Recent signals of two QCD phase transitions in heavy ion collisions at the NICA-FAIR energies

Kyrill Bugaev, V. Sagun, B. Grinyuk, A. Zhokhin, A. Ivanytskyi, D. Savchenko, G. Zinovjev

Bogolyubov ITP and TSNU, Kiev, Ukraine

E. Nikonov

Laboratory for Information Technologies, JINR, Dubna, Russia

L. Bravina, E. Zabrodin

University of Oslo, Oslo, Norway

S. Kabana

University of Nantes and SUBATECH, Nantes, France

D. Blaschke

University of Wroclaw, Wroclaw, Poland,

BLTP, Dubna and MEPhI, Moscow, RF

A. Taranenko

MEPhI, Moscow, RF

Dubna, July 24, 2019
Outline

1. Motivation and introduction

2. Novel and Old Irregularities at chemical freeze out

3. Shock adiabat model of A+A collisions

4. Newest results and possible evidence for two phase transitions

5. Meta-analysis of existing event generators for A+A collisions

6. Conclusions
Experiments on A+A Collisions

AGS (BNL) up to 4.9 GeV
SPS (CERN) 6.1 - 17.1 GeV
RHIC (BNL) 62, 130, 200 GeV

}\ completed

Ongoing HIC experiments
LHC (CERN) > 1 TeV (high energy)
RHIC (BNL) low energy
SPS (CERN) low energy

Future HIC experiments
NICA (JINR, Dubna)
SIS300 = FAIR (GSI)
J-PARC
Heavy Ion Collisions

Ideal to get conditions at high $T$ and $\rho$

$\text{Pb} \quad 1 \text{ fm} \quad \text{Pb} \quad 14 \text{ fm}$

QGP

Formation time $\tau_0 = 1 \text{ fm/c}$

$[1 \text{ fm/c} = 3.3 \times 10^{-24} \text{ s}]$

Temperature of $O(10^{12})$

Lifetime: $10 \text{ fm/c}$

QGP in equilibrium (!?)

Cool down: hadronization

Internal $T$ of Sun is $20,000,000$

**RHIC Stages**

Probe QGP – a new form of matter predicted by Quantum Chromodynamics (QCD)

$1 \text{ fm} = 10^{-15} \text{ m}$

Temperature of $O(10^{12})$

*Internal $T$ of Sun is 20 000 000*

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial singularity</td>
<td>quantum fluctuations</td>
</tr>
<tr>
<td>Glasma</td>
<td>local thermalization</td>
</tr>
<tr>
<td>sQGP</td>
<td>strongly interacting QGP</td>
</tr>
<tr>
<td>Hadron gas</td>
<td>expansion and decay of resonances</td>
</tr>
</tbody>
</table>
Major Aims of Experiments on A+A Collisions

Study the QCD phase diagram:

1. detect signals of colour deconfinement;
2. detect signals of (partial) chiral symmetry restoration;
3. locate (tri)critical endpoint(s) of QCD phase diagram.

However, these are incredibly complicated tasks even for such an advanced experimental machines!
Specific and Principal Theoretical Difficulties

1. Tremendous complexity of A+A collisions

2. Deconfinement phase transition has no well defined order parameter in presence of quarks

3. Lattice QCD cannot guide us at high baryonic densities due to sign problem

Up to now we do not know:

1. What are the analogs of phases in finite volumes

2. What are the analogs of (tri)critical endpoint in finite volumes
Present Status of A+A Collisions

In 2000 CERN claimed indirect evidence for a creation of new matter.

In 2010 RHIC collaborations claimed to have created a quark-gluon plasma/liquid.

However, up to now we do not know:

1. whether deconfinement and chiral symmetry restoration are the same phenomenon or not?

2. are they phase transitions (PT) or cross-overs?

3. what are the collision energy thresholds of their onset?

Most promising signals of the onset of deconfinement phase transitions =>
Recently Suggested Signals of QCD Phase Transitions 2014-2018

During 2013-2017 our group developed a very accurate tool to analyze data

KAB et al., Europhys. Lett. 104 (2013)

The high quality description of data allowed us to elucidate new irregularities at CFO from data and to formulate new signals of two QCD phase transitions

KAB et al., EPJ A 52 (2016) No 6
KAB et al., EPJ A 52 (2016) No 8

Most successful version of the Hadron Resonance Gas Model (HRGM)

First work on evidence of two QCD phase transitions
Recently Suggested Signals of QCD Phase Transitions 2016

Our results

1-st order PT of Chiral Symmetry Restoration in hadronic phase occurs at about $\sqrt{s} \sim 4.3-4.9$ GeV

and 2-nd order deconfinement PT exists at $\sqrt{s} \sim 9$ GeV

Giessen group results


1-st order PT of ChSR in hadronic phase occurs at about $\sqrt{s} \sim 4.$ GeV
and 2-nd order deconfinement PT exists at $\sqrt{s} \sim 10$ GeV

Hard to locate them due to cross-over in Parton-Hadron-String-Dynamics model!
HRG: a Multi-component Model

HRG model is a truncated Statistical Bootstrap Model with the excluded volume correction a la VdWaals for all hadrons and resonances known from Particle Data Group.

For given temperature $T$, baryonic chem. potential, strange charge chem. potential, chem. potential of isospin 3-rd projection $\Rightarrow$ thermodynamic quantities $\Rightarrow$ all charge densities, to fit data.

Chemical freeze-out - moment after which hadronic composition is fixed and only strong decays are possible. I.e. there are no inelastic reactions.
Why Van der Waals or Hard-core Repulsion EoS?

1. Hard-core repulsion EoS (= VdWaals without attraction) has the same energy per particle as an ideal gas => there is no problems to convert its energy into ideal gas energy

Proof: if particles stay apart, they do not interact, if particles touch each other, potential energy is infinite and => such configurations do not contribute into partition

2. Hard-core repulsion does not create problems with QGP existence, since such repulsion suppresses pressure compared to ideal gas EoS
3. Almost in the whole hadronic phase the mixture of stable hadrons and resonances behaves as a mixture of ideal gases with small hard-core radii due to approximate cancellation of attraction and repulsion terms among the quantum second virial coefficients of hadrons.

