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A self-consistent field method is set up, general enough to be used in case we are treating configuration 
interaction between any number of states each represented by a single determinantal wave function. Thus 
it is more general than the Hartree-Fock method, which is limited to a single determinantal wave function. 
We cannot use a variation method, for if a sufficiently extensive configuration interaction is carried out, 
an equally good final value of the energy and wave function will be obtained irrespective of the one-electron 
functions used. Instead, we return to the original, postulate of Hartree, that each electron is assumed to 
move in the averaged charge distribution of all other electrons, and all nuclei. I t is shown that when this 
condition is properly interpreted, it leads to a unique potential for the self-consistent field, all the one-
electron orbitals being solutions of the same Schrodinger equation, and hence orthogonal to each other. 
This field is somewhat different from that of Hartree, who did not literally follow this prescription for 
finding the potential. For the case where we are using a single determinantal function, the present method 
reduces to the simplification of the Hartree-Fock method recently proposed by the writer. 

THE Hartree-Fock method, and the simplification 
of it recently suggested by the writer,1 rest on 

the assumption that we are dealing with an n electron 
wave function given by a single determinant, or anti­
symmetrized product, formed, from n one-electron 
orbital functions of coordinate and spin. Often, however, 
we wish to deal with a more general case, in which the 
wave function is approximated by a linear combination 
of such determinantal wave functions. The process of 
combining such determinants to get a better approxi­
mation than can be secured by one alone is generally 
called configuration interaction. In this note we shall 
examine the more general self-consistent field method 
to be used in such cases of configuration interaction. 

If we start with a complete orthogonal set of one-
electron spin-orbital functions Ui, then the products 
Uj(xi)Uk(%2)- • 'Up(xn)y where the indices j , k, •••, p 
are to take on all combinations of values, obviously 
form a complete orthogonal set of n electron functions 
coordinates and spin, and the antisymmetrized products 
or determinants (w!)~* det{uj(xi)uk(%2)' • -up(xn)} form 
a complete orthogonal set of antisymmetric n electron 
functions of coordinates and spin. Thus the exact wave 
function of an n electron problem can be expanded as a 
linear combination of such determinantal functions, so 
that a proper treatment of configurational interaction 
can give an exactly correct solution and can yield a 
function which takes full account of the correlation 
between the motion of electrons, though of course it is 
well known that a single determinantal function by 
itself does not correctly describe this correlation. The 
expansion of a given wave function in terms of determi­
nantal wave functions may be slowly convergent; 
studies of the problem of the ground state of helium 
by Taylor and Parr,2 and by Green et al.z show that in 

* Assisted by the U. S. Office of Naval Research. 
1 J. C. Slater, Phys. Rev. 81, 385 (1951). 
2 G. R. Taylor and R. C. Parr, Proc. Natl. Acad. Sci. 38, 154 

(1952). 
3 Green, Mulder, Ufford, Slaymaker, Krawitz, and Mertz, 

Phys. Rev. 85, 65 (1952). 

this case the convergence is rather slow. On the other 
hand, the recent success of Meckler4 in studying the 
oxygen molecule suggests that in at least some im­
portant cases the method of configuration interaction 
may converge well enough to be of practical value. It 
is well known that the Heitler-London and valence-bond 
methods can be regarded as examples of configuration 
interaction between a number of different configurations 
set up in terms of antisymmetrized products of mo­
lecular orbitals. Thus any advantages lying in those 
methods can surely be secured by using configuration 
interaction, between a relatively limited number of 
configurations. The case of oxygen studied by Meckler 
included enough configurations so that his treatment is 
more general than a valence-bond method, and the 
same thing is true of various other investigations under 
way in this laboratory. 

Let us then consider the problem of determining the 
one-electron orbitals Uj by a self-consistent method. It 
is at once obvious that no variation method, like the 
Hartree-Fock procedure, can be used in this case, for 
that depends on choosing those Ui& which allow us to 
make the best single determinantal function. In the 
present case, no matter what orbitals we use, provided 
they form a complete orthogonal set, we can eventually 
get a precisely correct answer, by carrying the con­
figuration interaction far enough. The only criterion 
which we can now use to determine the Ui's is that we 
wish the set in terms of which the process of configura­
tion interaction will give a series which converges most 
rapidly. This is not a criterion which is readily expressed 
analytically. Accordingly we turn in quite a different 
direction for the determination of the u/s and go back 
to something much more like Hartree's original intuitive 
argument for setting up the self-consistent field; We 
shall demand very simply that the UiS be solutions of 
a Schrodinger equation representing the motion of an 
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Molecular Theory Group, Massachusetts Institute of Technology, 
July 15, 1952, p. 62; October 15, 1952, p. 19 (unpublished). 
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electron in the field of all nuclei, and in the field of all 
other electrons, averaged over the motions of these 
other electrons. 

