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The Hartree-Fock equations state that each electron in an atom or molecular system should move in a
different potential. In some cases, particularly magnetic cases, this leads to important consequences, since
electrons with opposite spins move in different potentials. In particular, in an antiferromagnetic substance,
electrons of + and — spin have different potentials; and for an electron of + spin, for instance, the potential
energy is lower in those atoms whose spins are pointed in the + direction than in those with the opposite
spin. This results in a periodic perturbation of potential, with periodicity twice the atomic periodicity, and
leads to a splitting of each energy band in half, with a gap in the middle. In a case where the energy band
was half full, resulting in a conductor: when we disregard this effect, the resulting half-band will be just
filled when we consider it; this may explain the insulating nature of some antiferromagnetics. A similar
argument applied to a diatomic molecule like H, can result in two alternative types of solutions of the
Hartree-Fock equations: one leading to atomic orbitals, the other to molecular orbitals. The solution with
atomic orbitals shows an analogy to the antiferromagnetic problem; that with ordinary molecular orbitals
shows an analogy to the band theory of a non-magnetic conductor.

HE Hartree-Fock equations, as has been recently
pointed out by the writer,! can be interpreted as
ordinary Schrédinger equations for the one-electron
wave functions or orbitals #.(x) out of which we can
set up a determinantal wave function for an atom or
molecular system. Each electron moves in a potential
which is made up of the electrostatic fields of the nuclei
and of all electrons, including itself, but with a correc-
tion because of the fact that the electron really does not
act on itself. This correction takes the form of sub-
tracting from the total charge density of all electrons
an exchange charge density, representing a density
whose total magnitude is one negative electronic charge
concentrated, in general, about the electron in question.
This exchange charge density, for the electron whose
wave function is %;(x), takes the form
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This charge density is located at point x,, and ar
integration must be carried out over this variable tc
find the corresponding potential at the point x;, where
we are finding #;(x). In the reference just quoted, it
was pointed out that often the exchange charge density
does not depend in a very striking manner on the index
1; that is, almost the same potential can be used for the
various wave functions. In such a case it was pointed
out that it may be an advantageous simplification to
replace (1) by a weighted mean over the various wave
functions, securing, in this way, a single potential to
use for all wave functions of the problem.

It is the purpose of the present note, on the other
hand, te point out certain cases in which there is a
very real advantage in using the different potentials for
different wave functions indicated by (1). These cases
seem to come up particularly when we are dealing with
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magnetic problems. The wave functions #; concerned
in (1) are assumed to be functions of spin as well as
coordinates; they are products of an ordinary coordinate
wave function and the Pauli functions « or 8 of the
spin coordinate. Thus, automatically, the product
u*(x1)ur(x1) is zero, unless functions ¢ and % correspond
to the same spin, so that the sum (1) really includes
only terms coming from wave functions %, whose spin
quantum number is the same as that of #;. Thus, it
comes about that when there are not equal numbers
of wave functions with 4+ and — spins in a problem,
the potential in which these two types of electrons
move will be different. The difference is easily inter-
preted in a qualitative way from the results of the
reference already quoted. There it was shown that the
effect of the exchange potential is to depress the po-
tential energy of the electron by an amount which
depends on the local charge density of electrons: the
greater this charge density, the lower the potential
energy. Thus, if, for instance, there are more electrons
of + than of — spin, the Hartree-Fock potential for
an electron of + spin will be lower than that for an
electron of — spin.

