HEПEPEHOPMИPYEMbIE KAK आEPEHOPMИРУEMbロ⿷匚⿳丨コ丨卜丿

』』KABAKOB
БЛТФ ОИЯИ

Motivation:

- The Standard Model is renormalizable
- Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

- UV divergences are not under control - infinite number of new types of divergences
- The amplitudes increase with energy (in PT) and violate unitarity

Suggestion (novel approach to NR interactions):

- To replace the multiplicative renormalization procedure by a new one, where the renormalization constant Z is replaced by an operator \hat{Z}, which depends on kinematics
- To sum up the leading asymptotics in all orders of PT (generalized RG) and to study the high-energy behavior

Renormalization

Consider 2->2 scattering amplitude on shell

$$
\Gamma_{4}(s, t, u)=\Gamma_{4}^{t r e e} \bar{\Gamma}_{4}(s, t, u) \quad \bar{\Gamma}_{4}=1+\lambda \ldots+\lambda^{2} \ldots
$$

Renormalization (dimensional regularization)
BPHZ R-operation

$$
\begin{aligned}
\bar{\Gamma}_{4}=\left.Z_{4}(\lambda) \bar{\Gamma}_{4}^{\text {bare }}\right|_{\lambda_{\text {bare }}->\lambda Z_{4}}, & R G=(1-K) R^{\prime} G \\
\lambda_{\text {bare }}=\mu^{\epsilon} Z_{4}(\lambda) \lambda & Z=1-\sum_{i} K R^{\prime} G_{i}
\end{aligned}
$$

In NR theories $Z \rightarrow \hat{Z} \quad \hat{Z}$ is a function (polynomial) of $\mathrm{s}, \mathrm{t}, \mathrm{u}$ acting as an operator

Example (taken from D=8YM theory)
Exactly follows the BPHZ R-operation

$$
\hat{Z}=1+g^{2} \frac{s t}{\epsilon} \quad \mathrm{~g}^{2} \mathrm{~s} \mathrm{t} \square \mathrm{~g}^{2}(\mathrm{~s} \square+\mathrm{t} \square)
$$

Either s or t are to be inserted into the loop and integrated

$$
\begin{array}{l|l}
\phi_{D}^{4} & D=4,6,8,10
\end{array}[\lambda]=2-D / 2
$$

2->2 scattering amplitude on shell

$$
m=0 \quad s+t+u=0
$$

PT expansion (only s-channel is shown)

BPHZ R-operation

$$
\begin{array}{rlr}
\mathcal{R}^{\prime} G_{n} & = & \frac{A_{n}^{(n)}\left(\mu^{2}\right)^{n \epsilon}}{\epsilon^{n}}+\frac{A_{n-1}^{(n)}\left(\mu^{2}\right)^{(n-1) \epsilon}}{\epsilon^{n}}+\ldots+\frac{A_{1}^{(n)}\left(\mu^{2}\right)^{\epsilon}}{\epsilon^{n}} \\
+ & & \text { lower pole terms }
\end{array}
$$

$A_{k}^{(n)}\left(\mu^{2}\right)^{k \epsilon} \quad$ terms appear after subtraction of ($\mathrm{n}-\mathrm{k}$) loop counter terms

Statement: $\quad R^{\prime} G_{n}$ is local, i.e. terms like $\log ^{k} \mu^{2} / \epsilon^{m}$ should cancel for any k and m
Consequence: $\quad A_{n}^{(n)}=(-1)^{n+1} \frac{A_{1}^{(n)}}{n}$

$$
K R^{\prime} G_{n}=\sum_{k=1}^{n}\left(\frac{A_{k}^{(n)}}{\epsilon^{n}}\right) \equiv \frac{A_{n}^{(n)^{\prime}}}{\epsilon^{n}} \quad A_{n}^{(n)^{\prime}}=(-1)^{n+1} A_{n}^{(n)}=\frac{A_{1}^{(n)}}{n} .
$$

$A_{1}^{(n)} \quad$ is the contribution to the leading pole in n-loops from the diagrams appearing in due corse of R-operation after subtraction of ($\mathrm{n}-\mathrm{I}$) loop counter terms

The leading divergences are governed by I loop diagrams!

Recurrence Relations for the Leading Poles

$$
t^{\prime}=-x s, u^{\prime}=-(1-x) s
$$

Solution of Recurrence Relations

Starting point:

$$
>\ll \quad S_{1}=\frac{1}{2} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)} s^{D / 2-2}, \quad \text { etc }
$$

\rightarrow Use the recurrence relation
$S_{2}=\frac{1}{4} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)}\left[\frac{\Gamma(D / 2-1)}{\Gamma(D-2)}+2(-)^{D / 2} \frac{\Gamma(D-3)}{\Gamma(3 D / 2-4)}\right] s^{D-4}, \quad$ etc

Notice the difference with renormalizable theory: S_{1} depends on kinematics!

