Non-perturbative study of the viscosity in $SU(2)$ lattice gluodynamics.

V. V. Braguta, A. Yu. Kotov

Семинар "Теория адронного вещества при экстремальных условиях"

Oct 30, 2013
Outline

- Introduction
- Transport coefficients in lattice calculations
- Improving statistical accuracy of the results
- Analytical continuation problem
- Numerical setup
- Results and discussion
One heavy ion collision produces a huge number of final particles

Large number of particles \Rightarrow hydrodynamical description can be used

In hydrodynamics transport coefficients control flow of energy, momentum, electrical charge and other quantities
Shear viscosity. Value and bounds.

- Experimentally preferred value: \(\frac{\eta}{s} \sim (1 \leftrightarrow 3) \frac{1}{4\pi} \)
- Experimental bound: \(\frac{\eta}{s} < 5 \frac{1}{4\pi} \)
- KSS-bound: \(\frac{\eta}{s} \geq \frac{1}{4\pi} \)

Comparison of different liquids

QGP the most superfluid liquid

The aim: first principle calculation of transport coefficients
Lattice simulations of QCD.

- Allows to study strongly interacting systems
- Based on the first principles of quantum field theory
- Acknowledged approach to study QCD
- Very powerful due to the development of computer systems
Previous lattice calculations ($SU(3)$ gluodynamics).

Viscosity in lattice calculations.

Green-Kubo relation:

\[\eta = \pi \lim_{\omega \to 0} \frac{\rho_{12,12}(\omega, q = 0)}{\omega} \]

Green function measured on the lattice (Euclidean):

\[C_{12,12}(x_0, \mathbf{p}) = \beta^5 \int d^3x e^{i\mathbf{p} \cdot \mathbf{x}} \langle T_{12}(0) T_{12}(x_0, \mathbf{x}) \rangle \]

Spectral function and correlator of stress-energy tensor:

\[C_{12,12}(x_0, \mathbf{p}) = \beta^5 \int_0^\infty \rho_{12,12}(\omega, \mathbf{p}) \frac{\cosh \omega \left(\frac{1}{2} L_0 - x_0 \right)}{\sinh \frac{\omega L_0}{2}} d\omega \]

Stress-energy tensor for gluodynamics:

\[T_{\mu\nu} = 2 \text{tr}(F_{\mu\sigma} F_{\nu\sigma} - \frac{1}{4} \delta_{\mu\nu} F_{\rho\sigma} F_{\rho\sigma}) \]

Asymptotic behaviour - perturbation theory: \[\rho(\omega) = \frac{1}{10} \left(\frac{3}{4\pi} \right)^2 \omega^4, \omega \to \infty \]
Main difficulties.

- Large statistical errors in measuring correlator $C_{12,12}(x_0, 0)$
 - Improved action
 - Multilevel algorithm
- Extracting spectral function $\rho_{12,12}$ from

$$C_{12,12}(x_0, p) = \beta^5 \int_0^\infty \rho_{12,12}(\omega, p) \frac{\cosh \omega (\frac{1}{2}L_0 - x_0)}{\sinh \frac{\omega L_0}{2}} d\omega$$

- Fit by model function
- Maximum entropy method
- Linear method
- ...
Statistical error of the correlator $C_{12,12}$. Improved action.

\[
S_{unimpr} = \beta \sum_{pl} S_{pl}
\]

\[
S_{impr} = \beta_{impr} \sum_{pl} S_{pl} - \frac{\beta_{impr}}{20u_0^2} \sum_{rt} S_{rt}
\]

\[
S_{pl,rt} = \frac{1}{2} \text{tr}(1 - U_{pl,rt})
\]

Increases accuracy but is not enough.
Statistical error of the correlator $C_{12,12}$. Multilevel algorithm.

For t_1 and t_2 in different areas

$$\langle O(t_1)O(t_2) \rangle = \frac{1}{N_{bc}} \sum_{b,c} \langle O(t_1) \rangle_{b,c} \langle O(t_2) \rangle_{b,c}$$
Analytical continuation problem.

- Fit by model function
- Maximum entropy method
- Linear method
- ...

