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Introduction

* R-operation equally works for NR theories and leads to local counter terms
* Due to locality all higher order divergences are related to the lower ones

® These properties allow one to write down the RG equations for the
scattering amplitudes which sum up the leading divergences (logarithms) and
to find out the high energy behaviour

Examples:

- Maximally supersymmetric gauge theory in D=6,8,10 dimensions SYM

x@d
O\
 Scalar field theory in D=4,6,8,10 dimensions ¢% QY
&
P <
+ Gauge theory in D=4,6,8 dimensions YM « a\> o°

2\
« Supersymmetric Wess-Zumino model with quartic superpotential in D=4 (I)ZL ,

These are the toy models for (super) gravity - our aim



The Model

Lagrangian of the Wess-Zumino model

L= /d29d29 <I><I>+/d29 %®4+/d29 L gt
Chiral superfields: :

P(x,0,0) d(x,0,0) D?’® =0, D?*®=0

DA =1L DD
] At = 1 o
e ° .- 0 _ilp Y

00 e T o 2 Orov D = 1L D D),

Interaction in components:

g YYop and  g*¢°

Amplitudes: (PODD), (PDPDD), (PPDD).
Chiral C AntiChiral C Mixed M

Four-point Amplitude:

A4 = (Polarisation factor) x (Universal scalar function C' or M)



UV divergences of the four point scattering amplitude

Amplitudes:

4
: (1D P3Dy) ~ /d29 Hd4pi ®(p;,0) C(s,t,u,qg),
Chiral C e

4
AntiChiral C (PP DP3D,) ~ /d29_ [[d*p: ®(p:,0) C(s,t,u,g)

=it

2 4
Mixed M (01D P3D,) N/ d'0 1] d*pi®(pi,0) | | d*pi®(pi, 0) MS(s,t,u,g)
i=3

=1
M(s,t,u,g) = MS(s,t,u,g9) + MT(s,t,u,g) + MU (s,t,u,g).
MT(s,t,u,g) = MS(t,u,s,g), MU(s,t,u,g) = MS(u,s,t,g).

Perturbation expansion:

»-lklf—‘

C(s,t,u,g) = 4'2 g% CW(s,t,u), M(s,t,u,q)= Z MO (st ).
=0 1—1

CW(s,t,u) = S5 v )+ CE 2P ¢ )+ G UEn )
M(l)(s, L= MS(QZH)(S, t,u) + MT(ZZH)(S, t,u) + MU(QlH)(s, 0 1



UV divergences of the four point scattering amplitude

Feynman rules in superspace: . . :
Example of chiral amplitude in two loops

Massless
propagator >O 3<
X
Chiral vertex  AntiChiral vertex <<I><I>>:z5 —, (®@3) =0, (2d)=0,

)

Chiral and mixed diagrams up to four loops

Super Diagram Scalar Diagram Highest Pole Comb
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UV divergences of the four point scattering amplitude

Leading divergences (dimensional regularisation/reduction)

Co(s,t,u) 4 (3 t,u)
21 il 20\ 2 U, 21+1 20+1
2 4 .2 2 2
g g t U g-.s i U -
C(s,t 1 i (O
S — 4{+4[€2+62+ ]+32[ e = }
Two loops Four loops

1
p
4 t U s 1 ]| u 1 s 1 el u 1
Y [863+863+863+(‘2363‘2363‘2363)+(2363+23§+23§)]+-~}

Three loops

Note peculiar cancellations on mass shell (s+t+u=0) in two and three loops

These cancellations do not lead to finite results in higher loops, however



Non-renormalisation theorems for arbitrary superpotential

Effective action is an integral over the full superspace

T [®,®] = /d49 1] d*piF(@(p;i,0), 2(pi, 6), D*®(p;i, 6), Da®(ps), ...) Fulp1,---0n)
1=1
d%0 — d20420 local function Bosonic function

Follows from Feynman rules in N=1 superspace: Each N=I superspace Feynman diagram is constructed from the

propagators which are proportional to the full fermionic delta function §%(9; — 6,..1) and the vertices which contain

supercovariant derivatives D2 or D?2 acting on adjacent propagators, and integration over the full N=1 superspace.