These differences in the potentials for electrons of
the two spins will, of course, result in differences in the
one-electron energies resulting from the solution of
Schrodinger’s equation and hence in energy terms in
computing the diagonal energy of the state. These
effects are familiar when we handle the exchange effect
by perturbation methods. In finding the total energy,
we must multiply (1) by #%;*(x1)%:(x1) and integrate the
resulting expression, multiplied by a potential energy
function involving the coulomb expression 1/715, over
the coordinates of electrons 1 and 2. When we do this,
we recognize the familiar exchange integrals coming
from the perturbation treatment of multiplet theory,
and the dependence on spin is the equivalent of the
statement that exchange integrals occur only between
pairs of electrons with the same spin. Thus, to the
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extent that first-order perturbation theory is adequate,
it makes no qualitative difference whether we use the
Hartree-Fock exchange charge (1) in computing the
exchange potential or merely use the Hartree equations
without exchange. This freedom of choice is merely a
statement of the theorem that the diagonal energy of a
wave function is a correct energy up to second orders
of small quantities; first-order modifications of the
wave function, such as would come about if we used the
Hartree instead of the Hartree-Fock equations, make
only second-order errors in the energy. In many cases,
of which the application to atomic multiplets is one,
the situation is as just described, and the greatly added
complication of using the Hartree-Fock rather than the
Hartree method is not really justified by its results.
There are some cases, however, of which antiferro-
magnetism and covalent binding are two examples, in
which a qualitative, and not merely a small quantita-
tive, difference is found, depending on whether we use
the Hartree-Fock method, with its different potentials
for electrons of opposite spin, or not. The reason for
this rather profound effect is that the magnetic modifi-
cation of the potential in the Hartree-Fock case results
in modification of the energy levels or energy bands of
a type which would have to be described by second-
order or higher order perturbation theory, and which
would be missed entirely if we proceeded only by first-
order perturbation theory, as in the usual theory of
multiplet structure. The most striking example is in
antiferromagnetism. We shall elaborate on this case in
a moment; but, for the moment, let us consider a
one-dimensional array of like atoms, each with the same
number of electrons, but with the spins of the outer
electrons pointing in the 4 direction in one atom, — in
the next, and alternating in this way. Then the Hartree-
Fock potential will have different values in alternate
atoms, so that the period of the periodic potential will
be two atoms for the Hartree-Fock potential, though
it is only one atom for the ordinary Hartree potential.
If we ask how the energy bands as calculated from the
Hartree potential would be modified in going to the
Hartree-Fock potential, we take advantage of our
knowledge of the effect on energy bands of a perturba-
tive potential with a period twice the lattice spacing:
we know that the bands develop gaps in the middle,
each band splitting into two, the half-bands holding
half as many electrons per atom as the whole bands.
If, then, we were dealing with the case where there were
half enough electrons per atom to fill the complete
band, the Hartree treatment would indicate a half-filled
energy band, leading to a conductor, while the Hartree-
Fock treatment would show the half-band to be filled,
with an energy gap above, so that it would predict that
the material would be an insulator. It is attractive to
suppose that the fact that such antiferromagnetics as
NiO and MnO are insulators rather than conductors
may arise from such an explanation as this, though
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they are far from being as simple as the one-dimensional
case just described.?

It is easy to verify that the effect of going from the
Hartree to the Hartree-Fock method in the example
above arises from a higher order perturbation effect, if
it is treated by perturbation methods. For we recall
that when the effect of a periodic perturbing potential
on energy bands is investigated, we find that this
potential introduces interactions like those between an
incident wave and a Bragg reflected wave. These inter-
actions are a maximum when the incident and reflected
wave have identical unperturbed energies (this corre-
sponds to the position of the energy gap). This problem
must be treated like a perturbation of a degenerate
system ; not even a second-order perturbation treatment
is adequate. First-order perturbation methods, then,
are completely inadequate to investigate such energy
gaps, which neverthless can have a great practical
significance.

