
HARTREE —FOCK METHOD

beta-decay theory are not fu&&&~ed in this decay process.
Certainly all other experimental results support the
former conclusion.
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It is shown that the Hartree-Fock equations can be regarded as ordinary Schrodinger equations for the
motion ot electrons, each electron moving in a slightly diferent potential field, which is computed by
electrostatics from all the charges of the system, positive and negative, corrected by the removal of an
exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being in-
vestigated. By forming a weighted mean of the exchange charges, weighted and averaged over the various
electronic wave functions at a given point of space, we set up an average potential Geld in which we can
consider all of the electrons to move, thus leading to a great simplification of the Hartree-Fock method, and
bringing it into agreement with the usual band picture of solids, in which all electrons are assumed to move
in the same Geld. We can further replace the average exchange charge by the corresponding value which we
should have in a free-electron gas whose local density is equal to the density of actual charge at the position
in question; this results in a very simple expression for the average potential field, which still behaves quali-
tatively like that of the Hartree-Fock method. This simplified Geld is being applied to problems in atomic
structure, with satisfactory results, and is adapted as well to problems of molecules and solids.

I. INTRODUCTION

HE Hartree-Fock equations' furnish the best set
of one-electron wave functions for use in a self-

consistent approximation to the problem of the motion
of electrons in the field of atomic nuclei. However, they
are so complicated to use that they have not been em-
ployed except in relatively simple cases. It is the pur-
pose of the present paper to examine their meaning
suKciently closely so that we can see physically how to
set up a simplification, which still preserves their main
features. This simplified method yields a single poten-
tial in which we can assume that the electrons move,
and we shaB show the properties of this field for prob-
lems not only of single atoms but of molecules and
solids, showing that it leads to a simplified self-
consistent method for handling atomic wave functions,
easy enough to apply so that we can look forward to
using it even for heavy atoms.

II. THE HARTREE-POCK EQUATIONS AND
THEIR MEANING

It is well known that the Hartree equations are ob-
tained by varying one-electron wave functions u'(x),

~ The work described in this paper was supported in part by
the Signal Corps, the Air Materiel Command, and the ONR,
through the Research Laboratory of Electronics of M.I.T.' J. C. Slater, Phys. Rev. 35, 210 (1930); V. Fock, Z. Physik
61, 126 (1930};L. Brillouin, Les GhemPs Self-Goesistnds de Har-
tree et de I;oak, Actuahths Scientifiques et Industrielles No. 159
(Hermann et Cie., 1934); D. R. Hartree and %'. Hartree, Proc.
Roy. Soc. A156, 9 (1935);and many other references.

u2(x), u„(x), in such a way as to make the energy
tui*(xi) u (x)Bui(xi) . .u (x)dxi. . dx an ex-
treme, where H is the energy operator of a problem in-
volving n electrons in the field of certain nuclei, and
where the functions u, are required to be normalized.
Similarly the Hartree-Fock equations, as modified by
Dirac, ' are obtained by varying the I s so as to make
the energy

1 t' u,*(x,) u,*(x„)
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n!" u„'(x,) u„*(x„)

u, (x,) u, (x )
~ . . 61 dX„
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Hyu;(xy)+ g us*(x2)ua(x2)(e/kreoty2)dx2 u, (xg)'
k=1

n

"u.*(x2)u;(*2)(~/4 &o.u)dx2 uk(xl)
a-1

=E,u;(xg). (l)

Here H1 is the kinetic energy operator for the electron
of coordinate x1, plus its potential energy in the field of

~ P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

an extreme, where in this latter expression the u's are
assumed to be functions depending on coordinates
and spin, and where the integrations over the dx's are
interpreted to include summing over the spins. The
Hartree-Fock equations can then be written in the form



386 J. C. SLATE R

all nuclei; e'/krcor~m is the Coulomb potential energy
of interaction betvreen electrons 1 and 2, expressed
in mks units; to get the corresponding formula in
Gaussian units vre omit the factor 4n-fo, and to get it in
atomic units we replace e'/4s ea by 2. The I s as before
are assumed to depend on spin as well as coordinates,
and the integrations over dx~ include summation over
spin, so that the exchange terms, the last ones on the
left side of Eq. (I), automatically vanish unless the
functions u, and ul, correspond to spins in the same
direction.

