=4 have a radiative decay as a dominant channel and the (A=AB)x=0, ©®)

lifetime for these states is about few microseconds. On the

other hand, the Auger width of the states with=3 is of the where A=(W |H W ) is the finite NXN matrix of the

order of 10 °~10"° a.u. In this case, the zero-order wave pamiltonian in this basis, anB is the matrix of overlagB

function obtained within the closed-channel approximation:<q,¢|q,¢>_

only would be of approximate relative accuracy ofl0°* 'yt is known that to get an accurate solution for an Auger

that is limiting the relative accuracy of mean values of vari-state of the antiprotonic helium is a rather difficult problem

ous operators related to relativistic and QED correctionsgye to a very narrow width of the state and different scales

Thus this approximation is insufficient for a precise determi-or antiproton and electron orbitals. In our calculations, we

nation of transition energies to compare with experimenta;se a general strategy of a multilayered variational wave

measurements. function as is described in Rgf12]. In the case of antipro-
tonic helium metastable states, a trial wave function contains
Ill. COMPLEX-COORDINATE ROTATION four basis sets. First two sets are required for better approxi-
The Coulomb Hamiltonian is analytic under dilatation mation of Fhe clo_sed—channel solution. Parameters of a third
transformations, set are adjusted in a way to better represent excited electron

intermediate states, and the last set corresponds to electron
(U(O)f)(r)=eM2f(er), H(0)=U(8HU (), (5) continuum. An examplegf a wave-function configuration for
the (38,33 state of *He' p is presented in Table I. We use
for real @ and can be analytically continued to the complexconventional atomic notation to identify a state, namely, ap-
plane. The complex-coordinate rotation metfigfi‘rotates”  proximate quantum numbers of the antiprotonic orbita)|
the coordinates of the dynamical systerd=(i¢), rj; (while an electron for these states is situated roughly in the
—r;;€'?, whereg is the parameter of the complex rotation. ground Is state.
Under this transformation, the Hamiltoniah) changes as a The numerical solution of Eq8) was obtained using the
function of ¢, inverse iteration method. The variational intervals for the
nonlinear parameters,B,y in Eq. (3) were optimized
manually using two componentwith 1.=0,1) in the varia-
tional expansiori2). Equation(8) was then repeatedly solved
with these optimized values for a set of rotational parameters
=0,...,0.20 and dilatation parameteeg,;=0.99,1,1.01

H,=Te 2¢+ve s, (6)

whereT andV are the kinetic energy and Coulomb potential
operators. The continuum spectrumtef is rotated on the

CO\TF;!,E:( plarl]n?]tarmlmd E)trar;cz p;n:jrt}‘shrishholdis )Itoh ur;— fthusing basis sets withl=2200-2500. Here the dilatation is
(I:?oei;anﬁsgu?facgoiﬁsasccuoardeange W?t# tﬁeyiﬁgiIZr-%ZIsolev-Seﬁned as a transformation of all coordinates of the dynami-
Combes theoremill]. The resonance energy is then deter-C SYSIeMIj—T;;8q . The number of components kept in

. ) : . expansion2) was taken to be equal to 4, except for the case
mined by solving the complex eigenvalue problem for the

rotated Hamiltonian, of the (32,31) state ofHe'p, whenAl=4 and the number
of components should be equal to 5 in order to include con-
(H,~E)¥,=0. (7)  tinuum states. Inclusion of highég components in Eq(2)
does not improve the result within achieved accuracy.
The eigenfunction¥ , obtained from Eq(7) is square inte- The results for the (38,33) state are plotted in Fig. 1, from