Let us look a little closer at this one-dimensional
antiferromagnetic problem to analyze its nature more
closely. For an electron of 4 spin, the Hartree-Fock
potential energy will be lower in those atoms which are
known to have a net 4 spin than in those of net — spin.
Each energy band will be split, as we have just men-
tioned, into two half-bands; but more than that, the
wave function in the lower half-band will be concen-
trated largely in those atoms with + spin, while the
wave function in the upper half-band will be concen-
trated in those atoms with — spin. The physical reason
for the energy gap between the two half-bands is just
the difference in average potential energy arising from
this different charge distribution. If now we have only
the lower half-band filled, the electrons will go largely
into those atoms which were assumed from the begin-
ning to have + spin, thus verifying the self-consistent
nature of the assumption about potentials. Similarly,
the potential energy function for an electron of — spin
will be lower in the atoms with — spin. The energy
bands for such an electron will be identical with those
for an electron of 4 spin; but the wave functions in the
lower half-band, which are occupied with electrons,
will correspond to having the charge concentrated
largely in the atoms with — spin.

In the model which we have been discussing, the
effect of the alternation of the Hartree-Fock potential
from atoms with one spin to those with the other is to
set up wave functions which are concentrated on atoms
of one spin or the other. Thus, if the lower half-band is
filled and the upper one is empty, the effect is the
segregation of electrons of opposite spin, one from the
other, so that they will not have random fluctuations
of charge and will not lead to probabilities of ionic
states. On the contrary, if we used the Hartree potential
with a band half-filled with electrons, it is known that we
have such fluctuations. The alternation of the Hartree-

2 The difficulty of understanding the insulating nature of NiO
has been pointed out by Mott, Proc. Phys. Soc. (London) 62,
416 (1949) as a difficulty with the energy band theory.
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Fock potential then has somewhat the same effect on
the charge density that we get from the well-known
Heitler-London method, as applied to the hydrogen
molecule. To the extent that there is such a similarity,
we agree with the remark of Mott? that in an insulator
like NiO, we must use something more like a Heitler-
London than an energy band picture. We may, in
fact, examine the H, molecule from the point of view
we have been describing for an antiferromagnetic and
thus throw light on the relation of the Heitler-London
method to the Hartree-Fock method. We shall see that
they have similarities but are by no means identical.
Suppose we have two hydrogen atoms at a consider-
able distance from each other, and that we try to find
a self-consistent solution by the Hartree-Fock method
for the ground state, with one electron with each spin.
We may first make the usual assumptions leading to
symmetric or antisymmetric molecular orbitals. We
assume that the wave function corresponding to the
electron of each spin is either symmetric or antisym-
metric in the midpoint of the nuclei, so that its charge
density is symmetric. Then the exchange charge (1)
will be symmetric, so that the Hartree-Fock potential
for an electron of either spin is symmetric in the nuclei,
and by the well-known solution of the two-potential
problem the wave functions will be either symmetric
or antisymmetric. Thus we have a self-consistent solu-
tion. On the other hand, suppose we start by assuming
that the wave function corresponding to one spin will
be concentrated on one nucleus and that of the other
spin on the second nucleus, as in the antiferromagnetic
problem. If the atoms are far enough apart so that the
wave functions do not appreciably overlap, examination
of the expression (1) then shows that the potential for
an electron of + spin will be that of the two nuclei
plus that of the electron of — spin; that is, this potential
will be that of the free nucleus of the atom with + spin
plus a neutral atom for that with — spin. Near the
atom with + spin, the other neutral atom will exert no
field, so that the Schrédinger equation will be just like
that of a hydrogen atom, leading to an ordinary
hydrogen wave function concentrated about that atom.
Similarly, the Schrodinger equation for an electron of
— spinwillbethatofahydrogenatomat theothernucleus.
We see, in other words, that the solution of the
Hartree-Fock equations is not unique in such a case, as
has been surmised, for instance, by Seitz.? One can, in
fact, assume that the solution of the Hartree-Fock
equation for H, can be approximated as a linear
combination of the atomic functions @ and b located on
the two atoms; that is, one can assume that the function
corresponding to the + spin is cne+ci2b, and that
corresponding to the — spin is c¢aa+casb. One then
forms the energy integral, expressing it in terms of the
¢’s, and varies the ¢’s to make the energy stationary,
subject to the condition that the wave functions remain
normalized (which can be handled by the method of

