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Effective Potential in Scalar Theory in D=4
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Effective Potential in Scalar Theory in D=4
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Divergences and Log ¢ behaviour

o’ i 1 ,LL2 7 1 m2
5 Diag ~ Evg(m) e U%(E — log ?)7
A e 92 21 gu2
e 1672 Yo F
2 2
ey 4 go
e e

AV,

|
ASE
Qo
S
09

s

m2 — gU%




BPHZ R-operation B
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lower pole terms
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counter counter
term term
Algn) e terms appear after subtraction of (n-k) loop counter terms

Statement: R'G, is local,i.e.terms like log" u?/e™ should cancel for any k and m

A(n)
Consequence: A™ — (—1)nt1L

The leading divergences are governed by | loop diagrams!




Two loop example B

Theoretical Ph_\'sic§

4 A(2) A(Q) lu2
:< g ><5>2€
A(Q) A(Q) ,LL2 A(l) M2 A(l)

/ ><<) - ><()_ >©< PG ey 1 B y2e 4 e 1
R O ( 62 —|_ € ( S ) € ( S ) €

(1)y2
A(Q) A(l) 2 A<2) A(l) 2 o 1 (Al )
R 12) +2%10g(u2/8)—( 1) log(p*/s) = T3~

€2 € €

non-local terms to be cancelled

: : ger Il
Leading divergence is given by the one-loop term A = §(A§1))2

- These statements are universal and are valid in non-renormalizable theories as well.

- The only difference is that the counter term A%U depends on kinematics and has to be
integrated through the remaining one-loop graph.

« As aresult A§2) IS not the square of Agl) anymore but is the integrated square .

- This last statement is the general feature of any QFT irrespective of renormalizability



Divergences and Log ¢ behaviour
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The leading divergences ﬁ The leading logs

* In non-renormalizable theories divergences cannot be absorbed into the
renormalization of the couplings and fields.

* |f they are subtracted some way one is left with infinite arbitrariness.

* Coefficients of the leading divergences (logs) do not depend on this
arbitrariness !
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The aim is to calculate the leading divergences ~ T in n-th order of PT
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Recurrence relations for the leading poles
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Action of R’-operation on divergent diagram
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RG pole equation for arbitrary potential
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This a non-linear partial differential equation!

Effective potential

Veff(ga ¢) = gZ(Z, ¢)‘z—>— 7 _ log gua /2 v (@) = TVo(9)
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Example |: Power like Potential
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Example |: Power like Potential

>4 p
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u(£0) = 0,u'(£0) = £1 Discontinuity at y=0




Example |: Power like Potential

V(¢) . . V()

* Finite gap instead of an infinite barrier as for p=4
* Metastability of the quantum state
* No new minima



Applicability of approximation

Validity of PT Validity of LL approximation
9 p—4 g¢p—2
< |l | 1
T6n2” Bo-—2Na
Possible simultaneously for small coupling g and temporal field ¢
ger—*
Singular point = 1 is within validity region
(p—2)lp?
= 1672 go* (167%)?
p=6 g — log 22— < lo >
¢ R e : 24qu°
gps Kl
G




Example ll: Exponential Potential
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* Finite gap

* Metastability of the quantum state
* No new minima
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Example lll: Inflation Potential
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* Peak at the origin
e Additional minima



Conclusion on Effective potential

& The effective potential in the LL approximation obeys the RG master equation which
IS a partial non-linear differential equation

€ In some cases this equation is simplified to the ordinary differential one and can be
solved at least numerically. |

€ In all the cases that we studied the obtained ordinary differential equations obey the
solution with a discontinuity.

& The effective potential has a metastable minima at the origin and no other minima
exists.

€ The main message is that under certain assumptions while studying the CW
mechanism one may not be restricted by the renormalizable potentials but consider
much wider possibilities. We provided the method of such analysis.

€ This might be useful for cosmological applications where they are usually not limited
by renormalizability since gravity makes it non-renormalizable anyway.