R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons. 
HRG: a Multi-component Model

Traditional HRG model: one hard-core radius $R=0.25$-$0.3$ fm

Overall description of data (mid-rapidity or $4\pi$ multiplicities) is good!

But there are problems with $K^+/\pi^+$ and $\Lambda/\pi^-$ ratios at SPS energies! => Two component model was suggested
**HRG: a Multi-component Model**

Traditional HRG model: one hard-core radius $R = 0.25$-$0.3$ fm

Overall description of data (mid-rapidity or $4\pi$ multiplicities) is good!

Two hard-core radii: $R_{\pi} = 0.62$ fm, $R_{\text{other}} = 0.8$ fm
G. D. Yen, M. Gorenstein, W. Greiner, S. N. Yang, PRC (1997) 56

Or: $R_{\text{mesons}} = 0.25$ fm, $R_{\text{baryons}} = 0.3$ fm

Two component models do not solve the problems!
Hence we need more sophisticated approach.
Horns Description in 1-component HRG

Too slow decrease after maximum!

\[ \chi^2/dof = 21.8/14 \]

Too steep increase before maximum and too slow decrease after it!

\[ \chi^2/dof = 79/12 \]

Short dashed line: a desired result

Anti Lambda problem!

Simple Solution to Horn Puzzle

Use four hard-core radii: $R_{pi}$, $R_K$ are fitting parameters; $R_{mesons} = 0.4$ fm, $R_{baryons} = 0.2$ fm are fixed


$p$ is pressure  \( K \)-th charge density of \( i \)-th hadron sort is $n_i^K$ \( (K \in \{B, S, I3\}) \)

\( \mathcal{B} \) the second virial coefficients matrix $b_{ij} \equiv \frac{2\pi}{3}(R_i + R_j)^3$

\[
p = T \sum_{i=1}^{N} \xi_i, \quad n_i^K = Q_i^K \xi_i \left[ 1 + \frac{\xi^T \mathcal{B} \xi}{\sum_{j=1}^{N} \xi_j} \right]^{-1}, \quad \xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_s \end{pmatrix},
\]

NO strangeness suppression is included!

the variables $\xi_i$ are the solution of the following system:

\[
\xi_i = \phi_i(T) \exp \left( \frac{\mu_i}{T} - \sum_{j=1}^{N} 2\xi_j b_{ij} + \frac{\xi^T \mathcal{B} \xi}{\sum_{j=1}^{N} \xi_j} \right), \quad \phi_i(T) = \frac{g_i}{(2\pi)^3} \int \exp \left( -\frac{\sqrt{k^2 + m_i^2}}{T} \right) d^3k
\]

Chemical potential of \( i \)-th hadron sort: $\mu_i \equiv Q_i^B \mu_B + Q_i^S \mu_S + Q_i^{I3} \mu_{I3}$

$Q_i^K$ are charges, $m_i$ is mass and $g_i$ is degeneracy of the \( i \)-th hadron sort
Wide Resonances Are Important

The resonance width is taken into account in thermal densities.

In contrast to many other groups we found that wide resonances are VERY important in a thermal model. For instance, description of pions cannot be achieved without

\[ m_\sigma = 484 \pm 24 \text{ MeV}, \quad \text{width } \Gamma_\sigma = 510 \pm 20 \text{ MeV} \]


\[ n_{X}^{\text{tot}} = n_{X}^{\text{thermal}} + n_{X}^{\text{decay}} = n_{X}^{\text{th}} + \sum_{Y} n_{Y}^{\text{th}} \text{Br}(Y \rightarrow X) \]

\( \text{Br}(Y \rightarrow X) \) is decay branching of \( Y \)-th hadron into hadron \( X \)

We include all resonances in the HRGM with non-zero width, but to compensate the double counting of weak attraction we have to add a weak hard-core repulsion!

ADVANTAGE: at ChFO our hadrons have the same properties as in vacuum => no additional procedure is required to make them physical!
Data and Fitting Parameters

111 independent hadronic ratios measured at AGS, SPS and RHIC energies

# of published ratios measured at mid-rapidity depends on energy =>

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>$N_{rat}$ FO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>5</td>
</tr>
<tr>
<td>3.8</td>
<td>5</td>
</tr>
<tr>
<td>4.3</td>
<td>5</td>
</tr>
<tr>
<td>4.9</td>
<td>8</td>
</tr>
<tr>
<td>6.3</td>
<td>9</td>
</tr>
<tr>
<td>7.6</td>
<td>10</td>
</tr>
<tr>
<td>8.8</td>
<td>11</td>
</tr>
<tr>
<td>9.2</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>62.4</td>
<td>5</td>
</tr>
<tr>
<td>130</td>
<td>11</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Sum</td>
<td>111</td>
</tr>
</tbody>
</table>

# of local fit parameters cannot be larger than 4 (for all energies) or larger than 5 (for energies above 2.7 GeV)

# of local fit parameters for each collision energy = 3 (no $\gamma_s$ factor)
- $T$, mu_B, mu_I3
- Total # for 14 energies = 42

# of fit parameters with $\gamma_s$ factor is 4
- Total # for 14 energies = 56

# of global fit parameters = 4
- $R_{\pi}$, $R_K$, $R_{mesons}$, $R_{baryons}$
Results for Ratios (AGS)

There is NO anti Lambda problem here and all ratios are well described!

NO $\gamma_s$ is used!

There is an anti Lambda problem!
Also K-/K+ and K/pi and Lambda/pi- are not well described!

$T \simeq 131$ MeV, $\mu_B \simeq 539$ MeV, $\mu_{I3} \simeq -16$ MeV

Strangeness Enhancement as Deconfinement Signal

In 1982 J. Rafelski and B. Müller predicted that enhancement of strangeness production is a signal of deconfinement. (Phys. Rev. Lett. 48(1982))

In 1991 J. Rafelski introduced strangeness fugacity $\gamma_s$ factor. (Phys. Lett. 62(1991))

which quantifies strange charge chemical oversaturation ($>1$) or strange charge chemical undersaturation ($<1$)

Idea: if $s$-(anti)quarks are created at QGP stage, then their number should not be changed during further evolution since $s$-(anti)quarks number is small and since density decreases $\Rightarrow$ there is no chance for their annihilation! Hence, we should observe chemical enhancement of strangeness with $\gamma_s > 1$

However, until 2013 the situation with strangeness was unclear:

P. Braun-Munzinger & Co found that $\gamma_s$ factor is about $1$

F. Becattini & Co found that $\gamma_s$ factor is $< 1$
Systematics of Strangeness Suppression

Include $\gamma_s$ factor $\phi_i(T) \rightarrow \phi_i(T)\gamma_s^{s_i}$, into thermal density

where $s_i$ is number of strange valence quarks plus number of strange valence anti-quarks.

