

aw 2E+~2 Tev

CMS Experiment at LHC, CERM Data recorded: Mon May 28-01:16:20 2012 CE9 Run/Event: 195099 35438125 Lumi section: 65 Orbit/Crossing: 16992111 2295

THE STANDARD MODEL

AND

EXPERIMENTAL ANOMALIES

Dmitry Kazakov

Bogoliubov Laboratory of Theoretical Physics

14 jets with E_T>40 on Enstitute for Nuclear Research Estimated PU~50

Утренний кофе теоретика

Higgs sector

SUSY Higgs Bosons

 $H = \begin{pmatrix} H^0 \\ H^- \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \frac{S + iP}{\sqrt{2}} \\ H^- \end{pmatrix} = \exp(i\frac{\vec{\xi}\vec{\sigma}}{2})\begin{pmatrix} \mathbf{v} + \frac{S}{\sqrt{2}} \\ 0 \end{pmatrix}$

$$H \to H' = \exp(i\frac{\vec{\alpha}\vec{\sigma}}{2})H \xrightarrow{(\vec{\alpha}=-\vec{\xi})} H' = \begin{pmatrix} v + \frac{S}{\sqrt{2}} \\ 0 \end{pmatrix}$$

MSSM

SM

4=2+2=3+

8=4+4=3+5

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} v_{1} + \frac{S_{1} + iP_{1}}{\sqrt{2}} \\ H_{1}^{-} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ v_{2} + \frac{S_{2} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{-} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{-} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{-} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{-} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{-} \end{pmatrix} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}, \quad H_{2}^{-} = \begin{pmatrix} H_{2}^{+} \\ V_{2} + \frac{S_{2}^{-} + iP_{2}}{\sqrt{2}} \end{pmatrix}$$

NMSSM +2 S+P ----

The Higgs Sector: Alternatives

Model	Particle content	
SM	h CP-even	The mass spectrum of the Higgs bosons
2HDM/MSSM	h,H CP-even A CP-odd H [±]	(GeV) $H^{\pm} = H^{\pm}$ $H^{\pm} = H^{\pm}$
NMSSM	H_1, H_2, H_3 CP-even A1, A2 CP-odd H $^{\pm}$	$\mathbf{A} - \mathbf{A}_2^3$
Composite	h CP-even + excited states	$\begin{array}{c} h & h \\ 120 \end{array} \qquad $
It may well be that we	see one of these states	One has to check the presence or absence heavy Higgs bosons

How to probe?

 Probe deviations from the SM Higgs couplings

 Perform direct search for additional scalars

How to probe?

Probe deviations from the

SM Higgs couplings

- $\frac{1}{10^{-2}} + \frac{1}{10^{-1}} + \frac{1}{10^{-1}$
- Perform direct search for additional scalars

The mass spectrum of the Higgs bosons (GeV) H^{\pm} H_{3} A_{2}^{3} **700**→ h h \mathbf{H}_{1} \mathbf{H}_{2} \mathbf{H}_{1} **120**→ SM MSSM NMSSM

Perform direct search for

How to probe?

Probe deviations from the

additional scalars SM Higgs couplings $k_F \frac{m_F}{V}$ or $\sqrt{k_V \frac{m_V}{V}}$ The mass spectrum of the ATLAS and CMS LHC Run 1 Higgs bosons (GeV) The name of the game is precision H⁺ H₃ **700**→ - [Μ, ε] fit h h 68% CL 120→ 95% CL SM MSSM **NMSSM** 10-4 10² 10-1 10 Particle mass [GeV] We may have found one of these states

How to probe?

Probe deviations from the

 Perform direct search for additional scalars

One has to check the presence or absence of heavy Higgs bosons

PRECISION PHYSICS OF THE HIGGS BOSONS

EXTRA HIGGS BOSONS

00

SUSY Searches

SUSY PRODUCTION

SUSY LIMITS

SUSY LIMITS

SUSY SEARCHES

13

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

mass scale [GeV]