This very simple requirement leads to a perfectly 
unique Schrodinger equation. Let the wave function 
of all n electrons be U(xh • • •, #w). This is an antisym­
metric function, which may well be expressed as a linear 
combination of determinantal functions of the type we 
have just been discussing. The quantity Z7*(#r • -xn) 
XU(xi- • 'Xn)dxi' - -dxn measures the probability that 
simultaneously electron 1 be in dxh • • • electron n in 
dxn (where we are including the spins with the coordi­
nates). The electrostatic interaction energy between 
electron 1 and all other electrons is ^L,(j)e2/rih where j 
goes from 2 to n, and r\$ is the distance from electron 1 
to the j t h electron. Thus 

dx\ I U*(xv - 'Ocn)J^(j)e2/rijU(xi' • -xn)dx2' • -dxn 

can be considered as the probability that the electron 1 
be in dxi, times the average value of the electrostatic 
interaction energy as averaged over all positions and 
spins of the electrons 2- • -n. Since the probability that 
electron 1 be in dxi, irrespective of the positions of other 
electrons, is dxi%fU*(xv • -xn)U(xv • -xn)dx2- • -dxn, we 
see that the average potential energy of interaction 
between electron 1 and all other electrons, when 
electron 1 has coordinates and spin given by xi, is 

Ve(xd 

I U*(xv * '^n)H(j)e2/rijU(xv - •xn)dx2' • -dxn 

=—— • a) 
I {/*(#!• • 'Xn)U(xi- *-xn)dx2* • -dxn 

If we add this to Fw(#i), the potential energy of an 
electron of coordinate and spin xi in the field of the 
nuclei, to get V(xi), then we see that V(xi) represents 
the average potential energy of the electron of coordi­
nates and spin xi, averaged over the motions and spins 
of all other electrons. We assume, then, that the correct 
generalization of the method of the self-consistent field 
is to set up a one-electron Schrodinger equation moving 
in this potential V(x). 

We have already mentioned (reference 1) the simpli­
fication of the Hartree-Fock method, by which a single 
Schrodinger equation was introduced in place of the 
Hartree-Fock equations, in the case where the wave 
function of the many-electron problem could be written 
as a single determinant. If we replace our function U 
by a single determinant, then it is easily shown that 
our Schrodinger equation reduces to that given in Eq. 
(7) of reference 1, so that the method of reference 1 is 
a special case of that which is now proposed. We can 
give the same interpretation to the potential Ve that 

was done in reference 1. That is, it is the potential 
energy of interaction of the electron with coordinates 
and spin Xi, with an electronic distribution of density 

(n—\) I U*(xi* • -xn)U(xi- - -xn)dxr • -dxn 

— , (2) 

I Z7* (xi • • • xn) U(xv xn)dx2 • • • dxn 

with coordinates and spin given by x%. This electronic 
distribution consists of a total charge equal to (n— 1) 
electrons, and its density goes to zero when x2 equals x\; 
that is, when electrons 1 and 2 have the same spin and 
are at the same position of space. That is just as if the 
electronic distribution consisted of the whole charge of 
n electrons, diminished by an exchange charge whose 
properties are like those discussed in reference 1. In 
other words, the qualitative discussion given in refer­
ence 1 is more general than the assumption made there 
that the wave function could be represented by a 
single determinant or a single configuration. In partic­
ular, the simplification introduced in Sec. 5 of reference 
1, replacing the exchange potential by a value calculated 
from a free-electron gas, is as plausible a simplification 
in the general case of configuration interaction as it is 
for the single determinantal function, and is not tied in 
any way to the Hartree-Fock case. 

One way to appreciate the useful features of the 
expression (1) for the potential Ve is to ask how to 
calculate the electronic repulsive interaction energy of 
the whole system. The average values of each term 
e2/fij over the wave function are the same, on account 
of the antisymmetry of the wave function, and since 
there are n(n—l)/2 pairs, the total interaction energy 
will be just n(n—l)/2 times the integral for one term. 
Now if we multiply Ve(xi), as given in Eq. (1), by.the 
denominator fU*(xv • 'Xn)U(xi- • 'Xn)dx2' • -dxn, and 
integrate over dxh the result will be just the value of 
(n—1) interaction terms like e2/ri3'. Thus the total 
interaction energy will be n/2 times as great as this. 
But nJ*U*Udx2- - -dxn is just the total charge density, 
in units of the electronic charge. Thus we see that the 
total electronic interaction energy can be written as 

2 I p(%i)Ve(xi)dxh (3) 

where p(#i) is the electronic charge density at the 
position and with the spin given by x±. 