grable and the corresponding complex eigenvaireE, which one can extract precise parameters for this resonance:
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-3.4x10° - IV. LEADING-ORDER RELATIVISTIC CORRECTIONS
\, 9=0.06 FOR THE RESONANT STATES
*He'p (38,33) In this work, we will consider the spin-independent part
—=—2,=0.99 of a transition energy only. The major contribution beyond
gt T o 100 the nonrelativistic transition energy comes from the relativ-
- =810 istic correction for the bound electron,
E
,|  Pe 4w o
=0.24 Eic=a( — 3 + _Z[ZHea(rHe)+Zp5(rp)] . (9
1 8mg  8mg
-3.8x10° N=2500 9=0.24
(950,720,700,130) =0.08 The other terms of the Breit Hamiltonian, which have to
. . . be considered, are the following: the relativistic correction to
-2.8473246 28473244 28473242 28473240 the kinetic energy for heavy particlémcluding the Darwin
Re(E) term for an antiproton
FIG. 1. (Color onling Rotational paths for the (38,33) state of 4 4 B
4He*a The point on the plot where the paths are nearly stationary E. =—qa2 Pre pg _ ZP 4ns(ry) ); (10
determines a position of the resonance on the complex plane. Pa- kin Smae 8m§ 8m£ PR
rameters of the resonance for this state derived from the plot are P P
E,=—2.847 324 042(3) a.u. anid/2=3.714(3)x10"° a.u. the retardatior(or the transverse photon exchange
E,=—2.8473240423) a.u., __ oy 44 (PR T PR
Eret a IE>1 2m|m]< rij ri3j ’ (11)
['/2=3.7143)x107° a.u. and the nuclear finite-size correction,

27Zi(Ri/ag)?
Ersc= %ao)ﬁs(ri)): (12

The uncertainty in the calculated parameters of the resonance
is about 10° a.u. That is somewhat less accurate than in a ) _
case of states with a dominance of the radiative decay mod&/hereR is the root-mean-square radius of the nuclear charge
The reason for that is an absence of simple criteria for chooglistribution. The rms radius for the helium nucleus and anti-
ing optimal variational parameters as in case of the standargroton is, respectively, R(*He)=1.673(1) fm, R(p)
variational principle for bound states. =0.862(12) fm.

From these calculations, the Auger decay rates can be The last three contributions are less than the leading con-
extracted. Table Il contains the Auger rates obtained by thé&ribution from Eq.(9) by three or four orders of magnitude.
approach expounded above, which are compared with exfhat means that they can be calculated using the closed-
perimental measurements and other theoretical calculationshannel zero-order wave function, since a relative accuracy
It is required to note that beyond the Auger decay, otheof ~10 #is sufficient for these corrections. On the contrary,
effects such as collisional quenching have influence on exthe leading contribution requires more accurate zero-order
perimental data. As is seen from the table, our results are iapproximation, which can be obtained within the framework
a rather good agreement with previous theoretical calculaef the complex-coordinate rotation approach.
tions. Especially, good agreement is with our previous calcu- In this case a perturbation theory has to be formulated,
lations[14], except for one case of (37,33) state, which haswhich can be applied to resonant states. The relevant theory
been marked in Refl14] as not converging. It is worth say- is provided by the theorem proved by Simidv].
ing that in the early calculation, a different type of basis Theorem.Let H be a three-body Hamiltonian with the
functions has been used and a Feshbach-like formalism h&oulomb pairwise interaction, anif( 6) be a dilatation ana-
been applied to get the Auger width. lytic perturbation. LetE, be an isolated simple resonance

TABLE Il. Comparison of theoretical Auger decay ratesand experimentally measured decay rdies
s~ 1 for the *He" p atom.

State Al Expt. [13] [14] [15] [16] CCR
(38,33 2 3.85(26)< 10" 3.1x 101 3x10"  3.08<10% 3.071(3)x 10
(37,33 3 1.11(16)< 10 5.7x 10° 3x10°%  4.41x10% 4.21(2)x 10"
(38,39 3 1.11(7)x 168 1.3x10° 1.4x10° 1.344(4)x 10
(34,32 3 1.45(16) 10° 2.2x10° 2.3x10° 1.84x 10° 2.260(3)x 10°
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TABLE Ill. Relativistic corrections to the energy and Auger property. And then after performing all calculations, regular-