Thus, it is a strangeness fugacity which accounts for 2-nd conservation law


Typical values of $\chi^2$/dof $>$2 at given energy!
Most Problematic ratios at AGS, SPS, RHIC energies within Induced Surface Tension EoS


Note: RHIC BES I data have very large error bars and hence, are not analyzed!

Our IST EOS has 3 or 4 more fitting parameters compared to usual HRGM!

Conventional one component HRGM by PBM and Co:
Examples of Hadron Multiplicity Ratios for IST EoS, Multicomponent and One-component Van der Waals EoS (2018)

All EoS use $\gamma_s$ as a fitting parameter!

Blue bars IST EoS (will be presented in a moment)
Red bars Multicomponent Van der Waals EoS
Green bars One-component Van der Waals EoS (a la P. Braun-Munzinger et al),

One-component Van der Waals EoS always gives the worst results!
IST EOS Results for LHC energy

Light (anti)nuclei are NOT included into fit

\[ \chi^2 / \text{dof} = 9.1 / 10 = 0.91 \]

Radii are taken from the fit of AGS, SPS and RHIC data => single parameter Tcfo=150+-7MeV

In all our fits (anti)protons and (anti)Ξ-s do not show any anomaly compared to J. Stachel et.al. fit, since we have right physics!

=> There is no proton yield puzzle in a realistic HRGM!

In contrast to J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014) (anti)nuclei are NOT included into the fit!

Combined fit of AGS, SPS, RHIC and LHC data

\[ \chi^2_{\text{tot}} / \text{dof} \simeq 64.8 / 60 \simeq 1.08 \]

Compare with J. Stachel et al. fit quality for Tcfo = 156 MeV \[ \chi^2 / \text{dof} = 2.4 \] with our one!

BUT the puzzle of light (anti)nuclei remained unresolved!
Extrapolation to high densities induced surface tension

1. Allows to go beyond different hard-core radii!
2. Number of equations is 2 and it does not depend on the number different hard-core radii!

One component case with equations for pressure and surface tension can di

\[ p = \sum_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \]

\[ \Sigma = \sum_i R_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \exp \left( \frac{(1 - \alpha) S_i \Sigma}{T} \right) \]

\( R_k, V_k \) and \( S_k \) are hard-core radius, eigenvolume and eigensurface of hadron of sort \( k \)

- \( \Sigma \) switches excluded and eigen volume regimes high order virial coefficients?

\[ \Sigma = pR \exp \left( \frac{(1-\alpha)S\Sigma}{T} \right) \]

\[ p = T \phi \exp \left( \frac{\mu - pV_{\text{eff}}}{T} \right) \]

\[ V_{\text{eff}} = V_0 \left[ 1 + 3 \exp \left( \frac{(1-\alpha)S_i \Sigma}{T} \right) \right] \]

**Advantages**

1. Allows to go beyond the Van der Waals approximation
2. Number of equations is 2 and it does not depend on the number different hard-core radii!

**Main Properties of IST EOS**

- **Pressure**
  \[ p = \sum_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \]

- **Induced surface tension**
  \[ \Sigma = \sum_i R_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \exp \left( \frac{(1 - \alpha) S_i \Sigma}{T} \right) \]

\( \alpha \) switches excluded and eigen volume regimes high order virial coefficients?

- Low densities \( (\Sigma \to 0) \):

  \[ V_{\text{eff}} = 4V_0 \]

- High densities \( (\Sigma \to \infty) \):

  \[ V_{\text{eff}} = V_0 \]
Higher Virial Coefficients of IST EOS

- Virial expansion of one component EoS with induced surface tension

\[ p = nT \left[ 1 + 4V_o n + \left( 16 - 18(\alpha - 1) \right) V_o^2 n^2 \right. \\
\left. + \left( 64 - 216(\alpha - 1) + \frac{243}{2} (\alpha - 1)^2 \right) V_o^3 n^3 \right] + O(n^5) \]

- Second virial coefficient of hard spheres \( a_2 = 4V_o \) is reproduced always

- Fourth virial coefficient of hard spheres

\[ a_4 \approx 18.365V_o^3 \Rightarrow \alpha \approx 2.537, \ a_3 \approx -11.666V_o^2 \ - \text{not reproduced} \]

\[ \alpha \approx 1.245, \ a_3 \approx 11.59V_o^2 \ - \text{reproduced with 16 % accuracy} \]

One parameter reproduces two (3rd and 4th) virial coefficients and allows generalization for multicomponent case

\[ \Rightarrow \text{IST EoS is valid for packing fractions } \eta < 0.22 \]

Higher Virial Coefficients of ISCT EOS for Hard Spheres and Hard Discs

\[ \frac{p}{T} = \sum_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \]  
new term

\[ \frac{\Sigma}{T} = \sum_i R_i \phi_i \exp \left( \frac{\mu_i - pV_i - \Sigma S_i}{T} \right) \cdot \exp \left( \frac{(1 - \alpha_j)S_i \Sigma}{T} \right) \]

Introduce own \( \alpha_j \) for each sort of hard-core radius +

Add one more equation for a curvature tension =>

\[ p = T \sum_{k=1}^{N} \phi_k \left[ \frac{\mu_k}{T} - \nu_k \frac{p}{T} - s_k \frac{\Sigma}{T} - c_k \frac{K}{T} \right] \]

\[ \Sigma = AT \sum_{k=1}^{N} L_k \phi_k \exp \left( \frac{\mu_k}{T} - \nu_k \frac{p}{T} - s_k \frac{\Sigma}{kT} - c_k \frac{K}{T} \right) \]

\[ K = BT \sum_{k=1}^{N} L_k^2 \phi_k \exp \left( \frac{\mu_k}{T} - \nu_k \frac{p}{T} - s_k \frac{\Sigma}{kT} - c_k \beta_k \frac{K}{T} \right) \]