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

ATLAS SUSY Searches* - 95% CL Lower Limits

Node Signature L/L (10 ⁻¹) Hass limit Reference 31 3 - 470 ⁻¹ 0.0 - 10 ⁻¹ </th <th colspan="8">ATLAS SUSY Searches* - 95% CL Lower Limits</th> <th>ATLAS Preliminary $\sqrt{s} = 13$ TeV</th>	ATLAS SUSY Searches* - 95% CL Lower Limits								ATLAS Preliminary $\sqrt{s} = 13$ TeV				
No.4 - σ ²		Model	S	ignatur	e ∫.	` <i>L dt</i> [fb⁻	¹] Ma	ss limit					Reference
Bit Discurption Discurption <thdiscurption< th=""> <thdi< td=""><td>õ</td><td>$ilde q ilde q, ilde q ightarrow q ilde { ilde \chi}_1^0$</td><td>0 <i>e</i>, μ mono-jet</td><td>2-6 jets 1-3 jets</td><td>$E_T^{ m miss} \ E_T^{ m miss}$</td><td>139 36.1</td><td> <i>q</i> [10x Degen.] <i>q</i> [1x, 8x Degen.] </td><td>0.43</td><td>0.71</td><td></td><td>1.9</td><td>$m(ilde{\chi}_1^0){<}400GeV$ $m(ilde{q}){-}m(ilde{\chi}_1^0){=}5GeV$</td><td>ATLAS-CONF-2019-040 1711.03301</td></thdi<></thdiscurption<>	õ	$ ilde q ilde q, ilde q ightarrow q ilde { ilde \chi}_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	 <i>q</i> [10x Degen.] <i>q</i> [1x, 8x Degen.] 	0.43	0.71		1.9	$m(ilde{\chi}_1^0){<}400GeV$ $m(ilde{q}){-}m(ilde{\chi}_1^0){=}5GeV$	ATLAS-CONF-2019-040 1711.03301
Sign = 1 1 1 1 2 0 1 <th1< th=""> 1 1<</th1<>	nclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĩ g		Forbidden	1	2.35 .15-1.95	$m(ilde{\chi}^0_1)$ =0 GeV $m(ilde{\chi}^0_1)$ =1000 GeV	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
Bit $x_1 - y_0 V_2 T_1^{-1}$ $x_0 - y_0^{-1} T_1^{-1} T_1^$		$ \begin{split} \tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}W\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0} \end{split} $	1 e,μ ee,μμ	2-6 jets 2 jets	$E_T^{\rm miss}$	139 36.1	ε̈́δ ε̈́δ			1.2	2.2	$m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	ATLAS-CONF-2020-047 1805.11381
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	E_T^{miss}	139 139	ρ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt\tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	δ <p< td=""><td></td><td></td><td>1.25</td><td>2.25</td><td>$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV} \ m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$</td><td>ATLAS-CONF-2018-041 1909.08457</td></p<>			1.25	2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV} \ m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1909.08457
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple		36.1 139	$egin{array}{ccc} ilde{b}_1 & Forbidden \ ilde{b}_1 \end{array}$	Forbidden	0.9 0.74		m $({ ilde{\chi}}_1^0)$ =200 GeV,	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}){=}300\mathrm{GeV},BR(b\tilde{\chi}_{1}^{0}){=}1\\ m(\tilde{\chi}_{1}^{\pm}){=}300\mathrm{GeV},BR(t\tilde{\chi}_{1}^{\pm}){=}1 \end{array}$	1708.09266, 1711.03301 1909.08457
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ks on	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ ilde{b}_1$ Forbidden $ ilde{b}_1$		0.13-0.85).23-1.35	$\Delta m(ilde{\mathcal{X}}_2^0, ilde{\mathcal{X}}_2^0) \ \Delta m(ilde{\mathcal{X}}_2^0)$	$({ ilde{\chi}}_{1}^{0})$ =130 GeV, m $({ ilde{\chi}}_{1}^{0})$ =100 GeV $({ ilde{\chi}}_{1}^{0})$ =130 GeV, m $({ ilde{\chi}}_{1}^{0})$ =0 GeV	1908.03122 ATLAS-CONF-2020-031
$ \frac{6}{6} \frac{6}{6} \frac{1}{6} 1$	3 rd gen. squar direct productic	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to W b \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 1 <i>e</i> ,μ	≥ 1 jet 3 jets/1 b	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	\tilde{t}_1 \tilde{t}_1	0.44-0.5	i9	1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060 ATLAS-CONF-2019-017