width of the (38,33) state of théHe" p atom. ization should be removed to get finite results.
An example of such calculations is shown in Table lll,
Re Im from which it is seen that relativistic correction to the Auger
i decay rate is about 0.3% and, probably, can be detected in
EPR 2.847324042(3) 3.714(3910 experiment. The uncertainty in the relativistic correction for
Pe 48.7142(4) 0.0089(4) the bound electron in this case is about 30% greater than the
o(r,) 1.60580(1) 0.00029(1) numerical uncertainty in the nonrelativistic energy. In the
(rp) 0.05392 0.000015 case of states with the multipolarity of the Auger transition
Erel —2.847384174(5) 3.702(5)10 ° Al=3, the final uncertainty is primarily defined by the un-

energy [discrete eigenvalue ofi(6)]. Then for small 3,

certainty in the leading term of the relativistic corrections.

there is exactly one resonancetdft BW nearE, and V. HIGHER-ORDER CORRECTIONS

E(B)=EotaiB+a8°+- -

AND FINAL RESULTS

Beyond the relativistic leading-order corrections de-

is analytic neaiB=0. In patrticular,

— ! — * *
2, =E"(0)= (W5 |W(O) W)/ (V5 ). (13 transition energies.
Some remarks are necessary.
In the complex scaling theorysuch as the CCR ap-
proach, a resonance is defined as a complex eigenvalue of

scribed in a previous section there are a few other contribu-
tions, which are essential to get reliable theoretical values for

The first and the most simple one is the correction due to
the anomalous magnetic moment of electron,

H(#). Thus one needs to establish a relation between this e
definition of “resonance” and the one generally used in lit- Erc-0ep=——528e(Zned(I o) + Zp0(1p)), (14)
erature, where resonance is understood as a “pole” of the 8mg

scattering amplitude on the unphysical sheet of the Reimann
surface of energy. This definition of resonance, p(:lrticularlyWhere
is required in QED perturbation theory. For some physical
cases, it may be provdd8] that these two definitions coin-

cide. al (a)z 197 =?

It is obvious that operators encountered in E®). are ae=;§+ 174+ 12

dilatation analytic, m

=1.159652 210 3.
Sy(r)=a(r)e ', pi=p*e .

7T2

3
- ?In 2+ Z§(3)

However, they are not “small” perturbations in a sense of thelt may be included into the Breit Hamiltonian, but we find it

Simon theorem requirements. It is a general practice in QERonvenient to treat it separately.

to regularize these operators in some or the other way, the The next two are the one-loop self-energy contribution in

only requirement is to preserve a “dilatation analyticity” a nonrecoil limit[19,20Q,

TABLE IV. Multipolarities of the Auger transitiomAl, nonrelativistic energie€,, (in atomic unitg,
Auger widthsI” (in atomic unit3, expectation values of operatqré, &(rye), ando(ry) for the Auger states

of the *He* p atom.

State Al Enr T2 pa 5(rye) 8(rp) B(n,
(39,39 3 —2.77101156918(4) 0.99810°% 51.5750 1.69187 0.04717 4.4305
(38,39 3 —2.836524596427(4) 1.62610°° 48.0002 1.58482 0.05533 4.4440
(38,33 2 —2.847324042(3) 3.71410°% 48.7142 1.60580 0.05393 4.4386
(37,33 3 —2.922449847(2) 5.0910 7 44,8819 1.49053 0.06262 4.4554
(36,33 3 —3.00797908793(2) 2.9810°° 41.2334 1.38199 0.07292 4.4741
(36,32 2 —3.019058205(5) 6.76010°°% 42.1265 1.40809 0.07052 4.4673
(35,32 3 —3.1166797896(2) 6.9710°8 38.3699 1.29586 0.08121 4.4882
(34,32 3 —3.227676372722(3) 2.73310°° 34.5306 1.18087 0.09256 4.5127
(34,31 2 —3.238577980(1) 5.89610°°® 35.6145 1.21282 0.08942 4.5023
(33,3) 3 —3.36465178245(3) 1.45310°% 31.9300 1.10252 0.10112 4.5395
(32,3) 4 —3.50763503077540(4) 54110 13 28.3087 0.99382 0.11308 4.56020
(31,30 3 —3.679774778770(4) 4.75%040°° 26.0710 0.92622 0.12144 4.57894

062501-4



METASTABLE STATES IN THE ANTIPROTONC . ..