\( R_k, V_k, S_k \) and \( C_k \) are hard-core radius, eigenvolume, eigensurface and double perimeter of a hadron of sort \( k \)

\( A, B \) fitting parameters

Derived in arXiv:1907.09931 [cond-mat]

Resulting EoS is able to describe the full gaseous phase of HS, HD till the transition to solid state (usually \( \sim 10-14 \) virial coefficients)
The system of coupled equations between the system pressure model which has an infinite number of hard-core for the simplified version of statistical multifragmentation as the 3-rd and 4-th virial expansion coefficients can be found, for example, from Carnahan-Starling EoS [11] is a packing fraction of a considered system and is a dimensionless parameter of 1-st component concentration of 1-st component was never thoroughly analyzed. As it was shown in previous, the parameter was considered as independent constituents. The parameter was never thoroughly analyzed. As it was shown in previous, the parameter was considered as independent constituents.

\[ Z = \frac{p}{(T \eta)} \] compressibility

**ISCT EOS for Hard Discs of 2 sorts**

- **ZSHDM Solana EoS for HD**
  - ISCT: \( \alpha_1 = 1.076, \alpha_2 = 1.575, \)
  - \( \chi^2 = 0.05 \) for \( \eta = 0 \div 0.7 \)
  - ISCT: \( \alpha_1 = 1.557, \alpha_2 = 1.157, \)
  - \( \chi^2 = 0.008 \) for \( \eta = 0 \div 0.5 \)
  - IST: \( \alpha_1 = 4.736, \alpha_2 = 1.539, \)
  - \( \chi^2 = 4.48 \) for \( \eta = 0 \div 0.5 \)

The coe\(\)cients of gas of hard spheres to a more realistic one. In principle, the parameter was never thoroughly analyzed. As it was shown in previous, the parameter was considered as independent constituents.

- **ISCT**
- **IST**
- **Ratio of radii is fixed concentration of 1-st component**

N. Yakovenko, KAB, L. Bravina, E. Zabrodin, in preparation
tem of coupled equations between the system pressure and the hard-core face tension induced by the inter-particle interaction.

An apparent generalization of such a system is to re-introducing the curvature tension coefficients. The coefficients, and can be found, for example, from

\[ p = \frac{\rho}{(T \eta)} \]  

compressibility

\[ \chi^2 = 0.23 \text{ for } \eta = 0 \div 0.45 \]

\[ \chi^2 = 0.02 \text{ for } \eta = 0 \div 0.35 \]

\[ \chi^2 = 9.15 \text{ for } \eta = 0 \div 0.35 \]

\[ \eta = \sum_j v_j n_j \]

N. Yakovenko, KAB, L. Bravina, E. Zabrodin, in preparation
ISCT EOS for Hard Spheres of many sorts

ISCT EoS is derived for the mixture of Lorentz contracted rigid spheres of nearly massless hadrons to model ChSR PT in hadronic phase

KAB, E.G. Nikonov + students, in preparation

ISCT EoS is planned to be used for the mixture of nuclei and hadrons, for the mixture of hadrons, nuclei and QGP bags, both classical and quantum.

It opens entirely new perspective for modeling multicomponent mixtures, since it is very general
Systematics of Strangeness Suppression

Include $\gamma_s$ factor $\phi_i(T) \rightarrow \phi_i(T)\gamma_s^{s_i}$, into thermal density

where $s_i$ is number of strange valence quarks plus number of strange valence anti-quarks.

Thus, it is a strangeness fugacity which accounts for 2-nd conservation law


Typical values of $\chi^2$/dof $>2$ at given energy!
At c.m. energies above 8.8 GeV the strange hadrons are in chemical equilibrium! Why?

At c.m. energy below 4.9 GeV strange particles are also in chemical equilibrium, while at lower and higher energies of collision there is strangeness enhancement. Why?

Explanation of such peculiar behavior was found in 2017. See KAB et al., Phys. Part. Nucl. Lett. 15 (2018)
Jump of CFO Pressure at AGS Energies

- Temperature $T_{\text{CFO}}$ as a function of collision energy $\sqrt{s}$ is rather non smooth

- Significant jump of pressure ($\simeq 6$ times) and energy density ($\simeq 5$ times)

Trace Anomaly Peaks (Most Recent)

At chemical FO (large $\mu$)

Lattice QCD (vanishing $\mu$)


Are these trace anomaly peaks related to each other?
**Shock Adiabat Model for A+A Collisions**

A+A central collision at $1 < \text{Elab} < 30 \text{ GeV}$  

Its hydrodynamic model works reasonably well at these energies.

From a hydrodynamic point of view, this is a problem of arbitrary discontinuity decay: in normal media there appeared two shocks moving outwards.

Medium with Normal and Anomalous Properties

Normal properties, if
\[ \Sigma \equiv \left( \frac{\partial^2 p}{\partial X^2} \right) s_{\rho_B}^{-1} > 0 = \text{convex down} \]

Usually pure phases (Hadron Gas, QGP) have normal properties

\[ X = \frac{\varepsilon + p}{\rho_B} \] generalized specific volume
\[ \varepsilon \text{ is energy density, } p \text{ is pressure,} \]
\[ \rho_B \text{ is baryonic charge density} \]

Anomalous properties otherwise.

Almost in all substances with liquid-gas phase transition the mixed phase has anomalous properties!

Then shock transitions to mixed phase are unstable and more complicated flows are possible.

Shock adiabat example

Region 1-2 is mixed phase with anomalous properties.
Highly Correlated Quasi-Plateaus

For realistic EoS at mixed phase entropy per baryon should have a plateau!

Since the main part of the system entropy is defined by thermal pions => thermal pions/baryon should have a plateau!

Also the total number of pions per baryons should have a (quasi)plateau!


Entropy per baryon has wide plateaus due to large errors

Quasi-plateau in total number of pions per baryon?

Thermal pions demonstrate 2 plateaus

Unstable Transitions to Mixed Phase

\[ X = \frac{\varepsilon + p}{\rho_B^2} \] — generalized specific volume

QGP? Mixed phase

Hagedorn gas


GSA Model explains irregularities at CFO as a signature of mixed phase

QGP EOS is MIT bag model with coefficients been fitted with condition \( T_c = 150 \text{ MeV} \) at vanishing baryonic density!

