import numpy as np
from tqdm import tqdm
def fun_min_theta_gap(theta_tab,kx_tab,mu,delta):
gap_th_val=np.zeros_like(theta_tab)
for i,th in enumerate(theta_tab):
tmp1=2*np.cos(th/2)*np.cos(kx_tab)-mu
tmp2=2*delta*np.sin(th/2)*np.sin(kx_tab)
ener=np.sqrt(tmp1**2+tmp2**2)
gap_th_val[i]=np.min(ener)
return gap_th_val
up_lim_mu=2
low_lim_mu=0
dat_pnt_mu=10
up_lim_sup=1
low_lim_sup=0
dat_pnt_sup=10
up_lim_kx=np.pi
low_lim_kx=0
dat_pnt_kx=10
up_lim_theta=np.pi
low_lim_theta=0
dat_pnt_theta=10
mu_tab=np.linspace(low_lim_mu,up_lim_mu,dat_pnt_mu)
sup_tab=np.linspace(low_lim_sup,up_lim_sup,dat_pnt_sup)
kx_tab=np.linspace(low_lim_kx,up_lim_kx,dat_pnt_kx)
theta_tab=np.linspace(low_lim_theta,up_lim_theta,dat_pnt_theta)
min_theta_tab=np.array((np.size(mu_tab),np.size(sup_tab)))
min_gap_tab=np.array((np.size(mu_tab),np.size(sup_tab)))
for i,mu in enumerate(mu_tab):
for j,delta in enumerate(sup_tab):
min_ener_th=fun_min_theta_gap(theta_tab,kx_tab,mu,delta)
print(min_ener_th)