The Hartree-Fock equations in the form given pre-
sent an appearance which seems to differ from the
ordinary one-electron type of Schrodinger equation,
and for this reason it is ordinarily thought that they
cannot be given a simple physical interpretation. This
assumption arises partly from the paper of Dirac', in
which they are interpreted in a rather involved way.
The second term on the left of (I) is simple: it is clearly
the Coulomb potential energy, acting on the electron
at position x~, of all the electronic charge, including that
of the ith wave function vrhose vrave equation we are
vrriting. The last term on the left, the exchange term,
however, is peculiar, in that is is multiplied by uz(x&)
rather than by I;(x&). It must somehow correct for the
fact that the electron does not act on itself, vrhich it
would be doing if this term vrere omitted. In the Hartree,
as opposed to the Hartree-Fock, equations, this is
obvious. There the last term differs from that in the
Hartree-Fock equations only in that all terms in the
summation are omitted except the ith; the exchange
term in that case then merely cancels the term in 0=i
from the Coulomb interaction found in the second term.
The main point of our discussion is to show that an
equally simple interpretation of this term can be given
in the Hartree-Fock equations.

Let us 6rst state in words vrhat the interpretation
proves to be; then vre can more easily describe the way
in vrhich the equations lead to it. We can subdivide the
total density of all electrons into two parts, p+ from
those with plus spins, p from those with minus spins;
the two together add to the quantity —eg(k= l. e)
Xgq*(x)mq(x), where e is the magnitude of the elec-
tronic charge. Then vre can show that the Hartree-
Fock Kq. (I) for a wave function e; which happens to
correspond to an electron with a plus spin is an ordinary
Schrodinger equation for an electron moving in a per-
fectly conventional potential 6eld. This 6eld is calcu-
lated by electrostatics from all the nuclei, and from a
distribution of electronic charge consisting of the whole
of p, but of p+, corrected by removing from the im-
mediate vicinity of the electron, whose vrave function
we are 6nding, a correction or exchange charge density
whose total amount is just enough to equal a single
electronic charge. That is, this corrected charge dis-
tribution equals the charge of e—1 electrons, as it
should. The exchange charge density equals just p+ at
the position of the electron in question, gradually

falling off as vre go avray from that point. We can get
a rough idea of the distance in vrhich it has fallen to a
small value by replacing it by a constant density p+
inside a sphere of radius ro, zero outside the sphere.
We have ~~sro'

l p+ l
= e, or

ro= (3s/4
I p+ I)'. (2)

Ng (xg)Qk(xl) ~

spin k =spin s

We shall novr show that this is the case.
3 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); ibid. 46,

509 (1934). The discussion of Wigner and Seitz was one of the
6rst to show a proper understanding of the main points taken up
in the present paper, which must be understood to represent a
generalization and extension of previously suggested ideas, rather
than an entirely new approach. See also L. Brillouin, J. de Phys.
et le Radium, 5, 413 (1934) for a discussion somewhat similar to
the present one.

The situation is then much as if the corrected charge
density equaled the actual total electronic charge
density outside this sphere, but was only p within
the sphere; there is a sort of hole, sometimes called the
Fermi' or exchange hole, surrounding the electron in
question, consisting of a deficiency of charge of the
same spin as the electron in question. Actually, of
course, this exchange hole does not have a sharp bound-
ary, but the charge density of the same spin as the elec-
tron in question gradually builds up as vre go away
from this electron. Similar statements hold for the
field acting on an electron of minus spin.

The exchange hole clearly is different for wave func-
tions of the two spins, provided p+ and p are different;
examination proves further that it is different for each
different wave function I;. It is this di6'erence which
leads to the complicated form of the Hartree-Fock
equation; and the simpli6cation which we shall intro-
duce in a later section is that of using sort of an averaged
exchange hole for all the electrons. The difference be-
tvreen the exchange charge for two wave functions u;
corresponding to the same spin is not great, however.
W'e have already seen that the radius ro vrhich we ob-
tain by assuming a hole of constant density depends
only on p+ (for a plus spin), and hence is the same for
all I s of that spin. Thus the exchange holes for dif-
ferent u s of the same spin vrill only show small dif-
ferences. W'e shall later examine these differences for
the case of a free electron gas, and show that they are
really not large. It is this small dependence on I; vrhich
wi11 make it reasonable to use an averaged exchange
charge in the simplified method which vre shall suggest
later.