HadronGas EOS is a simplified HRGM discussed above.
We found one-to-one correspondence between these two peaks.

Thus, sharp peak of trace anomaly at c.m. energy 4.9 GeV evidences for mixed phase formation. But what is it?

Is second peak at c.m. energy 9.2 GeV due to another PT?
Trace anomaly peaks and baryonic density peaks are related to each other.

Can we relate them to $\gamma_{S}$ irregularities?

At c.m. energies above 8.8 GeV the strange hadrons are in chemical equilibrium due to formation of QG bags, with Hagedorn mass spectrum!

Hagedorn mass spectrum is a perfect thermostat and a perfect particle reservoir! => Hadrons born from such bags will be in a full equilibrium!


At c.m. energy 4.9 GeV strange particles are in chemical equilibrium due to formation of mixed phase, since under CONSTANT PRESSURE condition the mixed phase of 1-st order PT is explicit thermostat and explicit particle reservoir!
Explicit Thermostats

1. At limiting temperature the Hagedorn mass spectrum is a perfect thermostat and a perfect particle reservoir since it is a kind of mixed phase!

2. Under a constant external pressure ANY MIXED PHASE is a perfect thermostat and a perfect particle reservoir!

As long as two phases coexist
   • Export/import of heat does not change T!

Pressure = const

\[ T = T_c = 273K \]

• First take heat \( dQ = E \) from system with temperature \( T \):
• Then give it to thermostat

\[ \Rightarrow T = \text{const}, \mu = \text{const} \]

• Export/import of finite amount of phases \( \Rightarrow T = \text{const}, \mu = \text{const} \)
Besides Quasi-plateaus There Exist Additional Hints for 2 Phase Transitions


Each peak in trace anomaly $\delta$ corresponds to a huge peak in baryonic charge density (they exist at the end of quasi-plateaux).

Thermostatic properties of Hagedorn mass spectrum of QGP bags explain strangeness equilibration at $\sqrt{s} > 8.8$ GeV

Thermostatic properties of the 1-st order PT mixed phase explain strangeness equilibration at $4.3 \text{ GeV} < \sqrt{s} < 4.9$ GeV

Other models predict deconfinement at $\sqrt{s} = 8.7 - 9.2$ GeV:
Onset of Deconfinement in Other Models

Che Ming Ko et al., arXiv 1702.07620 [nucl-th]
J. K. Nayak, S. Banik, Jan-e Alam, PRC 82, 024914 (2010)

Light nuclei fluctuations are enhanced at c.m. energy 8.8 GeV => CEP is located nearby!

Counting for thermodynamic, hydrodynamic and fluctuation signals we conclude that 3CEP may exists at 8.8-9.2 GeV

Strangeness Horn and other strange particles ratios can be explained, if the onset of deconfinement begins at c.m. energy 8.7 GeV!

If There Are 2 Phase Transitions, then

1. What kind of phase exists at $\sqrt{s} = 4.9-9.2$ GeV?

2. Can we get any info about its properties?
Effective Number of Degrees of Freedom II

Employed EoS:

\[ p \text{ New phase} = A_0 T^4 + A_2 T^2 \mu^2 + A_4 \mu^4 - B \]

\[
\begin{align*}
A_0 &\approx 2.53 \cdot 10^{-5} \text{ MeV}^{-3} \text{fm}^{-3} \\
A_2 &\approx 1.51 \cdot 10^{-6} \text{ MeV}^{-3} \text{fm}^{-3} \\
A_4 &\approx 1.001 \cdot 10^{-9} \text{ MeV}^{-3} \text{fm}^{-3} \\
B &\approx 9488 \text{ MeV} \text{ fm}^{-3}
\end{align*}
\]

It corresponds to massless particles with strong attraction generated by the vacuum pressure \( B \)
(B was not fitted, but was chosen to correspond to lattice QCD!)

Then one can find an effective #dof from \( A_0 \)!

For massless particles

\[ A_0 = N_{dof} \frac{\pi^2}{90} \text{ with } N_{dof} = N_{dof}^{Bosons} + \frac{7}{8} \times 2 N_{dof}^{Fermions} \]

\[ \Rightarrow N_{dof} = A_0 \mathcal{h}^3 \frac{90}{\pi^2} \approx 1800 \]

It’s a huge number for QGP!

Possible Interpretations

1. The phase emerging at $\sqrt{s} = 4.9-9.2$ GeV has no Hagedorn mass spectrum, since strange hadrons are not in chemical equilibrium.

2. 1800 of massless dof may evidence either about chiral symmetry restoration in hadronic sector.

3. Or 1800 of massless dof may evidence about tetra-quarks with massive strange quark!?

   see Refs. in R.D. Pisarski, 1606.04111 [hep-ph]

4. Or 1800 of massless dof may evidence about quarkyonic phase!? 


5. 1800 of massless dof may evidence about something else…
Evidence for Chiral Symmetry Restoration?

There are KINKs in apparent temperature of K+ and K- at 4.3-6.3 GeV

\[ T_k^*(p_T \to 0) = \frac{T_{fo}}{1 - \frac{1}{2} \frac{v_T^2}{T_{fo}} (m_k/T_{fo} - 1)} \approx T_{fo} + \frac{1}{2} m_k v_T^2 \]

K.A. Bugaev et al., arXiv:1801.08605 [nucl-th]

apparent temperature = inverse slope of p_T spectra at p_T \to 0:
depends on FO temperature and mean transversal velocity

Simple (naive?) explanation:
1. FO temperature cannot decrease, if \sqrt{s} increases.
2. mean transversal velocity cannot decrease, if \sqrt{s} increases.
\implies mass of Kaons gets lower due to ChSRestoration!?


Suggestions for RHIC BESII, NICA and FAIR:
measure p_T spectra and apparent temperature of Kaons and (anti)Λ hyperons at 4.3-6.3 GeV with high accuracy and small collision energy steps!
Parton-Hadron-String-Dynamics Model

1-st order PT of Chiral Symmetry Restoration in hadronic phase occurs at about $\sqrt{s} \sim 4$. GeV

and 2-nd order deconfinement PT exists at $\sqrt{s} \sim 9$ GeV

Hard to locate them due to cross-over in A+A!

