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Motivation:

e The Standard Model is renormalizable
* Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

* UV divergences are not under control - infinite number of new types of divergences
* The amplitudes increase with energy (in PT) and violate unitarity

Suggestion (novel approach to NR interactions):

* To replace the multiplicative renormalization procedure by a new one,
where the renormalization constant Z is replaced by an operator Z ,
which depends on kinematics

* To sum up the leading asymptotics in all orders of PT (generalized RG)
and to study the high-energy behavior



Renormalization
Consider 2->2 scattering amplitude on shell
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Renormalization (dimensional regularization)
BPHZ R-operation
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In NR theories 7 — Z 7 is a function (polynomial) of s,t,u acting as an operator

Example (taken from D=8 YM theory) Exactly follows the BPHZ R-operation
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Either s or t are to be inserted into the loop and integrated




OD D = 4,6,8,10 X =2-Dj2

2->2 scattering amplitude on shell m =0 s+t+u=0

Ca(s,t,u) = A1+ Ts(s,t,u) + (s, t,u) +Ty(s, t,u))
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PT expansion (only s-channel is shown)



BPHZ R-operation
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A,g"’) (1?)*¢  terms appear after subtraction of (n-k) loop counter terms

Statement: R'G,, is local,i.e.terms like log” 112 /€™ should cancel for any k and m
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A™ is the contribution to the leading pole in n-loops from the diagrams
appearing in due corse of R-operation after subtraction of (n-1) loop
counter terms

The leading divergences are governed by | loop diagrams!
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Two loop example
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non-local terms to be cancelled
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 These statements are universal and are valid in non-renormalizable theories as well.

+ The only difference is that the counter term (") depends on kinematics and has to be

integrated through the remaining one-loop graph.

« As a result A§2) is not the square of Agl) anymore but is the integrated square (see below).

 This last statement is the general feature of any QFT irrespective of renormalizability




Recurrence Relations for the Leading Poles
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Solution of Recurrence Relations

Starting point:
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Notice the difference with renormalizable theory: 51 depends on kinematics!
To get S2 one has to integrate 71 and Ui over the loop

This is exactly what we do in writing the recurrence relation

gD/2-2 1
@/2_1)/ de[z(1-2)]°%72 (Su-1(s, t',w') + Tus (s, 8, 0') + Una (s, t', )




Differential Equation

Summing up the recurrence relation Y _(—2)" one gets the diff equation
2
dls(s,t,u) 1I'(D/2-1) by 5 I's(z

B 2D 2

gD /22 [
B 1)/Odfv[:c(1—x>]D/ 2 [To(s, 8w )+ Te(s, ', ') +Tu(s, t', w)] | ¢ = s,

Il SRl )]D/2-2
i §F(D/2—1)/d:€[ il ZZ p+D/2—2)

p=0 [= O

dp 2 P pl p—l
— (T + Do+ Tu)l 4 = [2(1 — @)t

02 2
B LSS
d log 12 2T(D/2 - 1) e forars U p+D/2—2)

[ u ; l l
dt" du/r—! ‘ t' = —xs, sP [513(1 e le)]pt uf~




Solution of RG Equation
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General Solution for any D
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P is the symbol of ordering in a sense of recurrence relation
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Solution of RG Equation

To get S, for instance one has to take ~ s7/272(sP/272 4 ¢P/272 1 P/272)  tarms

and integrate s, t and u over the s-loop. This is exactly given by
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To get S3 one has to take s7/272(sP/272 4 ¢P/272 4 o P/272)2 terms
and integrate s, t and u over the s-loop. This is given by expr (>l<) and by the terms

emerging when t and u come from the diagrams standing to the left and right of the s-
channel one
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High Energy Behaviour of the scattering
amplitude in gb% theory
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S As a result one has a Landau poleas £ — o©

s+t+u=0 All the leading divergences (logs) cancel in all loops
One can explicitly check thatS, given above vanishes

s+t +u? >0 has a Landau poleas £ — o0

57 e e =S 0 s >0,t,u <0  hasalandau pole as

Conclusion: ¢Lll) has a Landau poleas £ — o0
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