TABLE V. Multipolarities of the Auger transitio |,

PHYSICAL REVIEW A 67, 062501 (2003

nonrelativistic energieg,,, (in atomic unit$, Auger

widthsT (in atomic unit3, expectation values of operatq$, 8(rye), andé(rp) for the Auger states of the

3He*p atom.
State Al E, r/2 pa 5(rge) 8(rp) B(n,1)
(38,33 3 —2.7562177355(3) 3.3810 8 52.2796  1.71296  0.04549 4.4279
(37,33 3 —2.82196302536(3) 4.2610°° 48.6427 1.60404 0.05369 4.4414
(37,32 2 —2.83307489(1) 8.1210 © 49.2841  1.62261 0.05220 4.4369
(36,32 3 —2.9087979751(1) 5:810° 45,6212 151328 0.06138  4.4527
(35,32 3 —2.99540435174(2) 8.2710°° 416764 1.39520 0.07159 4.4712
(35,39 2 —3.00689318(1) 1.76710°° 424005 1.41545 0.06868  4.4648
(34,39 3 —3.10612885528(1) 841071° 38.6976 1.30553 0.08006  4.4858
(333) 3  —3.21950724327(1) 8.2810°°  34.7441 1.18716 0.09174  4.5110
(33,30 2  —3.230815869(2) 1.12610°° 35.8104 1.21828 0.08832  4.498
(30,29 3  —3.685380849484(3) 1.46010°8 259971 0.92377 0.12145 4.57885
403 1 The numerical evaluation of the Bethe logarithm was carried
Esem > In—Z—InR—+ ~— (ZHeé(rHQvLZ a(ry)) out following the scheme used in R¢23] and is based on
3mg| « the closed-channel variational approximation for the zero-
4 order wave function.
4i (@_ —In2> (22 S(r )+235(r—)) The ma® order recoil correction$20] are smaller than
3m§ 128 2 He™\ He prAp error bars in calculated values of the leading-order terms and
have not been included into consideration.
40°[3 N , The main results of this work are summarized in Tables
T 3mi|a (ZieIn(Zpea) " “8(r ) IV and V, the nonrelativistic energies and expectation values
€ of various operators required for the determination of transi-
+Z%In2(Z;a)*25(rg)), (15) tion energies. For the helium-4 case, one state of a multipo-

and the one-loop vacuum polarization:

4a°

Evp=—3| ~ 5|(Zned(rne) + Zpo(rp))

4ot
3

577'me

(Z3e rHe)+Z%(S(rg)>. (16)

The only quantity that needs numerical evaluation is the
Bethe logarithm, which arises from the ultrasoft photon con-
tribution and can be expressed[24,22

| ﬁ _ (J(H=EQ)In[(H—-Ep)/R..]1J)

R, (J(H—Ep)J) :

whereJ=2,zv;=2;z;p;/m; is a nonrelativistic electric cur-

larity Al=4 is presented, namely, the (32,31) state. This is
because it was suspected that this state has an anomalously
small Auger lifetime due to a configuration mixture effect
[15], when the closed-channel stdteith |.=0) is strongly
coupled with excited electron configurations. As is seen from
this calculation, which includes excited electron configura-
tions in the variational trial function, that is not the case. The
numerical uncertainty in the nonrelativistic energy is pointed
out in parentheses as an uncertainty in the last digit.