Alternative Approach = Meta-analysis of data description by Event Generators

Idea is to analyze Event Generators without QGP formation (HG) and with QGP formation (QGP),

compare them and find out which group describes the data better at what energies!

If we find the equal quality of description, then it maybe a phase transition region

Newest Signal of QGP Formation

Idea: at high energies QGP QDD must be better than HG QDD, at low energies vice versa!

Then equal QDD of two kinds of models is about mixed phase threshold

Meta-analysis gives 2 regions of intersection:

1-st mixed phase at c.m. energies 4.3-4.9 GeV
2-nd mixed phase (?) at c.m. energies 10-13.5 GeV

BOTH CAN BE CHECKED at NICA and FAIR!

Analyzed codes are:

HG=ARC+RQMD2.1(2.3)+HSD+UrQMD1.3(2.0,2.1,2.3)+SHM+AGSHIJET_N*

QGP=QuarkComb.+3FD+PHSD+CoreCorona
Comparison of Hadronic and QGP event generators of HIC

Quality of Data Description = QDD

\[ \langle \chi^2 / n \rangle^h_A \bigg|_M = \frac{1}{n_d} \sum_{k=1}^{n_d} \left[ \frac{A^\text{data,h}_k - A^\text{model,h}_k}{\delta A^\text{data,h}_k} \right]^2 \bigg|_M \]

Error of QDD

\[ \Delta_A \langle \chi^2 / n \rangle^h_A \bigg|_M \equiv \left[ \frac{n_d}{\delta A^\text{data,h}_k} \right]^{\frac{1}{2}} \]

Mean deviation squared per data point of observable A, for hadron h, by model M

| \langle \chi^2 / n \rangle = & \text{m}_{\text{r}}\text{-distribution} & \text{rapidity distribution} & \text{Yields} |
|-------------------------|------------------------------|-------------------------------|--------------|
| K^+ set 1               & 1.26 ± 0.34                 & 2.355 ± 0.626                & HSD & UrQMD1.3(2.1) |
|                          & HSD & UrQMD2.0               & Fig.7, Ref. [31]             & Fig.1, 2 Ref. [31] |
| K^+ set 2               & 1.23 ± 0.22                 & N/A                          & N/A          |
|                          & 3 versions of HSD & UrQMD2.1 & Figs. 8, 10, 12 Ref. [31]    | N/A          |
| K^+                    & 1.15 ± 0.65                 & N/A                          & 7.65 ± 5.53  |
|                          & 3FD                         & N/A                          & 3FD          |
|                          & Fig.1, Ref. [37]            & N/A                          & Fig.9, Ref. [36] |
| K^-                    & 1.51 ± 0.74                 & N/A                          & 0.15 ± 0.775 |
|                          & 3FD                         & N/A                          & 3FD          |
|                          & Fig.1, Ref. [37]            & N/A                          & Fig.9, Ref. [36] |
| \Lambda set 1           & 2.54 ± 0.01, 1.07 ± 0.002   & 2.75 ± 1.66, 5.74 ± 2.1      & HSD & UrQMD1.3(2.1) |
|                          & ARC, RQMD2.1                & ARC,RQMD2.1                   & Fig. 1 Ref. [31] |
|                          & Fig. 2 Ref. [21]            & Fig. 4 Ref. [21]              & N/A          |
| \Lambda set 2           & 3.65 ± 0.6, 2.4 ± 0.55      & 4.67 ± 1.155                 & N/A          |
|                          & m_{T+y}:RQMD2.3(cascade),   & QuarkComb. model              & N/A          |
|                          & RQMD2.3(mean-field)         & Fig. 5 Ref. [30]              & N/A          |
|                          & Figs. 5, 7 Ref. [30]        & Fig. 5 Ref. [34]              & N/A          |
| \phi                    & N/A                         & N/A                          & 3.46 ± 3.72, 3.01 ± 3.5 |
|                          & SHM, UrQMD                  & Fig. 17 Ref. [32]             & [hep-ph]     |

Meta-analysis of QDD for 6 HG models and for 4 QGP models:

1. scan of data and theoretical curves for strange hadrons
2. average QDD over observables and same kind of models
3. average QDD over hadrons and compare models

Newest Signal of QGP Formation

Idea: at high energies QGP QDD must be better than HG QDD, at low energies vice versa!
Then equal QDD of two kinds of models is about mixed phase threshold

Meta-analysis gives 2 regions of intersection:
1-st mixed phase at c.m. energies 4.3-4.9 GeV
2-nd mixed phase (?) at c.m. energies 9.5-13.5 GeV
BOTH CAN BE CHECKED at NICA and FAIR!

Possible Interpretation

Evolution of possible «initial» states with collision energy

1 Phase Transition

Possible «initial» states correspond to the trajectories AD or BD as it follows from KTBO-plot 1 for the case of critical endpoint. The trajectory CD is located far from the mixed phase region and, hence, it cannot generate the second region in which the QDDs of HG and QGP models are equally good.

2 Phase Transitions

In case of the tricritical endpoint the second region in which the QDDs of HG and QGP models are equally good may, alternatively, appear due to the second phase transition.

At first glance it seems that at the collision energy $p_{NN} = 12.3$ GeV the QGP states created by the corresponding generators touch the phase boundary with hadron phase. However, one must remember that both curves depicted in Fig. 4 have, in fact, finite width defined by the error bars. Taking into account an overlap of the curves with finite error bars, one immediately concludes that the overlap region is rather wide on collision energy scale, namely it ranges from $p_{NN}' = 10$ GeV to $p_{NN}' = 13.5$ GeV. Recalling that the collision energy width of the mixed phase at low values of $p_{NN}$ is below 1 GeV, one may guess that $4.3\text{ GeV} < p_{NN} < 4.9\text{ GeV}$.