To agree vrith the qualitative description which we
have just given, vre then expect the exchange charge
density at point x2, producing a 6eld acting on the
electron at xq whose wave function N, (x~) we are deter-
mining by the Hartree-Fock Kq. (I), to integrate over
dx2 to —e (a single electronic charge), and to be equal
when x2 approaches x& to the quantity

—e (3)
k=|
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To show it; we rewrite (1) in the equivalent form'

Hgu;(xg)+ P up*(xg)ug(x2)(e'/4s eorgg)dxg u;(xg)
k 1 aj

u' (xl)uk (x2)uk(xl)u'(x2)(e'/+rearm)dxm

u;*(xg)u, (xg)
u;(xg)

The exchange term now appears as the product of a
function of x~, times the function u, (x~); thus it has
the standard form of a potential energy term in a one-
electron Schrodinger equation. This exchange potential
energy is the potential energy, at the position of the
6rst electron, of the exchange charge density,

u,*(xg)up*(x2) up(xg) u, (x2)

u;*(xg)u, (xg)

' J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935);
particularly p. 564, where this same method is used in discussing
the Thomas-Fermi method.

located at the position x2 of the second electron. We
note as we expect that the exchange charge density de-
pends on the position of the 6rst electron, as well as
the second, and also on the quantum state i in which
this first electron is located. We note, furthermore,
that the total charge is that of a single electron. To
show this, we integrate the exchange charge density (5)
over dx2, and find at once, on account of the orthogo-
nality of the u s (which follows from the Hartree-Fock
equations) that the integral over all space is —e. Fur-
thermore, as x2 approaches x~, we see at once that the
exchange charge density approaches the correct value
(3), where the restriction that the spins of i and k must
be equal arises from (1), where an exchange term
uz (x2)u;(x&) is automatically zero unless this condition
is satisfied. Thus we have shown that the exchange
charge density (5) satisfies all the conditions necessary
to justify our qualitative discussion of its behavior. In
a later section, where we work out detailed values for
the free-electron case, we can examine its properties
more in detail.

The great di8erence between the Hartree and the
Hartree-Fock methods is the fact that in the Hartree-
Fock method the exchange hole or correction charge
appropriate for an electron at x~ moves around to follow
that electron; in the Hartree method it does not, the
correction charge depending only on the index i of the
wave function e;. If our problem is a single atom, this
is not very important, but in a crystal, for instance a
metal, the difference is profound. Thus consider a
periodic lattice, in which the one-electron functions I;
are modulated plane waves, corresponding to 1/X of

an electronic charge on each of the X atoms of the
crystal. In the Hartree scheme, the potential acting on
the electron in the wave function I; is that of all elec-
trons, minus this charge corresponding to 1/E of an
electron on each atom. This correction charge is so
spread out that its effect on the potential field is com-
pletely negligible, and each electron acts as if it were in
the 6eld of all electrons, thus 6nding itself in the 6eld
of a neutral atom when near any of the nuclei of the
metal. On the other hand, with the Hartree-Fock equa-
tions, the exchange charge is located near the position
x& of the electron in question, moving around with it,
so that when this electron is on a given atom, the ex-
change charge is removed largely from that atom,
leaving it in the form of a positive ion, which, as our
physical. intuition tells us, is the correct situation.

n n

Q u, *(xg)up*(xm) ug(xg) u, (xm)
j=i %=i—e

u, *(xg)u, (xg)
j=l

(6)

Using this average exchange charge density, we come
to the following Schrodinger equations for the e; s, as

I J. C. Slater, Rev. Mod. Phys. 6, 2Q9 (1934), particularly
p. 267, where this same expression is used for similar purposes,
but without pointing out that it is the weighted mean of the ex-
change charge density found in the Hartree-Fock equations.

GI. AVERAGED EXCHANGE CHARGE

We have seen that the exchange charges for diBerent
wave functions u; corresponding to the same spin are
not very diferent from each other, since in every case
they reduce to the same value when x2 ——x&, and in-
tegrate to the same value over all space. Furthermore,
in a system containing equal or approximately equal
numbers of electrons with both spins, p+ and p will
be at least approximately the same, so that exchange
charges for diGerent I s even of opposite spins will be
nearly the same. It then seems clear that we shall make
no very great error if we use a weighted mean of the ex-
change charge density, weighting over i, for each value
of x~. The result of this will be that we shall have a
single potential 6eld to use for the Schrodinger equation
for each e;, simplifying greatly the application of the
Hartree-Fock method. Let us 6rst set up this average
exchange charge and the consequent averaged exchange
potential, then give some discussion of their properties
and uses.