$ \frac{1}{16} $		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \to \tau \tilde{G}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \to c \tilde{\chi}_1^0$	1 τ + 1 e,μ,τ 0 e, μ	2 jets/1 <i>b</i> 2 <i>c</i>	E_T^{miss} E_T^{miss}	36.1 36.1	\tilde{t}_1 \tilde{c}		0.85	1.16		$m(\tilde{\tau}_1)=800 \text{ GeV}$ $m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1803.10178 1805.01649
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0 <i>e</i> , <i>µ</i>	mono-jet	E_T^{miss}	36.1	$ ilde{t}_1 ilde{t}_1$	0.46 0.43				$ \begin{array}{l} m(\tilde{t}_1,\tilde{c})\text{-}m(\tilde{\chi}_1^0) = \!$	1805.01649 1711.03301
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{split} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\mathcal{K}}_2^0, \tilde{\mathcal{X}}_2^0 \rightarrow Z/h \tilde{\mathcal{X}}_1^0 \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	1-2 <i>e</i> ,μ 3 <i>e</i> ,μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ ilde{t}_1$ $ ilde{t}_2$	Forbidden	0.067- 0.86	1.18	$m(\tilde{\chi}_1^0)=36$	$m(\tilde{\chi}_2^0)$ =500 GeV 0 GeV, $m(\tilde{\imath}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	SUSY-2018-09 SUSY-2018-09
$ \begin{array}{c} \frac{1}{2} \frac{1}{2$		$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e,μ ee,μμ	≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} $ 0.205	I	0.64			$\mathfrak{m}(\tilde{\chi}_{1}^{0})=0$ $\mathfrak{m}(\tilde{\chi}_{1}^{\pm})-\mathfrak{m}(\tilde{\chi}_{1}^{0})=5~\mathrm{GeV}$	ATLAS-CONF-2020-015 1911.12606
$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW $\tilde{\chi}^{\pm} \tilde{\chi}_0^{0}$ via Wh	2 <i>e</i> , μ 0-1 <i>e</i> , μ	$2 h/2 \gamma$	E_T^{miss} E_T^{miss}	139 139	$ \tilde{\chi}_{1}^{\pm} $ $ \tilde{\chi}^{\pm}_{1} \mu \tilde{\chi}^{0} $ Forbidden	0.42	0 74			$m(\tilde{\chi}_1^0) = 0$	1908.08215 2004.10894.1909.09226
$ \begin{array}{ $	W	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e, µ	_ 0/ _ /	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1908.08215
$\frac{1}{4} R_{1}(\chi_{1}^{2}, \chi_{1}^{2}) = \frac{1}{4} R_{1}^{2} R_{1}^{2$	ш i	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_1^0$ $\tilde{\ell}_{LD} \tilde{\ell}_{LD} \tilde{\ell}_{DD} \tilde{\ell}_{DD} \tilde{\ell}_{DD} \tilde{\ell}_{DD}^0$	2τ 2 e. μ	0 iets	E_T^{miss} E^{miss}	139 139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3	0.12-0.39	07			$m(\tilde{\chi}_1^0) = 0$ $m(\tilde{\chi}_1^0) = 0$	1911.06660 1908.08215
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\iota_{\mathrm{L},\mathrm{R}}\iota_{\mathrm{L},\mathrm{R}},\iota\to\iota_{\mathrm{A}}$	<u>e</u> e,μμ	≥ 1 jet	E_T^{T}	139	$\tilde{\ell}$ 0.256		0.1			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	<u>́</u> <i>H</i> <i>H</i>	0.55	0.29-0.88			$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 ATLAS-CONF-2020-040
Stable \tilde{g} R-hadron Multiple 36.1 \tilde{g} \tilde{g} 2.0 1902.01636,1608.04095 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}$ Multiple 36.1 \tilde{g} </td <td>-lived cles</td> <td>$\operatorname{Direct} \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} \text{ prod., long-lived } \tilde{\chi}_1^{\pm}$</td> <td>Disapp. trk</td> <td>1 jet</td> <td>$E_T^{\rm miss}$</td> <td>36.1</td> <td>$\begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} \textbf{0.15} \end{array}$</td> <td>0.46</td> <td></td> <td></td> <td></td> <td>Pure Wino Pure higgsino</td> <td>1712.02118 ATL-PHYS-PUB-2017-019</td>	-lived cles	$\operatorname{Direct} \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} \text{ prod., long-lived } \tilde{\chi}_1^{\pm}$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} \textbf{0.15} \end{array} $	0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