Appearance of 2-nd intersection at c.m. energies 9.5-13.5 GeV probably means that trajectory goes near critical (left) or 3critical (right) endpoint.
Possible Interpretation

Evolution of possible «initial» states with collision energy

1 Phase Transition

- 1st order phase transition
- Initial states of A+A collision

- A
- B
- C
- D
- CEP

4.3 GeV

4.9 GeV

Hadron gas

Mixed phase

QGP

11.75±2.25 GeV

2 Phase Transitions

- 1st order phase transition
- 2nd order phase transition
- Initial states of A+A collision

- triCEP

4.3 GeV

Mixed phase

4.9 GeV

Hadron gas

near massless HG

QGP

11.75±2.25 GeV

Appearance of 2-nd intersection at c.m. energies 9.5-13.5 GeV probably means that trajectory goes near critical (left) or 3critical (right) endpoint

To ultimately resolve this problem we need HIC data at 4.5-13.5 GeV
Conclusions

1. High quality description of the chemical FO data allowed us to find **few novel irregularities** at c.m. energies 4.3-4.9 GeV (pressure, entropy density jumps e.t.c.)

2. HRG model with multicomponent repulsion allowed us to find the **correlated (quasi)plateaus** at c.m. energies 3.8-4.9 GeV which were predicted many years ago.

3. The second set of plateaus and irregularities may be a signal of another phase transition! Then the QCD diagram **3CEP may exist at the vicinity of c.m. energies 8.8-9.2 GeV.**

4. Generalized shock adiabat model allowed us to describe entropy per baryon at chemical FO and determine the parameters of the **EOS of new phase from** the data.

5. Hopefully, RHIC, FAIR, NICA and J-PARC experiments will allow us to make more definite conclusions
Table 1. The summary of possible PT signals. The column II gives short description of the signal, while the columns III and IV indicate its location, status and references.

<table>
<thead>
<tr>
<th>No and Type</th>
<th>Signal</th>
<th>C.-m. energy $\sqrt{s}$ (GeV) Status</th>
<th>C.-m. energy $\sqrt{s}$ (GeV) Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Thermodynamic</td>
<td>Minimum of the chemical freeze-out volume $V_{CFO}$.</td>
<td>In the one component HRGM it is seen at 4.3-4.9 GeV [13]. Not seen.</td>
<td></td>
</tr>
<tr>
<td>4. Thermodynamic</td>
<td>Peak of the trace anomaly $\delta = \frac{\epsilon - 3p}{T^4}$.</td>
<td>Strong peak is seen at 4.9 GeV [5]. Is generated by the $\delta$ peak on the shock adiabat at high density end of the mixed phase [5].</td>
<td>Small peak is seen at 9.2 GeV [5]. Require an explanation.</td>
</tr>
<tr>
<td>5. Thermodynamic</td>
<td>Peak of the baryonic density $\rho_b$.</td>
<td>Strong peak is seen at 4.9 GeV [10]. Is explained by $\min{V_{CFO}}$ [14].</td>
<td>Strong peak is seen at 9.2 GeV [10]. Require an explanation.</td>
</tr>
<tr>
<td>6. Thermodynamic</td>
<td>Apparent chemical equilibrium of strange charge. $\gamma_s = 1$ is seen at 4.9 GeV [10]. Explained by thermostatic properties of mixed phase at $p = \text{const}$ [10].</td>
<td>$\gamma_s = 1$ is seen at $\sqrt{s} \geq 8.8$ GeV [10, 13]. Explained by thermostatic properties of QG bags with Hagedorn mass spectrum [10].</td>
<td></td>
</tr>
<tr>
<td>7. Fluctuational (statistical mechanics)</td>
<td>Enhancement of fluctuations</td>
<td>N/A</td>
<td>Seen at 8.8 GeV [9]. Can be explained by CEP [9] or 3CEP formation [10].</td>
</tr>
<tr>
<td>8. Microscopic</td>
<td>Strangeness Horn ($K^+/\pi^+$ ratio)</td>
<td>N/A</td>
<td>Seen at 7.6 GeV. Can be explained by the onset of deconfinement at [15]/above [8] 8.7 GeV.</td>
</tr>
</tbody>
</table>
Thank You for Your Attention!
In 1982 J. Rafelski and B. Müller predicted that enhancement of strangeness production is a signal of deconfinement.

We observe 3 regimes: at c.m. energies 4.3 GeV and ~8 GeV slope of experimental data drastically changes!

Combining Rafelsky & Muller idea with our result that mixed phase appears at 4.3 GeV we explain this finding:

Below 4.3 GeV Lamdas appear in N+N collisions

Above 4.3 GeV and below ~8 GeV formation of QGP produces additional s (anti)s quark pairs

Above ~8 GeV there is saturation due to small baryonic chemical potential
We predicted jumps of these ratios at 4.3 GeV due to 1-st order PT and change of their slopes at ~ 9-12 GeV due to 2-nd order PT (or weak 1-st order PT?)

To locate the energy of slope change we need more data at 7-13 GeV
For all nuclei of A nucleons the hard-core radius is 0.365 $\sqrt[3]{A}$ fm

1. all loosely bound nuclei are frozen together with hadrons $\Rightarrow$

$$T_{CFO} \simeq 153 \pm 7 \text{MeV} \quad \Rightarrow \quad \chi^2/dof = (9.7 + 8.7)/(11 + 8 - 2) = 18.4/17 \simeq 1.08$$

2. all loosely bound nuclei are frozen separately from hadrons $\Rightarrow$

Hadrons $T_{CFO} \simeq 150 \pm 7 \text{ MeV}$

(anti)Nuclei $T_{CFO} \simeq 168.5 \pm 7 \text{ MeV}$

$$\chi^2/dof = (9.1+2.2)/(11+8-3) = 11.3/16 \simeq 0.71$$

Remarkable improvement of the fit quality!

But why are the (anti)nuclei frozen at so high temperature?

KAB et al., arXiv:1812.02509v1 [hep-ph]
ALICE Data on Snowballs in Hell: Why Are They Thermalized?

Hagedorn mass spectrum of QGP bags

\[
\frac{dN}{dM} \sim \exp \left[ + \frac{M}{T_H} \right]
\]

is a perfect thermostat and a perfect particle reservoir! \(\Rightarrow\)

Hadrons born from such bags will be in a full equilibrium!


Moreover, the analysis of micro canonical partition function of a system containing of 1 Hagedorn bag and \(N\) Boltzmann particles shows that at the end of mass spectrum (where it terminates) the temperature depends on the mass of particle and the mass of QGP bag: a few heavier particles will be hotter than many light ones!

So far Unobserved Signals

Several MOST PROMISING signals of the DECONFINEMENT phase transition were suggested in 80-th and 90-th to observe it:

real or virtual photons production;
p_T distribution of secondary hadrons;
strangeness enhancement;
J/ψ suppression...