The expression (3) is formally just like the interaction 
energy of a charge distribution with itself in classical 
electrostatics; only in the classical case, Ve would be 
related to p by Poisson's equation, whereas here it is 
not. The possibility of writing the electrostatic energy 
in this form, in the quantum theory, has been discussed 
by the writer,5 using arguments closely related to those 

5 J. C. Slater, Revs. Modern Phys. 6, 209 (1934). 
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of the present note. The reader should realize clearly 
that, if the exact wave function of the problem is used 
in calculating the potential Ve(xi) of Eq. (1), and in 
calculating the charge density, then Eq. (3) represents 
an exact result, including all exchange terms. The total 
electrostatic energy of the system of course includes in 
addition to (3) the interactions between electrons and 
nuclei, which can be computed from the charge density 
p (xi) alone, and the interactions between pairs of nuclei. 

We have now seen that there is a straightforward 
method in principle for setting up a self-consistent field 
calculation for any atomic or molecular system. We 
set up the potential Ve(x)+Vn(x), using Eq. (1) for 
Ve(x). We solve Schrodinger's equation for the one-
electron orbitals in this potential field. By general 
properties of Schrodinger's equation, these orbitals 
form a complete orthogonal set. We form from them a 
complete set of antisymmetrized products of n one-
electron functions, and set up and solve the secular 
problem involved in finding those linear combinations 
of antisymmetrized products which make the energy of 
the n electron system stationary. One of the resulting 
solutions represents the state of the system in which 
we are particularly interested. We then take the anti­
symmetric wave function U representing this state, 
formed as a sum of the antisymmetrized products, and 
insert it in Eq. (1) to find a new Ve. Our condition of 
self-consistency implies that this final Ve should be 
identical with the original value. 

The one-electron orbitals which we have obtained in 
this way are what are usually called molecular orbitals. 
Most writers, for instance Lennard-Jones6 and Root-
haan,7 have derived molecular orbitals from the 
Hartree-Fock method. On account of the involved 
nature of this method, their discussions are necessarily 
somewhat complicated. In contrast, the present method, 
setting up a unique potential and Schrodinger equation 
of the usual sort, of which the molecular orbitals are 
eigenfunctions, makes a discussion much simpler. For 
instance, the potential Ve will usually have the same 
symmetry as the nuclear system, so that the application 
of the group theory to the discussion of the symmetry 
properties of the molecular orbitals follows very 
straightforwardly. Another advantage of the present 
method is that it gives us an infinite set of orbitals, in a 
much more direct way than the Hartree-Fock method, 
and the configuration interaction gives us (in principle) 
an infinite number of solutions, representing excited 
configurations. Since the one-electron orbitals are not 

6 J. E. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1 
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chosen to make the problem self-consistent for these 
excited configurations, the process will presumably not 
converge as rapidly for these other configurations as 
for the ground state (if, as usual, it is the ground state 
which is made self-consistent), but the calculation of 
these excited configurations is on as firm a theoretical 
basis as that of the ground state. 

The procedure which we have outlined is of course an 
idealized one which could never be carried through in 
practice, since we can neither solve the one-electron 
Schrodinger problem exactly to get the one-electron 
orbitals, nor carry out exactly the problem of configur­
ation interaction. In an actual case, then, one must 
compromise, and our general discussion has been more 
with the aim of suggesting an ideal toward which one 
may aim in the calculation, than with the hope that it 
can represent a practicable program. We should ordi­
narily set up approximate solutions of the self-consistent 
problem in the form of linear combinations of atomic 
orbitals, We then note the following situation. If we 
are using a finite and very limited set of orbitals, and 
are solving the configuration interaction problem be­
tween all configurations which can be set up from these 
orbitals, as Meckler did in the work referred to, then 
we can equally well set the problem up in terms of any 
linear combinations of the orbitals. As Meckler has 
pointed out, the final result will be independent of 
what linear combinations we use. In such a case, it is 
useless extra labor to find those combinations of our 
orbitals which best represent solutions of the self-
consistent field problem. This is the special case, for a 
limited number of orbitals, of the general statement 
that if we are completely solving the problem of 
configuration interaction, it makes no difference what 
complete orthogonal set of one-electron orbitals we use. 

The difficulty with Meckler's procedure, however, is 
that as the number of electrons and orbitals goes up, 
the number of interacting configurations increases 
enormously. In such a case. we can obviously handle 
interaction only between a limited number of configur­
ations, normally those of lowest diagonal energy, and 
with largest nondiagonal matrix components of energy 
connecting them with the ground state. We may expect 
that in such problems, if we are using all configurations 
arising from AT orbitals, then our results will be the 
more accurate, the more accurately we can write the N 
lowest molecular orbitals of the self-consistent field 
problem as linear combinations of these N orbitals. 
Our aim in setting up linear combinations of atomic 
orbitals, or other methods of setting up one-electron 
orbitals, must then be to have a set of unperturbed 
one-electron functions capable of approximating the 
lowest N molecular orbitals as accurately as possible. 