3F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 251.
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undetermined multipliers).?* When we do this, we find
that the equations have two types of solutions. In all
cases the symmetric or antisymmetric orbitals, corre-
sponding to ¢1a==tc11, Co2= 221, form a solution, but
there are other solutions as well, which, at infinite
separation, go to the limiting case ¢11=1, ¢12=0, ¢21=0,
ca=1, or corresponding cases with the nuclei inter-
changed, but which depart more and more from these
limits as the internuclear distance is decreased. This
demonstrates in a simple case the existence of the two
types of solution.

These atomic solutions that we have found are
analogous to those which we described earlier for the
antiferromagnetic case. They are not, however, identical
with the Heitler-London description of the ground state
of the molecule. If we recall the argument leading to
the wave function by this method, we start with a
function like that which we have been describing,
corresponding, say, to having an electron of 4 spin on
atom @, an electron of — spin on atom b&; but we
consider also the other state, degenerate with the first,
with an electron of — spin on atom e, and one of 4 spin
on atom b. The degenerate perturbation problem be-
tween these two states leads to two solutions: one the
sum of these wave functions, the other the difference.
One of these corresponds to the ground state, the other
to the component of the triplet which has no spin along
the axis with respect to which we are measuring spin.
As we know from the Heitler-London method, these
two states, the ground state and the triplet, lie far
apart; and the two degenerate states which lead to
them, and which lie roughly half-way between them,
have energies approximately given by the Heitler-
London coulomb energy, without the Heitler-London
exchange energy. We know, however, that the exchange
term is responsible for the major part of the binding in
the ground state. Thus, the atomic type of wave
function which we found in the preceding paragraph is
not like the Heitler-London function for the ground
state. We could not have expected that it would be.
The perturbation problem of spin degeneracy is an
essential part of the Heitler-London method, and the
Hartree-Fock scheme, in which we definitely assign a
spin to each wave function, cannot incorporate such an
effect in a single wave function. If we wish to get the
equivalent of the Heitler-London theory of valence for
a complicated molecule, we must carry through the
same treatment of spin degeneracy as in the conven-
tional Heitler-London method, even though we start
with wave functions derived from the Hartree-Fock
method.

It is interesting to see in this way that the Hartree-
Fock method can form the first step of a Heitler-London
calculation. This is not, however, of any particular
value in the solution of molecular problems. The great

3a The attention of the writer has been called by Prof. H. M.
James to the fact that a similar (but not identical) calculation
has been made by C. A. Coulson and I. Fischer, Phil. Mag. 40,
386 (1949).
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technical difficulty in the application of the Heitler-
London method for complicated molecules is the non-
orthogonality of the wave functions. It is true that the
wave functions derived by the Hartree-Fock method
can be proved to be orthogonal to each other, and this
might seem to remove the difficulty. It does not,
however; for the orthogonality of two Hartree-Fock
functions corresponding to electrons of opposite spin
arises from the spin part of the wave function, not from
the orbital part. In the H, problem, for instance, the
two atomic orbitals around atoms ¢ and b are non-
orthogonal, even if they are derived strictly by applica-
tion of the Hartree-Fock method. Two Hartree-Fock
atomic orbitals corresponding to electrons of the same
spin, however, are necessarily orthogonal, and it is
possible that this would make the Heitler-London
method simple enough to make its use worthwhile.