$ \sum_{k=1}^{k} \tilde{\chi}_{1}^{k} \chi$	Long	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	\tilde{g} \tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns]				2.0 2.05 2.4	$m(\widetilde{\chi}_1^0)$ =100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 , \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.	6 <mark>25</mark> 1.0	5		Pure Wino	ATLAS-CONF-2020-009
$ \frac{\chi_{1,4}}{\chi_{2} \to qq\bar{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \to qqq} + \frac{4\cdot,\mu}{4\cdot 5} \log e^{-\pi}_{2} \frac{30\cdot 1}{1} + \frac{\chi_{1,4}}{\chi_{2}^{0}} + \frac{4\cdot 2}{\chi_{1,2}^{0} \to 0} \frac{4\cdot 2}{\chi_{1,4}^{0} \to 0} \frac{1032}{\chi_{1,4}^{0} \to 0} \frac{1.33}{1.9} + \frac{10}{1} + \frac{10}{100} e^{-\pi}_{1,1} \frac{1}{2} + \frac{10}{10} + \frac{10}{100} e^{-\pi}_{1,1} \frac{1}{2} + \frac{10}{10} + \frac{10}{100} e^{-\pi}_{1,1} \frac{1}{2} + \frac{10}{100} - \frac{1}{1} + \frac{10}{100} e^{-\pi}_{1,1} \frac{1}{2} + \frac{10}{100} e^{-\pi}_{1,1} \frac{1}{100} e^{-\pi}_{1,1}$		LFV $pp \rightarrow v_{\tau} + X, v_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $\tilde{v}^{\pm} \tilde{v}^{\mp} / \tilde{v}^{0}$, $WW/7\ell\ell\ell\ell_{em}$	εμ,ετ,μτ 4 ε.μ	0 iets	Fmiss	3.2	v_{τ} $\tilde{v}^{\pm}/\tilde{v}^{0}$ [] $\rightarrow 0$] $\rightarrow 0$]		0.82	1 33	1.9	$\lambda'_{311}=0.11, \lambda'_{132/133/233}=0.07$ $m(\tilde{v}^0)=100$ CoV	1607.08079
$\frac{1}{10} ii, i \rightarrow ix_{1}^{0}, x_{1}^{0} \rightarrow ibs \qquad Multiple \qquad 36.1 \\ ii, i \rightarrow bx_{1}^{i}, x_{1}^{i} \rightarrow bbs \qquad \geq 4b \qquad 139 \\ ii, i \rightarrow bx_{1}^{i}, x_{1}^{i} \rightarrow bbs \qquad \geq 4b \qquad 139 \\ ii, i \rightarrow bx_{1}^{i}, x_{1}^{i} \rightarrow bbs \qquad 2jets + 2b \qquad 36.7 \\ i_{1}i_{1}, i_{1} \rightarrow q\ell \qquad 2e, \mu \qquad 2b \qquad 36.1 \\ 1 \mu \qquad DV \qquad 136 \qquad 1 \qquad 0.42 0.61 \qquad m(x_{1}^{i}) = 200 \text{ GeV}, bino-like \\ ii, i = 64, 22, 22, 23, 22, 4, 16-2 \qquad 0.55 1.05 \qquad m(x_{1}^{0}) = 200 \text{ GeV}, bino-like \\ m(x_{1}^{i}) = 200 \text{ GeV}, bino-like \\ m(x_{1}^{i}) = 500 \text{ GeV} \qquad ATLAS-CONF-2018-003 \\ ATLAS-CONF-2020-016 \\ int = 1 \qquad 0.41.45 \qquad BR(i_{1} \rightarrow be/b\mu) > 20\% \qquad 1710.05544 \\ 2003.11956 \qquad 2003.1195 \qquad 2003.11956 \qquad 2003.1195 \qquad 2003.11$	RPV	$ \begin{aligned} \tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \to qqq \end{aligned} $	4 <i>ε</i> ,μ 4	-5 large- <i>R</i> je Multiple	ets	36.1 36.1	$\begin{array}{cccc} \tilde{x}_{1}/\tilde{x}_{2} & [\tilde{x}_{133}^{0} \neq 0, \tilde{x}_{12k} \neq 0] \\ \tilde{g} & [m(\tilde{x}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} & [\tilde{x}_{112}^{\prime\prime} = 2e-4, 2e-5] \end{array}$		1.0	1.3 5	1.9 2.0	$\operatorname{Hi}(\mathcal{X}_1) = 100 \text{ GeV}$ Large \mathcal{X}_{112}'' m $(\tilde{\mathcal{X}}_1^0) = 200 \text{ GeV}$, bino-like	1804.03568 ATLAS-CONF-2018-003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1	\tilde{t} [λ''_{323} =2e-4, 1e-2]	0.55	1.0	5		m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		139	ĩ	Forbidden	0.95			$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]		$\begin{array}{c} t_1 t_1, t_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell \end{array}$	2 <i>e</i> , μ 1 μ	2 jets + 2 b 2 b DV		36.7 36.1 136	$ \begin{array}{l} t_1 [qq, bs] \\ \tilde{t}_1 \\ \tilde{t}_1 [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} \end{array} $	0.42 0. <3e-9]	61 1.0	0.4-1.45 1	.6	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.07171 1710.05544 2003.11956
Only a selection of the available mass limits on new states or 10^{-1}													
	*Onlv	a selection of the available ma	ss limits on i	new state	s or	1	۱ <u> </u>			1 1			