The probability that an electron at x& should be in
the state i is evidently u; (x~)u;(x~)/[P, ~,*(x~)u;(x~)j.
We can then use this quantity as a weighting factor to
weight the exchange charge density (5). When we do
this, we find as the average exchange charge density
the quantity'
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substitutes for the Hartree-Fock equations:

+1Ni(x1)+ Q ' 22k (x'2)lk(x2)(+/4Ir00r12)dx2

n n

tgj (xl)sk (x2)20k(xl)Qj(x2)(8 /42I 009'12)dx2
j~l k~1 ~

e

Q I;~(x1)u;(x1)

u, (x1)=E,22;(x1). (7)

The wave functions e;, and energy values E;, as deter-
mined from these equations, will not be quite so ac-
curate as those determined from the Hartree-Fock
equations; but they will at least be much better than
those found from the Hartree equations, particularly
for the case of the crystal, and they have the great
advantage that they are all solutions of the same po-
tential problem. This automatically brings one good
feature, which the solutions possess in common with
solutions of the Hartree-Fock equations, but which
solutions of the Hartree equations do not have: the
functions u, are all orthogonal to each other.

There is one aspect of Eqs. (7) which is very im-

portant. In the 1ast few years there has been a great
development of the energy-band theory of semicon-
ductors. This is al1. based on the hypothesis that we can
buiM up a model of a solid in which each electron moves
independently in a potential 6eld which is made up
from the nuclei, and all other electrons except the one
in question. The electric 6eld derived from this poten-
tial is sometimes called the motive field acting on the
electron. Each wave function corresponds to a definite
energy level, and the Fermi statistics are applied to the
distribution of the electrons in these levels. The soundest
way to set up this potential acting on each electron is
by the Hartree-Fock method, but we see by our present
discussion that this implies a diGerent potential energy
or motive for each electron, or each I;. If we wish to
have a single motive 6eld appropriate for all electrons,
the best thing we can do is to use the weighted mean
suggested in the present section. Thus Eqs. (7) may
well be taken to be the basis of the ordinary form of the
energy-band theory of solids.

In many problems, we are interested in cases of de-
generacy, not merely in evaluating the wave function
of a single nondegenerate stationary state. Thus we
may be solving a problem of multiplet structure in an
atom or molecule, or discussing ferromagnetism in a
solid. In such a case we start with a number of de-
generate or approximately degenerate energy levels,
corresponding to diBerent orientations of orbit or spin,
or in some cases (as in the hybridization of atomic
orbitals) corresponding to different total or azimuthal

quantum numbers, and then carry out perturbations.
If we take the Hartree-Fock scheme literally, we shall
use diBerent potentials for finding the I s of each of
these various unperturbed functions. It is highly de-
sirable in such cases, in the interests of simplicity, to
modify the method so as to use the same potential
function for the calculation of each wave function. This
may involve even more averaging than is contemplated
in setting up Eqs. (6) and (7). As one illustration,
Hartree's use of a spherical potential for discussing
atomic structure is an example of this procedure; this
involves averaging over all orientations of the various
orbital angular momenta of electrons which are not in
closed shells. Whether we are using the Hartree scheme
or the present simpli6cation of the Hartree-Pock
scheme, such averaging over orientations seems cer-
tainly desirable. Again, in studying ferromagnetism,
the potentials to use, according to the scheme of the
present paper, will depend on the net magnetization,
or on the number of electrons of each spin. It is much
simpler to handle such a problem, however, by using a
single potential function, and that will usually be
chosen to be that representing the unmagnetized state,
with equal. numbers of plus and minus spins.

In all these cases which we have just been discussing,
we use one-electron wave functions which are slightly
less accurate than those found by the Hartree-Fock
scheme. When we apply perturbation methods, we
must remember this, computing the matrix components
of the exact energy operator with respect to these
somewhat incorrect wave functions, remembering the
wave equation (for instance (7)) which they actually
satisfy. Nondiagonal matrix components of energy
between these somewhat inaccurate wave functions
will be somewhat larger than those between exact
Hartree-Fock functions. Nevertheless they wil1. still
not be very large, for the wave functions are still quite
accurate; the slight decrease in exactness is much more
than made up by the simplicity of the method. The
energy values computed by averaging the exact energy
operator over the wave function will be very nearly the
same as for Hartree-Fock functions, on account of the
theorem that the mean value of energy over an in-
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correct wave function has errors only of the second order
of small quantities.