Table VI shows contribution of different relativistic and
QED corrections to the final energy difference of the
(37,34)—(38,33) transition. As already mentioned, the lead-
ing contribution comes from the relativistic Breit correction
for the bound electron. The next to leading is the bound
electron self-energy. Recoil and finite size corrections are
almost negligible in comparison with uncertainty. It is note-

TABLE VI. Contributions from different relativistic and QED

rent operator for a dynamical system. The denominator caRgrrections to the energy of the (37,34)38,33) transition.

be easily expanded:

(0]J(Eg—H)J|0)=—(0|J[H,J]|0)/2

=2

2122( ;1 ) (6(r1p)
Jr2123( ;1 ) (6(ry3)

) <5(rza)>}

+ 2223(

Enr = 420158 16620)
E,. = —4375330)
Erc-qeD = 360
Ese = 59295)
Eup = —189
Exin = -4
Eret = —65
Etsc = 4
Eiotal = 420120 44840)
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TABLE VII. Transition frequenciegin GHz) between metastable states in the antiprotonic helium atom

for transitions to the Auger dominant decay states.

PHYSICAL REVIEW A 67, 062501 (2003

Transition This work Experimen6] Kino [16]
“He'p (32,31)—(31,30) 1132 609.218) 1132 609.75)
(33,32)-(32,31) 1012 445.630) 1012 445.5p15) 1012 445.74)
(35,33)-(34,32) 804 633.053) 804 633.1110) 804 632.388)
(37,34)—(36,33) 636 878.158) 636 878.122)
(39,35)—-(38,34) 501 948.765) 501 949.0110) 501 948.81)
(40,35)—(39,34) 445 608.52) 445607.71.6)
(34,33)-(35,32) 655 062.108)
(35,34)—(36,33) 562 441.0Q)
(36,34)~(37,33) 486 104.88) 486 102.75) 486 104.487)
(37,34)-(38,33) 420120.43) 420121.97) 420121.581)
(37,35)-(38,34) 412 885.129) 412 885.168) 412885.11.9
SHetp (31,30)—(30,29) 1171220.81)

(34,32)—(33,31)
(36,33)—(35,32)
(38,34)—(37,33)
(39,34)—(38,33)
(33,32)—(34,31)
(34,33)—(35,32)
(35,33)—(36,32)
(36,33)—(37,32)
(36,34)—(37,33)

822 809.178)
646 180.436)
505 222.293)
446 900.43)
668 082.055)
570 479.583)
490 639.54)
421834.Q)
414 147.518)

822 808.81.5
646 180.28)
505 221.271)

570479.18)

414 148.341)

worthy that the final uncertainty in other cases is muchstates, in which the radiative decay rate exceeds significantly
smaller and inclusion of these contributions is essential.  (by some orders of magnitugdéhe Auger(or resonancede-
Transition energies for some transitions, which end up ircay rate. Especially, that is concerned with the two-photon
a state with a dominance of the Auger decay, are presented Doppler-free high-precision spectroscopy, which may allow
Table VII. Theoretical data include all the relativistic and us to determine precisely the antiproton mass, and/or to
QED corrections listed in Eq$9)—(12), (14)—(16). The nu-  check the higher-order relativistic and QED effects.
merical uncertainty in theoretical predictions is finally deter-
mined by the numerical uncertainty of the daughter state and
further improvement requires significant computational ef-
forts to increase substantially an accuracy of the variational The author would like to express his gratitude to R.S.
wave function for the Auger decaying states. Hayano, T. Yamazaki, M. Hori, and other members of the
In conclusion, we would like to say that while the theo- ASACUSA experimental group for numerous valuable dis-
retical results presented here are rather accurate, still the acussions. He is also grateful to Y. Kino for interesting con-
curacy is limited mainly by the numerical uncertainty. Thus,versations, valuable hints, and useful communications. This
for a precise study of the three-body QED bound states, itvork has been partially supported by the Russian Foundation
seems more preferable to deal with states and transitionfgr Basic Research under Grant No. 03-02-16119, which is
which lay higher in ,l) region. That corresponds to the gratefully acknowledged.
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