*0 phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. Neutrinos

DIRAC OR MAJORANA?

$$\nu_D = \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} \quad \nu_{M_1} = \begin{pmatrix} \xi_1 \\ \xi_1^* \end{pmatrix}, \quad \nu_{M_2} = \begin{pmatrix} \xi_2 \\ \xi_2^* \end{pmatrix}$$

Neutrino Physics

parameter $\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	best fit $\pm 1\sigma$ 7.55 ^{+0.20} _{-0.16}	$\frac{3\sigma \text{ range}}{7.05-8.14}$	
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)} \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}$	2.50 ± 0.03 $2.42^{+0.03}_{-0.04}$	2.41 - 2.60 2.31 - 2.51	
$\sin^2\theta_{12}/10^{-1}$	$3.20\substack{+0.20\\-0.16}$	2.73-3.79	
$\frac{\sin^2\theta_{23}/10^{-1}}{\sin^2\theta_{23}/10^{-1}}$ (NO)	$\begin{array}{c} 5.47\substack{+0.20\\-0.30}\\ 5.51\substack{+0.18\\-0.30} \end{array}$	4.45 - 5.99 4.53 - 5.98	
$\frac{\sin^2\theta_{13}/10^{-2}}{\sin^2\theta_{13}/10^{-2}}$ (NO)	$2.160^{+0.083}_{-0.069}$ $2.220^{+0.074}_{-0.076}$	1.96-2.41 1.99-2.44	
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${}^{1.32\substack{+0.21\\-0.15}}_{1.56\substack{+0.13\\-0.15}}$	0.87 - 1.94 1.12 - 1.94	

- Absolute value of neutrino masses ?
- Mass hierarchy?
- Dirac or Majorana?
- Fourth sterile neutrino?
- Neutrino dark matter?

PMNS-matrix parameters are measured with high accuracy of few %

- \odot Normal hierarchy favoured at 3.1 σ
- Nonzero CP phase favoured
- Upper octant favoured

de Salas et al, 1708.01186

Neutrino Physics

parameter Δm_{e}^2 [10 ⁻⁵ eV ²]	best fit $\pm 1\sigma$ 7.55 ^{+0.20}	3σ range 7.05-8.14
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{NO})$ $ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	2.50 ± 0.03 $2.42^{+0.03}_{-0.04}$	2.41-2.60 2.31-2.51
$\sin^2\theta_{12}/10^{-1}$	$3.20\substack{+0.20\\-0.16}$	2.73-3.79
$\frac{\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}}{\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}}$	$5.47^{+0.20}_{-0.30}$ $5.51^{+0.18}_{-0.30}$	$\begin{array}{c} 4.45 - 5.99 \\ 4.53 - 5.98 \end{array}$
$\frac{\sin^2 \theta_{13}/10^{-2} \text{ (NO)}}{\sin^2 \theta_{13}/10^{-2} \text{ (IO)}}$	$2.160^{+0.083}_{-0.069}$ $2.220^{+0.074}_{-0.076}$	1.96-2.41 1.99-2.44
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${}^{1.32\substack{+0.21\\-0.15}}_{1.56\substack{+0.13\\-0.15}}$	0.87–1.94 1.12–1.94

- Absolute value of neutrino masses ?
- Mass hierarchy?
- Dirac or Majorana?
- Fourth sterile neutrino?
- Neutrino dark matter?

PMNS-matrix parameters are measured with high accuracy of few %

- \odot Normal hierarchy favoured at 3.1 σ
- Nonzero CP phase favoured
- Upper octant favoured

de Salas et al, 1708.01186

• Mass spectrum?

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

• Mass spectrum?

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

What are the CKM and PMNS phases?
Where lies the source of CP violation: in quark or lepton sector?

• Mass spectrum?

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

What are the CKM and PMNS phases?
Where lies the source of CP violation: in quark or lepton sector?

$$J_{CP} = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

1

Neutrino Anomalies Albert De Roeck

Jury still out on many of these anaomalies. No clear picture emerging yet.
Simple sterile neutrino would not fit all the data. Tensions on all sides...
Future: Reactor experiments continuing or new ones (eg JSNS²) or new experiments at the FNAL short neutrino baseline... (ICARUS, SBND)

Sterile Neutrinos

Several anomalies around in the community since some years... Additional sterile neutrinos as a possible candidate explanation

Very generic extension of SM

O can be leftover of extended gauge multiplet

Useful phenomenological tool

- **O** can explain v masses (seesaw mechanism, $m \sim TeV...M_{Pl}$)
- O can explain cosmic baryon asymmetry (leptogenesis, m»100 GeV)

muon

neutrino

neutring

- O can explain dark matter (m ~ keV)
- O can explain oscillation anomalies (m ~ eV) Promote mixing matrix to 4 x 4, oscillation formula unchanged:

$$P_{\alpha \to \beta} = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* \exp\left[-i\left(E_j - E_k\right)T\right]$$

Neutrinoless Double Beta Decay

The question is still unanswered: Are neutrinos their own antiparticles?

Ton scale OnuBB experiments will cover the inverted hierarchy by 2035

Many experiments operating, planned or in R&D: LEGEND, SNO+, NEXT, CUPID, THEIA...