IV. THE EXCHANGE CHARGE FOR THE
FREE-ELECTRON CASE

The calculations of exchange charge and exchange
potential which we have been describing in general
language can be carried out exactly for the case of a
free-electron gas, as is well known. In this section we
shall give the results, as an illustration of the general
case. Then we shall point out in the next section that
by using a free-electron approximation we can get an
exchange potential much simpler than that of Eq. (7),
which still is accurate enough for many purposes.

Let us have a free-electron gas with n electrons in
the volume V, half of them of each spin; the volume is
assumed to be 6lled with a uniform distribution of
positive charge, just enough to make it electrically
neutral. The electrons are assumed to obey the Fermi
statistics. Then by elementary methods we 6nd that
they occupy energy levels with uniform density in
momentum space, out to a level whose energy is
P'/2m=(h'/2m)(3e/8 Vs)&, corresponding to a maxi-
mum momentum P=h(3n/Ss. V)&. The de Broglie
wavelength

d =h/I'= (Ss.V/3n) ~

F ('g)

l.0

05—

2.0 r/rO

FIG. 2. Exchange charge density (divided by p/2) plotted as a
function of r/ro, from Eq. {12),where ro is given by Eq. (9).

with uniform charge density
~ p+~ =me/2V, the poten-

tial energy of an electronic charge at the center of the
sphere would be s3(e'/4NEorp), while the value from Eq.
(10) is 1.54(e'/47r@ro) at the bottom of the Fermi
band, half this value at the top. Thus this simple model
of an exchange hole of constant charge density gives a
qualitatively correct value for the exchange potential,
and rather accurate quantitative value; and the ex-
treme difference between top and bottom of the band
corresponds only to a factor of 2 in the exchange po-
tential.

If now we average over-aB wave functions, we 6nd
that the properly weighted average of F(q) is 3~. Thus
the exchange potentia1. energy of the averaged exchange
charge' is (x3)(6/s)&(e'/4s coro). This can also be found
from the averaged exchange charge density. This
charge density is'

FIG. 1. J (g} as function of
g {from Eq. (11}}.

2.0

p 3 sin(r/d) —(r/d)cos(r/d) '

2 (r/d)'
(12)

associated with this maximum momentum is clearly
related to the radius ro of the exchange hole, which we
introduced in Eq. (2). When we notice that

~ p+ ~

which
appeared there equals ne/2V, we see that

(9)

We can now state some of the principal results of
the application of this model to the exchange charge
density and exchange energy. The exchange potential
energy can be conveniently stated in terms of the ratio
g =p/I' of the magnitude of the momentum of the elec-
tron to the maximum momentum corresponding to the
top of the Fermi distribution. It is'

exchange potential energy = (e'/4s eo) (4E/h) F(g)
= (6/s) &(e'/4s 60rp) F(g) (10)

where

The function F(p) is shown in Fig. 1. It goes from unity
when g=o, for an electron of zero energy, to —,

' when
q=1, at the top of the Fermi distribution. We see that
this exchange potential energy is of the form which we
should expect. If we had a sphere of radius ro, 61led

where p is the total charge density of electrons, d is
given by Eqs. (8) and (9), and r is the distance from
point xi, where the electron whose wave function we
are computing is located, to x2, where we are finding
the exchange charge density. This function (12) is
shown in Fig. 2, plotted as a function of r/ro, and we
see that it does in fact represent a density which equals
p/2 when r=o, and falls to small values at approxi-
mately r=ro. The potential energy of an electron at
the center of this averaged exchange charge distribution
is just the value (34)(6/s)&(e'/4seoro) previously given.