To get S_{2} one has to integrate T_{1} and U_{1} over the loop

This is exactly what we do in writing the recurrence relation

$$
\frac{s^{D / 2-2}}{\Gamma(D / 2-1)} \int_{0}^{1} d x[x(1-x)]^{D / 2-2}\left(S_{n-1}\left(s, t^{\prime}, u^{\prime}\right)+T_{n-1}\left(s, t^{\prime}, u^{\prime}\right)+U_{n-1}\left(s, t^{\prime}, u^{\prime}\right)\right)
$$

Differential Equation

Summing up the recurrence relation $\quad \sum_{n=2}^{\infty}(-z)^{n} \quad$ one gets the diff equation

$$
\begin{aligned}
& -\frac{d \Gamma_{s}(s, t, u)}{d z}=\frac{1}{2} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)} s^{D / 2-2} \\
& +\frac{s^{D / 2-2}}{\Gamma(D / 2-1)} \int_{0}^{1} d x[x(1-x)]^{D / 2-2}\left[\Gamma_{s}\left(s, t^{\prime}, u^{\prime}\right)+\Gamma_{t}\left(s, t^{\prime}, u^{\prime}\right)+\Gamma_{u}\left(s, t^{\prime}, u^{\prime}\right)\right] \left\lvert\, \begin{array}{l}
\Gamma_{s}(z=0)=0 \\
+\quad \begin{array}{l}
t^{\prime}=-x s \\
u^{\prime}=-(1-x) s
\end{array} \\
+\quad \frac{1}{2} \frac{s^{D / 2-2}}{\Gamma(D / 2-1)} \int_{0}^{1} d x[x(1-x)]^{D / 2-2} \sum_{p=0}^{\infty} \sum_{l=0}^{p} \frac{1}{p!(p+D / 2-2)!} \times \\
\times\left(\left.\frac{d^{p}}{d t^{\prime l} d u^{\prime p-l}}\left(\Gamma_{s}+\Gamma_{t}+\Gamma_{u}\right) \right\rvert\, \begin{array}{c}
\substack{t^{\prime}=-x s, u^{\prime}=-(1-x) s}
\end{array}\right)^{2} s^{p}[x(1-x)]^{p} t^{l} u^{p-l}
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{r}
\frac{d \Gamma_{s}(s, t, u)}{d \log \mu^{2}}=-\frac{\lambda}{2} \frac{s^{D / 2-2}}{\Gamma(D / 2-1)} \int_{0}^{1} d x[x(1-x)]^{D / 2-2} \sum_{p=0}^{\infty} \sum_{l=0}^{p} \frac{1}{p!(p+D / 2-2)!} \times \\
\times\left(\left.\frac{d^{p} \bar{\Gamma}_{4}\left(s, t^{\prime}, u^{\prime}\right)}{d t^{\prime l} d u^{\prime p-l}} \right\rvert\, \begin{array}{c}
t^{\prime}=-x s, \\
u^{\prime}=-(1-x) s
\end{array}\right)^{2} s^{p}[x(1-x)]^{p} t^{l} u^{p-l}
\end{array}
$$

$\Gamma_{s}\left(\log \mu^{2}=0\right)=0$

Solution of RG Equation

$D=4$

$$
s \sim t \sim u \sim E^{2}
$$

$$
\frac{d \bar{\Gamma}_{4}}{d \log \mu^{2}}=-\lambda \frac{3}{2} \bar{\Gamma}_{4}^{2}, \quad \bar{\Gamma}_{4}\left(\log \mu^{2}=0\right)=1
$$

$$
\bar{\Gamma}_{4}=\frac{1}{1+\frac{3}{2} \lambda \log \left(\mu^{2} / E^{2}\right)}
$$

General Solution for any D

$$
\bar{\Gamma}_{4}(s, t, u)=\mathcal{P} \frac{1}{1+\frac{1}{2} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)} \lambda\left(s^{D / 2-2}+t^{D / 2-2}+u^{D / 2-2}\right) \log \left(\mu^{2} / E^{2}\right)}
$$

\mathcal{P} is the symbol of ordering in a sense of recurrence relation

To get S_{2} for instance one has to take $s^{D / 2-2}\left(s^{D / 2-2}+t^{D / 2-2}+u^{D / 2-2}\right) \quad$ terms and integrate s, t and u over the s-loop. This is exactly given by

$$
\frac{s^{D / 2-2}}{\Gamma(D / 2-1)} \int_{0}^{1} d x[x(1-x)]^{D / 2-2}\left(S_{n-1}\left(s, t^{\prime}, u^{\prime}\right)+T_{n-1}\left(s, t^{\prime}, u^{\prime}\right)+U_{n-1}\left(s, t^{\prime}, u^{\prime}\right)\right)
$$

High Energy Behaviour of the scattering amplitude in ϕ_{D}^{4} theory

$$
\Gamma_{4}(s, t, u)=\mathcal{P} \frac{\lambda}{1+\frac{1}{2} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)} \lambda\left(s^{D / 2-2}+t^{D / 2-2}+u^{D / 2-2}\right) \log \left(\mu^{2} / E^{2}\right)}
$$

$$
s \sim t \sim u \sim E^{2}
$$

$D=4 \quad 3 / 2>0 \quad$ As a result one has a Landau pole as $\quad E \rightarrow \infty$
$D=6 \quad s+t+u=0 \quad$ All the leading divergences (logs) cancel in all loops
One can explicitly check that S_{2} given above vanishes
$D=8 \quad s^{2}+t^{2}+u^{2}>0$
$D=10 \quad s^{3}+t^{3}+u^{3}=3 s t u>0 \quad s>0, t, u<0$

Conclusion: $\quad \phi_{D}^{4} \quad$ has a Landau pole as $\quad E \rightarrow \infty$