Summary

- In ~10 years from now, oscillation will mostly be understood: mass hierarchy and CP phase will be known
- Neutrino absolute masses may be measured in ~20 years, through cosmology, beta decays and double beta decays
- Majorana neutrino nature maybe determined in ~30 years
- Sterile neutrinos are unlikely the cause of reactor and Ga anomalies, but still possible for the LSND anomaly
- A new era of astrophysics with multi-messengers, including neutrinos
- Many new projects will start within 10 years
- A bright future

ANOMALOUS MAGNETIC MOMENT

Experimental status

• April 7th 2021: Muon g - 2 experiment at FNAL confirms BNL!

 $a_{\mu}^{EXP} = (116592061 \pm 41) \times 10^{-11} [0.35ppm] \text{ WA}$

- FNAL aims at 16×10^{-11} . First 4 runs completed, 5th in progress.
- Muon *g* 2 proposal at J-PARC: Phase-1 with similar BNL precision.

"Old muon g-2 puzzle"

New Physics for the muon g - 2: at which scale?

• Δa_{μ} discrepancy at $\sim 4.2 \sigma$ level:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) imes 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} pprox (a_{\mu}^{\text{SM}})_{weak} pprox rac{m_{\mu}^{2}}{16\pi^{2}v^{2}} pprox 2 imes 10^{-9}$

- ▶ NP is at the weak scale ($\Lambda \approx v$) and weakly coupled to SM particles.*
- ▶ NP is very light ($\Lambda \leq 1$ GeV) and feebly coupled to SM particles.
- ▶ NP is very heavy ($\Lambda \gg v$) and strongly coupled to SM particles.

*Favoured by the *hierarchy problem* and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

[For a through compilation of models, see Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, '21.]

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

$\Lambda \lesssim 1$ GeV: Axion-like Particles and the muon (g - 2)

Figure: Contributions of a scalar 's' and a pseudoscalar 'a' ALP to the $(g - 2)_{\ell}$.

[Marciano, Masiero, PP, Passera '16]

[Cornella, P.P., Sumensari '19]

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{\Lambda^2} \left[\frac{12\alpha^3}{\pi} C_{\gamma\gamma}^2 \ln^2 \frac{\Lambda^2}{m_{\mu}^2} - \frac{(c_{\mu\mu})^2}{16\pi^2} h_1 \left(\frac{m_a^2}{m_{\mu}^2} \right) - \frac{2\alpha}{\pi} c_{\mu\mu} C_{\gamma\gamma} \ln \frac{\Lambda^2}{m_{\mu}^2} \right]$$

Breakdown of SM contributions

• a_{μ} from WP20 (w/o BMWc lattice result)

[Colangelo EPS-HEP2021	proceeding]
Contribution	Value $\times 10^{11}$	References
Experiment (E821)	116 592 089(63)	Ref. [3]
Experiment (FNAL)	116 592 040(54)	Ref. [1]
Experiment (World-Average)	116 592 061(41)	
HVP LO (e^+e^-)	6931(40)	Refs. [6–11]
HVP NLO (e^+e^-)	-98.3(7)	Ref. [11]
HVP NNLO (e^+e^-)	12.4(1)	Ref. [12]
HVP LO (lattice, udsc)	7116(184)	Refs. [13-21]
HLbL (phenomenology)	92(19)	Refs. [22-34]
HLbL NLO (phenomenology)	2(1)	Ref. [35]
HLbL (lattice, <i>uds</i>)	79(35)	Ref. [36]
HLbL (phenomenology + lattice)	90(17)	
QED	116 584 718.931(104)	Refs. [37, 38]
Electroweak	153.6(1.0)	Refs. [39, 40]
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)	
HLbL (phenomenology + lattice + N	LO) 92(18)	
Total SM Value	116 591 810(43)	
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)	

ANOMALOUS MAGNETIC MOMENT

HLO contribution from $e^+e^- \rightarrow hadrons$

HLO contribution from lattice QCD

Great progress also in lattice QCD, where spacetime is modeled as a discrete grid of points. The BMW collaboration reached a 0.8% precision!

a_μ^{HLO} = 7075(23)_{stat}(50)_{syst} [55]_{tot} x 10⁻¹¹

2–2.5σ tension with the "data-driven" evaluations.