It is interesting to consider the diagonal energy of
the H, molecule according to the two types of Hartree-
Fock approximations. At great distances, the atomic
type of approximation will have a diagonal energy
reducing properly to the sum of the energies of two
neutral atoms; thus, it will lie below that of the mo-
lecular-orbital solution, which has an energy which is
the average of the energy of two neutral atoms and the
energy of a polar state consisting of a positive and a
negative ion. As the distance decreases, however, this
situation is reversed. The molecular-orbital solution
approximates very closely the Heitler-London solution
for the ground state at the actual internuclear distance
in the molecule. On the other hand, as we have seen,
the Hartree-Fock atomic approximation has an energy
more like the coulomb Heitler-London energy, which
does not lie nearly so low. Thus, we conclude that if we
wish to use a single Hartree-Fock function, without
further perturbation calculations, the atomic function
is good at large values of internuclear distance, the
molecular function at small values, and neither is very
good in between.

We may now return to our antiferromagnetic case
and ask whether it is as far from the truth as the atomic
Hartree-Fock solution for H,. The answer will come by
considering the spin degeneracy problem in the anti-
ferromagnetic case. Here it is not immediately obvious
what other arrangements of spin we are to consider,
analogous to the simple interchange of spins between
the two atoms in the Heitler-London model of H,. If
we interchange all spins in a one-dimensional chain of
alternating spins, we should find the nondiagonal
matrix component of energy between the two states
equal to zero to a very high order of approximation, on
account of the very large number of electrons which
would interchange spins in going from one function to
the other. The only sort of function which would have
an appreciable nondiagonal matrix component of
energy from the state of alternating spins we start with
would be one in which only a few spins are changed;
for instance, we could modify the regular alternation
+—+4—-+— by interchange of two adjacent spins,
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obtaining +— —-++ —, for instance.* To set up such
a function, we might start with the regular Hartree-
Fock problem of the alternating spins and treat the
effect of the modified potential resulting from the
interchanged spins as a local modification of the regular
periodic potential. If we set up approximate solutions
of this modified potential by superposing solutions of
the periodic potential problem, we should presumably
find that we had to use wave functions from the upper
half-band in making up such a solution, and would
certainly find that the diagonal energy of the modified
state was different from that of the unmodified state.
In fact, if the antiferromagnetic arrangement of alter-
nating spins had a lower energy than the ferromagnetic
arrangement where all spins are the same, this modified
state would have a higher diagonal energy than the
unmodified one.

In the antiferromagnetic problem, then, an inter-
change of spins changes the diagonal energy of a state,
in contrast to the case of the H, molecule. As a result,
the nondiagonal matrix component of energy will have
a much less perturbing effect than in the molecule.
Such a situation was found in reference 4, where the
effect of spin degeneracy was found to be much less
important in a crystal lattice than in a molecule. Hence,
we may conclude that we commit a much smaller error
in the antiferromagnetic case than in the molecule if
we merely use the diagonal energy of a state with
alternating spins as representing the real energy of the
system.

There are many questions concerning antiferromag-
netics, ferromagnetics, and related problems, which the
present note does not answer. The most important one,
which we have not even tried to answer, is that of
which state has lower energy in a given crystal: the
antiferromagnetic state, corresponding to alternating
spins, and the half-band structure we have been
describing ; the random state, in which every atom on
the average has as many + as — spins, so that we have
the ordinary molecular orbital or energy band functions,
with the possibility of charge fluctuations on the atoms;
or the ferromagnetic state, which we have hardly
mentioned, in which all atoms have spins of the same
sign, so that the effect of the exchange terms in the
Hartree-Fock equation is mainly to depress the potential
energy, and energy levels, of those electrons with the
same spin as the spin of the atoms, and to raise the
energy of those with opposite spins. Rather than
waiting until all these questions can be solved, however,
it seems worthwhile to point out, in the present note,
the close relation of the Hartree-Fock equations to these
problems, and, in particular, to the problem of anti-
ferromagnetism. That problem is one which ought to
be amenable to the methods of energy bands, even
though the attempts to treat it have, so far, been by
modified Heitler-London methods.

4 This problem has been treated by the Heitler-London method
by J. C. Slater, Phys. Rev. 35, 509 (1930); H. Bethe, Z. Physik
71, 205 (1931); and other writers.