Analytical continuation problem. Fit by model function.

\[C_{12,12}(x_0, p) = \beta^5 \int_0^\infty \rho_{12,12}(\omega, p) \frac{\cosh \omega \left(\frac{1}{2} L_0 - x_0 \right)}{\sinh \frac{\omega L_0}{2}} d\omega \]

Proposed in the first work on transport coefficients:

\[\rho(\omega)/\omega = A \left(\frac{\gamma}{(m - \omega)^2 + \gamma^2} + \frac{\gamma}{(m + \omega)^2 + \gamma^2} \right) \]

A, m, \gamma - parameters
Clearly ignores asymptotic behaviour
Analytical continuation problem. Maximum entropy method.

\[C_{12,12}(x_0, p) = \beta^5 \int_0^\infty \rho_{12,12}(\omega, p) \frac{\cosh \omega \left(\frac{1}{2} L_0 - x_0 \right)}{\sinh \frac{\omega L_0}{2}} d\omega \]

We discretize \(\omega \), \(N_\omega \sim O(10^3) \)

\[
\rho(\omega) \xrightarrow{K(\omega,x_i)} G(x_i) = G_i
\]

\[
\chi^2 = \sum_{i,j} (G_i - G_i^{(0)})(S^{-1})_{ij}(G_j - G_j^{(0)})
\]

\[
\min \chi^2 \rightarrow \sim O(10) \text{ equations}
\]
Instead of χ^2 we minimize

$$\chi^2 + \alpha S,$$

Entropy S determines how our function is close to some model function $\mu(\omega)$ (which summarizes our prior knowledge about the spectral function).

$$S = \sum_{m=1}^{N_w} \left(\rho_m - \mu_m - \rho_m \log \frac{\rho_m}{\mu_m} \right)$$

Doesn’t work for small lattice sizes.
Analytical continuation problem.

Linear method:

$$\rho(\omega) = m(\omega)(1 + a(\omega)) = m(\omega)(1 + \sum_l a_l u_l(\omega)),$$

where $m(\omega)$ is an initial approximation:

$$m(\omega) = \frac{A\omega^4}{\tanh^2 \frac{\omega}{4T} \tanh \frac{\omega}{2T}},$$

and $u_l(\omega)$ are eigenmodes of $H(\omega, \omega') = \sum_i K(t_i, \omega)K(t_i, \omega')$ with

$$K(t, \omega) = m(\omega) \frac{\cosh(\omega(\frac{1}{2T} - t))}{\sinh \frac{\omega}{2T}}$$

a_l are selected to minimize χ^2.

\[\rho(\omega) = m(\omega)(1 + a(\omega)) \]

Let \(\hat{\rho}(\omega) \) be a true spectral function.

\[\hat{\rho}(\omega) = m(\omega)(1 + \hat{a}(\omega)) \xrightarrow{K(t_i,w)} G_i \xrightarrow{linear} \rho(\omega) = m(\omega)(1 + a(\omega)) \]

Resolution function:

\[a(\omega) = \int d\omega \hat{a}(\omega) \delta(\omega, \omega') \]
Main difficulties.

- Large statistical errors in measuring correlator $C_{12,12}(x_0, 0)$
 - Improved action
 - Multilevel algorithm
- Extracting spectral function $\rho_{12,12}$ from

 \[C_{12,12}(x_0, p) = \beta^5 \int_0^\infty \rho_{12,12}(\omega, p) \frac{\cosh \omega (\frac{1}{2} L_0 - x_0)}{\sinh \frac{\omega L_0}{2}} d\omega \]

- Fit by model function
- Maximum entropy method
- Linear method
- ...
Numerical setup.

- $SU(2)$-gluodynamics with Wilson action:

$$S = \frac{\beta}{2} \sum_{pl} \text{tr}(1 - U_{pl})$$

- Lattice 8×32^3
- $\beta = 2.643$
- $T / T_c \approx 1.2$
- Clover-shaped discretization for $F_{\mu\nu}$
- Two-level algorithm for measuring stress-energy tensor correlator.
Spectral function $\rho_{12,12}$.

\[\frac{\rho_{12,12}}{\text{Sh}(\frac{\omega}{2T})} \]
Numerical results.

\[\frac{\eta}{s} = 0.111 \pm 0.032 \]

KSS-bound:

\[\frac{\eta}{s} \geq \frac{1}{4\pi} \approx 0.08 \]

Perturbative result:

\[\frac{\eta}{s} \sim 2 \]

Experimental bound and preferred value:

\[\frac{\eta}{s} < 5\frac{1}{4\pi} \approx 0.4 \]

\[\frac{\eta}{s} \sim (1 \leftrightarrow 3)\frac{1}{4\pi} \]
Unsatisfactory attempts to increase lattice size

![Graph showing data points and a trend line.](image-url)