Borsanyi et al (BMWc), Nature 2021

"New muon g-2 puzzle"

"" new puzzle": if BMW is correct, the "old" g-2 discrepancy (4.2 σ) would be basically gone

however, this brings in a new tension with e^+e^- data (2.2 σ)

Here, NP in $\sigma_{had}(e^+e^- \rightarrow hadrons)$ such that [LDL, Masiero, Paradisi, Passera 2112.08312]

$$|. (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}} \approx (a_{\mu}^{\text{HVP}})_{\text{EXP}}$$

2. the approximate agreement between BMW and EXP is not spoiled

3. w/o a direct contribution a_{μ}^{NP} (i.e. NP not in muons)

Consequences of the BMW result

• Can Δa_{μ} be due to missing contributions in $\sigma(e^+e^- \rightarrow had)$?

An upward shift of $\sigma(s)$ also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$ defined by:

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha(M_Z) - \Delta \alpha_{\rm had}^{(5)}(M_Z) - \Delta \alpha_{\rm top}(M_Z)}$$

$$a_{\mu}^{
m HLO} \simeq rac{m_{\mu}^2}{12\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, rac{\sigma(s)}{s} \,, \qquad \Delta lpha_{
m had}^{(5)} = rac{M_Z^2}{4\pi lpha^2} \int_{4m_{\pi}^2}^{\infty} ds \, rac{\sigma(s)}{M_Z^2 - s}$$

- A change in $\sigma(e^+e^- \rightarrow had)$ is strongly disfavoured by:
 - EW-fit for $\sqrt{s} \gtrsim 1$ GeV [Marciano, Passera, Sirlin, '08, Keshavarzi, Marciano, Passera, Sirlin, '20, Crivellin, Hoferichter, Manzari, Montull, '20]. A shift of $\sigma(e^+e^- \rightarrow had)$ to accomodate the Δa_{μ} anomaly would necessarely require new physics to show up in the EW-fit!
- A check of the BMW results by other lattice QCD (LQCD) coll. is worth.
- LQCD coll. should provide $\Delta \alpha_{had}^{LQCD}$ to be compared with $\Delta \alpha_{had}^{e^+e^-}$.

Flavor Anomaly

Lepton Flavour Universality (LFU)

- LFU is a cornerstone of the SM : charged leptons (e, μ, τ) couple in a universal way to the SM gauge bosons
- If NP couples in a non-universal way to the three lepton families, then we might see differences in rates of rare decays involving different lepton pairs (e.g. e/μ or μ/τ)
- Hence LFU is tested in $b \rightarrow s \ell + \ell transitions$. These are FCNC's with amplitudes involving loop diagrams

Corfu Summer Institute

31 August 2022

N. Harnew

46

LEPTON (NON) UNIVERSALITY (?!)

Several R-ratio measurements

- Compare the rates of $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ [where B is B⁺, B⁰, B⁰_s, Λ^0_b and X_s is K^+ , K^{*0} , ϕ , $pK \dots$]
- This allows precise testing of lepton flavour universality
- We can construct the ratio :

- Small theoretical uncertainties because hadronic uncertainties cancel
- This ratio is unity in the SM, neglecting lepton masses, with QED corrections at the % level
- Five different ratios published so far by LHCb: $X_s = K^+, K^0_s, K^{*0}, K^{*+}$ and pK^-

47

Several R-ratio measurements

- Compare the rates of $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ [where B is B⁺, B⁰, B⁰, Λ^0_b and X_s is K⁺, K^{*0}, ϕ , pK . . .]
- This allows precise testing of lepton flavour universality
- We can construct the ratio :

$$\int^{q_{\max}^2} \frac{d\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{dq^2} dq^2$$

Small theoretical uncertainties because badronic uncertainties cancel

R_X = Actually measure double ratios which significantly reduce systematic uncertainties:

$$R_X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)}$$

Five different ratios published so far by LHCb:
 X_s = K⁺, K⁰_s, K^{*0}, K^{*+} and pK⁻

Corfu Summer Institute

31 August 2022

- All measurements have values less than unity
- The puzzle persists → we eagerly await Belle-II & CMS results
- LHCb is now focused on completing a combined analysis of RK & RK* with the Run I+2 dataset. This work has led to a deeper understanding of systematics which will be reflected in the final result.

Corfu Summer Institute

31 August 2022

N. Harnew

LFU studies in $B^0 \rightarrow D^{(*)} \tau^+ v_{\tau}$ decays

- Different class of decays (tree-level charged current with V_{ch} suppression)
- Not at all rare: $B(B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}) \sim 1\%$, the problem is the background.
- Lepton-universality ratio $R(D^*)$:

$$R(D^*) = \frac{B(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{B(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

may be sensitive to any NP model coupling preferentially to third generation leptons

51

LEPTON FLAVOR UNIVERSALITY

Measurement is consistent with SM (~1 σ "low") [SM=0.324±0.004].