V. USE OF THE FREE-ELECTRON APPROXIMATION
FOR THE EXCHANGE POTENTIAL

From the argument of Sec. III, it is clear that the
exchange charge density (6), and the corresponding
potential appearing in (7), must depend on the density
of electronic charge, but not greatly on anything else.
Thus in no case will we expect it to be very di8erent
from what we should have in a free-electron gas of the
same charge density. We may then make a further
approximation and simplification, beyond that of Sec.
III; we may approximate the averaged exchange po-
tential by what we should have ih a free-electron gas

e F. Bloch, Z. Physik 57, 545 {1929}gave the 6rst derivation of
this value.
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of the same density, as given in Sec. IV.' Thus, corn-

bining (10) and (2), we have

exchange potential energy
= —a4 (6/s )&(e'/kr ooro)
= —3(e'/4oroo)(3n/8xV) &, (13)

where we are now to interpret n/V as the local density
of electrons, a function of position. If we recall that
this is P (k)N&*(x)ez(x), we finally have as our simplified
Schrodinger equation for the one-electron functions u, ,
to replace (7),

Hindi'(xi)+ Q(k) ~+i (x2)No(x2)(e/4ir&or12)dxo

structure. Let the electrostatic potential of the nucleus,
and of all electrons, at distance r from the nucleus of a
spherical atom, be Z~(r) e/kroor. Then the charge
density is given by Poisson s equation as p = —ooV'(Z~e/
4xoor). When we express the Laplacian in spherical co-
ordinates, this gives at once p= —(e/4s)(1/r)d'Z~/dr'.
This is the quantity which is expressed as —eP(k)
No*(x)li(x). Thus the exchange potential energy be-
comes —3(e/4xoo)$(oox )(1/r) d'Z~/ dr o]&, and, finally,
the total potential energy, for use in the Schrodinger
equation for u;(xi), is

s ( 3 ) '( tPZy'11
Z +31

i32+i ( d. i

3—3(e'/4xoo) —g(k)go*(xi)No(xi) N, (xi)
8

=E,e;(x,). (14)

This equation is in practice a very simple one to
apply. %e solve it for each of the wave functions u;,
then find the total charge density arising from all
these wave functions, and can at once calculate the
potential energy, including the exchange term, to go
into (14), so as to check the self-consistency of the
solution. Here, as before, we change to Gaussian units
by omitting 4moo, and atomic units by changing e'/kroo
to 2.

One result of this formulation of the self-consistent
problem is of immediate interest. In a periodic potential
problem such as a crystal, it is obvious that the total
charge density will have the same periodicity as the
potential. Thus the corrected potential of Eq. (14) will

also be periodic, and hence the functions u; will be
modulated according to Block's theorem. In other
words, such modulated functions are the only type
which can follow from a proper application of our
simplification of the Hartree-Fock method to a periodic
potential problem.

Our general method is applicable to any problem of
atoms, molecules, or solids. It is easy to give it a very
explicit formulation for the case of atoms, which can
then be used for the self-consistent treatment of atomic

7 This method of treating the exchange potential as if the elec-
trons formed part of a free-electron gas is similar to what is done
in the Thomas-Fermi method with exchange (see Dirac (reference
2}, Slater and Krutter {reference 4), and L. Brillouin, L'Atone de
Thomas-Ferosi et lu Nethode de Chaesp "Self-Consistent, " Ac-
tualiths Scienti6ques et Industrielles No. 160 (Hermann et Cie.,
1934)).

To carry out a self-consistent solution for an atom,
using this simplified method, we then find a Z„such
that the wave functions u;, determined from a single
Schrodinger equation using the potential energy (15),
determined from Z„, add to give a charge density which
would lead by Poisson's equation to a potential energy

e'Z„—/4xoor
In order to check the applicability of the method

Mr. George %. Pratt is carrying out a self-consistent
solution of the ion Cu+ by this method. This ion was
chosen, as being the heaviest one for which solutions

by both the Hartree and the Hartree-Fock methods are
available for comparison. The solution has gone far
enough to show that the wave functions and energy
parameters E; determined from it are not far from those
found by the Hartree and the Hartree-Fock methods.
The discrepancies come principally from large values of
r, where the charge density is small, and our free-
electron approximation for exchange is not very good.
Over most of the range of r, however, the approxima-
tion seems very satisfactory. Detailed results will be
reported later, The great advantages of this method for
numerical calculation are clear from this example which
has been worked out. Actual calculation is simpler than
for the original Hartree scheme, since only one poten-
tial function need be computed, and can be used for
all wave functions. The wave functions have the ad-
vantage of being orthogonal; and they possess a con-
siderable part of the accuracy which the solutions of
the Hartree-Fock equations possess, in contrast to the
Hartree equations. It is to be hoped that they will
make enough simplification so that it will be possible
to carry out calculations for more complicated atoms
than have yet been attempted by the Hartree-Fock
method. At the same time the method should prove
valuable in setting up solutions for molecules and solids.