Using integration by parts, the covariant derivatives from the vertices can be rearranged into the combinations such as
54(. : ,)[D2D254(_ ..)] which can be simplified according to the following identity

650, 000 [D2D5(0; — G )] = 6°(0, — 0

Consequence: Non-renormalization of superpotential

o (s i 1 1
= /d49 OP + /d29 W(®) + /d29 W(®) WI@)E s G

Superpotential is not renormalised since it is an integral one the chiral superspace!

This is not true for finite parts since they are non-local



Non-renormalisation theorems for arbitrary superpotential
Possible loop hole in this reasoning: d20 = 420 D* «

I, [®] = /d29[)2 TT d*p: F(@(pi. 6), D°®(pi, ), ..) Fulpr,. .., pn)
=l
If one has covariant derivatives then one may use the relation

D*D*(®(p1)®(p2)...) = —(p1 + p2 + ...)°(®(p1) D(p2)...)

and transform the integration over the full superspace into the chiral one

This is only possible if one has additional covariant derivative which is forbidden for the
cubic superpotential on dimensional grounds. However, it becomes possible for a
superpotential with dimensional couplings.

This may also happen for the finite parts which contain non-local terms, so that

[ (@ 4

—529

(®) = / 0260 (D) g(®)



Non-renormalisation theorems for arbitrary superpotential

WZ model with quartic superpotential: two loop chiral diagram ><>(3<

4

o _ /H F0:dtpsi(6) 54" po) /d l1 612[D2D32515) /le2 [D2593][D? D2 653]

o Eile = )" 15(p12 — 12)?

540, —0.) = §. - Di T Dj = Dij
( o J) tJ 3 4 Add D*2 due to negative
dim of the coupling

Integration by parts

ri =g /Hd4pz d*0 ©1(0)P4(0)D2[D5(0)P4(6)]6%( sz (/ p(pfl_ 5)2>2'

D 2
(1) 1. d? BRIDE : .
I =g /Hd pi d°0 ©1(0)®2(0) D" D*[P3(0 )10 ( sz (/ [?(p12 — 1)? )

=1

Fgll) =g’ /d29 Hd4piq)i(9) 54(21%') P34 (/ lg(piDl_ l)2>2'

As a result one has a divergent contribution to the chiral part of the effective action,
however, not to the superpotential, but to the next term containing derivatives




BPHZ R-operation

+ lower pole terms

A,g"’) (1?)"¢  terms appear after subtraction of (n-k) loop counter terms

Statement: R'G, is local,i.e.terms like log" ?/e™ should cancel for any k and m

A(n)
Consequence: AW = (—1)"H12L
n
n_ 4 A’ , A()
KR/Gn — k el A,,(ln) R | n+1A7(1n) b Bl

A™ is the contribution to the leading pole in n-loops from the diagrams
appearing in due corse of R-operation after subtraction of (n-1) loop
counter terms

The leading divergences are governed by | loop diagrams!



Two loop example
¢4

4 A(2) A(Q) lu2
:< g ><5>2€
A(Q) A(Q) ,LL2 A(l) M2 A(l)

/ ><<) - ><()_ >©< PG ey 1 B y2e 4 e 1
R O ( 62 —|_ € ( S ) € ( S ) €

(1)y2
A(Q) A(l) 2 A<2) A(l) 2 o 1 (Al )
R 12) +2%10g(u2/8)—( 1) log(p*/s) = T3~

€2 € €

non-local terms to be cancelled

: : ger Il
Leading divergence is given by the one-loop term A = §(A§1))2

- These statements are universal and are valid in non-renormalizable theories as well.

- The only difference is that the counter term A%U depends on kinematics and has to be
integrated through the remaining one-loop graph.

« As aresult A§2) IS not the square of Agl) anymore but is the integrated square.