Corfu Summer Institute 3

31 August 2022

Anomalies in B-meson decays: experiment ≠ the SM predictions D-mesons K-mesons

LHCb: the discrepancy present in $\,B_s o \phi \mu \mu$ and $\,\Lambda_b o \Lambda \mu \mu$

Anomalies in B-meson decays: experiment ≠ the SM predictions D-mesons K-mesons

Anomalies in B-meson decays: experiment ≠ the SM predictions D-mesons K-mesons

Discrepancy may increase but may decrease Uncertainty of baryon contribution might be crucial!

Dark matter

Тёмная материя

СТАНДАРТНАЯ МОДЕЛЬ: ПУТИ РАЗВИТИЯ - ТЁМНАЯ МАТЕРИЯ

Главная проблема: 85% материи является тёмной и остаётся невидимой!

Совместимо ли это с Стандартной моделью?

Требует ли это модификации СМ или добавление гравитации?

• Много кандидатов в разбросов масс в несколько порядков

- MOND (Problems: large scales, Bullet cluster)
- Primordial black holes (LIGO, but constraints)
- Fuzzy (very light bosons)
- Warm (KeV sterile)
- WIMP
- Axions/ALPs
- Dark sector
- Gravitinos
- Moduli
- Wimpzillas
- Прямые, косвенные и коллайдерные поиски тёмной материи

BEYOND THE STANDARD MODEL: DARK MATTER SEARCHES

Baryon Asymmetry of the Universe

СТАНДАРТНАЯ МОДЕЛЬ: КОНЦЕПТУАЛЬНАЯ ПРОБЛЕМА

- Барионное число сохраняется в СМ с экспоненциальной точностью
- Нарушение барионного числа имеет место в Теориях Великого Объединения и в моделях Пати-Салама (лептон = четвертый цвет) Новые частицы = лептокварки, расширенный хиггсовский сектор

$$B = \frac{N_q - N_{\bar{q}}}{3}$$

- Нарушение СР инвариантности в СМ достигается за счёт фаз в матрицах смешивания СКМ и PMNS
- ВАU требует бо'льшего СР нарушения чем есть в СМ
- Возможен бариогенезис через лептогенезис
- В расширенных моделях (2HDM, SUSY, etc) существуют новые фазовые факторы

Kan nponbannobamb

rpabumayuno?

Общая теория Относительности

Action =
$$\int d^4x \sqrt{-g} \left[\frac{c^4}{16\pi G} (R - 2\Lambda) + \mathcal{L}_M \right]$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu}$$

тензор Риччи тензор энергии-импульса материи скалярная кривизна

Космологическая постоянная

Космологическая постоянная есть вакуумная энергия = Λ^4

Приводит к антигравитации, что порождает ускоренное расширение Вселенной

Чтобы получить ~ 70 % вклада в энергетический баланс Вселенной Л должна быть порядка 10⁻³ эв.

метрика квантовые флуктуации (гравитон)

Проблемы:

- Лишние степени свободы: духи
- Рост вероятностей с энергией: $\sim E^2/M_{Pl}^2$
- Наличие бесконечного числа бесконечностей: неперенормируемость

$$g_{\mu\nu} = g_{\mu\nu}^{clasic} + h_{\mu\nu}$$

метрика квантовые флуктуации (гравитон)

Проблемы:

- Лишние степени свободы: духи
- Рост вероятностей с энергией: $\sim E^2/M_{Pl}^2$
- Наличие бесконечного числа бесконечностей: неперенормируемость

Пути решения:

- Модификация сектора материи (суперсимметрия)
- Модификация гравитации (высшие члены по кривизне)
- Нелокальная теория (струна)
- Обуздание неперенормируемости

$$g_{\mu\nu} = g_{\mu\nu}^{clasic} + h_{\mu\nu}$$

метрика квантовые флуктуации (гравитон)

Проблемы:

- Лишние степени свободы: духи
- Рост вероятностей с энергией: $\sim E^2/M_{Pl}^2$
- Наличие бесконечного числа бесконечностей: неперенормируемость

<u>Пути решения:</u>

- Модификация сектора материи (суперсимметрия)
- Модификация гравитации (высшие члены по кривизне)

21

- Нелокальная теория (струна)
 Обузлание неперенориируемос
- Обуздание неперенормируемости

$$g_{\mu\nu} = g_{\mu\nu}^{clasic} + h_{\mu\nu}$$

метрика квантовые флуктуации (гравитон)

Проблемы:

- Лишние степени свободы: духи
- Рост вероятностей с энергией: $\sim E^2/M_{Pl}^2$
- Наличие бесконечного числа бесконечностей: неперенормируемость

Пути решения:

- Модификация сектора материи (суперсимметрия)
- Модификация гравитации (высшие члены по кривизне)
- Нелокальная теория (струна)
- Обуздание неперенормируемости

Решение пока отсутствует

Частицы есть моды колебаний релятивистской струны