So far, NONE of them was OBSERVED in a suggested way!

- The first reason is that in the presence of quarks the deconfinement PT HAS NO well defined ORDER PARAMETER! Thus, we have to study what is not well defined.

- The second reason is due to TREMENDOUS COMPLEXITY of the phenomena to be modeled and understood!

Claim that onset of deconfinement is at c.m. energy 7.6 GeV

F is Fermi variable $\sim s^{1/4}$


It was suggested in analog of caloric curve!


I suggested to write that it is a mixed phase at c.m. energy 7.6 GeV
Problems of Statistical Model of Early Stage

It «predicted Strangeness Horn», but


1. it has phase transition at temperatures above 200 MeV
   this contradicts to lattice QCD at 0 baryonic density

2. the high density phase has wrong number of degrees of freedom compared to QCD (too few!)

=> from two false statements one get deduce the true one

Nevertheless, due to inability to reproduce the Strangeness Horn
many researchers believed that this is a signal of some non-hadronic physics
Generalized Shock Adiabat Model

In case of unstable shock transitions more complicated flows appear:

which leads to quasi plateau!

Remarkably

Z model has stable RHT adiabat, which leads to quasi plateau!


If during expansion entropy conserves, then unstable parts lead to entropy plateau!

In each point of simple wave $\frac{s}{\rho_B} = \text{const}$

shock 01 + compression simple wave

FIG. 9. The entropy per baryon as a function of the bombarding energy per nucleon of the colliding nuclei for models W and Z. The points 1, 2, 3, 4 on curve W correspond to those on the generalized adiabatic as displayed in Fig. 7. The point 1 on curve Z marks the boundary to the mixed phase.
Details on Highly Correlated Quasi-Plateaus

- **Common width** $M$ – number of points belonging to each plateau
- **Common beginning** $i_0$ – first point of each plateau
- For every $M$, $i_0$ minimization of $\chi^2$/dof yields $A \in \{s/\rho_B, \rho^{th}_\pi/\rho_B, \rho^{tot}_\pi/\rho_B\}$:

\[
\chi^2/\text{dof} = \frac{1}{3M - 3} \sum_A \sum_{i=i_0}^{i_0+M-1} \left( \frac{A - A_i}{\delta A_i} \right)^2 \Rightarrow A = \sum_{i=i_0}^{i_0+M-1} \frac{A_i}{(\delta A_i)^2} \bigg/ \sum_{i=i_0}^{i_0+M-1} \frac{1}{(\delta A_i)^2}
\]

<table>
<thead>
<tr>
<th>M</th>
<th>$i_0$</th>
<th>$s/\rho_B$</th>
<th>$\rho^{th}_\pi/\rho_B$</th>
<th>$\rho^{tot}_\pi/\rho_B$</th>
<th>$\chi^2$/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>11.12</td>
<td>0.52</td>
<td>0.85</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11.31</td>
<td>0.46</td>
<td>0.89</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10.55</td>
<td>0.43</td>
<td>0.72</td>
<td>1.64</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11.53</td>
<td>0.47</td>
<td>0.84</td>
<td>4.45</td>
</tr>
</tbody>
</table>

**Low energy plateau**

<table>
<thead>
<tr>
<th>M</th>
<th>$i_0$</th>
<th>$s/\rho_B$</th>
<th>$\rho^{th}_\pi/\rho_B$</th>
<th>$\rho^{tot}_\pi/\rho_B$</th>
<th>$\chi^2$/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>19.80</td>
<td>0.88</td>
<td>2.20</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>18.77</td>
<td>0.83</td>
<td>2.05</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>17.82</td>
<td>0.77</td>
<td>1.87</td>
<td>0.87</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16.26</td>
<td>0.64</td>
<td>1.62</td>
<td>3.72</td>
</tr>
</tbody>
</table>

**High energy plateau**

\[
R = \frac{s/\rho_B}{\rho_B}, \quad R = 3/2(\pi^+ + \pi^-)/\rho_B, \quad R = \frac{\rho^{th}_\pi/\rho_B}{\rho_B}
\]
min V at ChFO

SAME energy!

min X at ChFO

X is generalized specific volume

Is second X peak due to other PT?

min X at shock adiabat!


K.A. Bugaev et al., EPJ A (2016)

In this work we gave a proof that min X at boundary between QGP? and mixed phase generates min X at ChFO which leads to min V of ChFO!
Effective Number of Degrees of Freedom I

One look at this EoS:

\[ p_{QGP} = A_0 T^4 + A_2 T^2 \mu^2 + A_4 \mu^4 - B = \begin{array}{c} \text{fitting} \end{array} A_0^L T^4 + A_2^L T^2 \mu^2 + A_4^L \mu^4 - B_{eff} \]

\[ B_{eff}(T, \mu_B) = B - (A_0 - A_0^L)T^4 - (A_2 - A_2^L)T^2 \mu^2 - A_4 - A_4^L \mu^4 \]

In our fit of entropy per baryon along the shock adiabat we used the QGP EoS

\[ p_{QGP} = \begin{array}{c} \text{fitting} \end{array} A_0 T^4 + A_2 T^2 \mu^2 + A_4 \mu^4 - B \]

\[ A_0 \simeq 2.53 \cdot 10^{-5} \text{ MeV}^{-3} \text{fm}^{-3} \]
\[ A_2 \simeq 1.51 \cdot 10^{-6} \text{ MeV}^{-3} \text{fm}^{-3} \]
\[ A_4 \simeq 1.001 \cdot 10^{-9} \text{ MeV}^{-3} \text{fm}^{-3} \]
\[ B \simeq 9488 \text{ MeV} \text{ fm}^{-3} \]

Onset of Deconfinement in Other Models

Che Ming Ko et al., arXiv 1702.07620 [nucl-th]

J. K. Nayak, S. Banik, Jan-e Alam, PRC 82, 024914 (2010)

Light nuclei fluctuations are enhanced at c.m. energy 8.8 GeV => CEP is located nearby!

Counting for thermodynamic, hydrodynamic and fluctuation signals we conclude that 3CEP may exists at 8.8-9.2 GeV

Strangeness Horn and other strange particles ratios can be explained, if the onset of deconfinement begins at c.m. energy 8.7 GeV!