- This last statement is the general feature of any QFT irrespective of renormalizability




Leading divergences

Quartic vertices

L <
JOLNOR=S

n-loop (n-1)-loop (n-1)-loop

ok terms with higher loop remaining diagrams

KR' ¢

Cubic vertices k-loop

n-loop (n-1)-loop (n-1)-loop k-loop (n-k-1)-loop

— terms with higher loop remaining diagrams



Recurrence relations

D=2 Oy DO @

* This is the general recurrence relation that reflects the locality of the counter
terms in any theory

* In renormalizable theories A_n is a constant and this relation is reduced to the
algebraic one

* In non-renormalizable theories A_n depends on kinematics and one has to
integrate through the one loop diagrams

* The leading divergences are defined by the one loop diagrams

* Integration through the live loop can be made explicitly introducing
Feynman parameters

* One has to integrate momentum polynomials over Feynman parameters



Recurrence relations

1 1
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Recurrence relations in lower orders
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RG Equations

A |Q

Introduce the functions  C'S(s, ¢, u, g) =7 ZCS?nZ MS(s,t,u,g) =2 ZMS% Vaau
n=0

and the same in t and u channels

® Taking the sum one can transform the recurrence relations into the integro-differential equation,
which is the RG equation

dC'S Ll ¢
dz dlogp?’

= sMS® (CS +CT + CU)

dz
M 1 v ’ i
ddZS 2[(MS®MS+MT®MT—I—MU®MU) +CSRXCS+CT®CT + CU ® CU]

where the product is defined as

A(s,t,u) ® B(s,t,u) = / d:czzpp'

p=0 (=0

d? d?
B(s,t', u')]

B
A dt’ldu’p_l A(S’t & )dt’ldu’p_l

s o1 = )Pt uP !
—(1—x)s

t
/
u

® The solution of the RG equations determine the high energy behaviour of the amplitudes
when s~t~u~E? = 00



Particular Solution to RG Equations

Solution for a particular chain of bubbles m i ©<

Justified by the leading order in |/N approximation in vector and matrix (lst) cases

Planar case
on Y a a2 2 9 2 2
I (PP o
/d04N( ) /d94N(Tr<I><I>) o /d@ I (PrODDQ)
Vector case Matrix case
Pure diff eqs
Solution

dC S
—— =sMS-CS8S,
dy
dM S 1

d—y — §[SMS2 i CSQ], CS — (O

High energy behaviour 2z — —glogs

1 1 1
O 2 WG 2 , CU = D) ;
1 — g?slog”s/4 1 — g%tlog~t/4 1 — g?ulog”u/4
MG — glogs/2 MT — glogt/2 MU — glogu/2

_1—g2310g25/47 _1—92tlog2t/4’ _1—9210g2u/4

Pole in s-channel and no poles in t- and u-channels ! Ghost state?



Numerical Solution to RG Equations

Pade versus PT
| 4 919521,  3619086,2 _ 1132734289 . 3

5y — 17198 214975 Y 54173700 Y
e ] 1 902828~ 7767430 5 _ 348108273 °
Pade [3,3] PT6 17198 Y — 214975 Y~ T 73009650 Y
1 60757261387,  17465208191899.,2  211448333535053 , 3
MS(y) = 5 — 27020023140 Y — 4458303818100 Y 1123492562161200 Y
Yliw | _ 74267272957, 7068734744869, 2 | 105130578087131,3
13510011570 Y — 2229151909050 Y 16049893745160 Y
CS(y) MS()
CS MS
. PT PT
Pade Pade
0 20
10 5 570 POIe 10 12 14 16 0o
-10 M

-20

| No Pole? ///

-20 -15
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Resume

¢ The UV divergences in non-renormalizable theories are local and can
be removed by local counter terms like in renormalizable ones

¢ In SUSY theories in non-renormalizable case the chiral part of the
effective action receives divergent radiative corrections

¢ Based on locality of the counter terms one can construct the recurrence
relations that define all loop divergences starting from one loop

¢ The recurrence relations can be converted into the generalized RG
equations which allow one to sum up the leading divergences in all
loops and define the high-energy behaviour

¢ In the Wess-Zumino model with quartic superpotential the bubble
diagrams are summed into a geometrical progression which has a pole
in the s-channel and no poles in the t- and u-channels.

¢ Numerical solution of the full equation seems to have a pole in the s-
channel while the the t-channel behaviour is not reliable

¢ This pole if exists corresponds to the ghost bound state similar to QED
or ¢i theory
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