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Motivation:

• The Standard Model is renormalizable
• Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

• UV divergences are not under control - infinite number of new types of  divergences
• The amplitudes increase with energy (in PT) and violate unitarity

• To replace the multiplicative renormalization procedure by a new one, 
where the renormalization constant      is replaced by an operator     ,  
which depends on kinematics

• To sum up the leading asymptotics in all orders of PT (generalized RG) 
and to study the high-energy behavior

Suggestion (novel approach to NR interactions):
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Renormalization

Consider 2->2 scattering amplitude on shell
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Renormalization (dimensional regularization)

BPHZ  R-operation

In NR theories Ẑ is a function (polynomial) of s,t,u  acting as an operator

Example (taken from D=8 YM theory)
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Either s or t are to be inserted into the loop and integrated

Exactly follows the BPHZ  R-operation
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Γ4(s, t, u) = λ(1 + Γs(s, t, u) + Γt(s, t, u) + Γu(s, t, u))

[λ] = 2−D/2

PT expansion (only s-channel is shown)
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BPHZ  R-operation

terms appear after subtraction of (n-k) loop counter terms  

Statement: R
0
Gn is local, i.e. terms like log

k µ2/✏m should cancel for any k and m

Consequence:

The leading divergences are governed by 1 loop diagrams!
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is the contribution to the leading pole in n-loops from the diagrams 
appearing in due corse of  R-operation after subtraction of (n-1) loop 
counter terms
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Two loop example

φ4

D

=

 

A
(2)
2

✏
2

+
A

(2)
1

✏

!

(
µ2

s
)2✏

R
0 =

− =

 

A
(2)
2

✏
2

+
A

(2)
1

✏

!

(
µ2

s
)2✏ −

A
(1)
1

✏

(
µ2

s
)✏

A
(1)
1

✏

=
A

(2)
2

✏
2

−

(A
(1)
1 )2

✏
2

+ 2
A

(2)
2

✏

log(µ2/s)−
(A

(1)
1 )2

✏

log(µ2/s){
non-local terms to be cancelled

A
(2)
2 =

1

2
(A

(1)
1 )2Leading divergence is given by the one-loop term

= −

1

2

(A
(1)
1 )2

✏
2

+ ...

• These statements are universal and are valid in non-renormalizable theories as well.

• The only difference is that the counter term         depends on kinematics and has to be 

integrated through the remaining one-loop graph.

• As a result           is not the square of          anymore but is the integrated square (see below).

• This last statement is the general feature of any QFT irrespective of renormalizability
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Solution of Recurrence Relations

Starting point:

Use the recurrence relation

Notice the difference with renormalizable theory: S1 depends on kinematics!

To get        one has to integrate       and        over the loop  S2 T1 U1

This is exactly what we do in writing the recurrence relation
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Solution of RG Equation

D = 4

General Solution for any D

is the symbol of ordering in a sense of recurrence relation
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Solution of RG Equation

To get        for instance one has to take terms  

and integrate s, t and u over the s-loop.  This is exactly given by 
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High Energy Behaviour of the scattering 
amplitude in            theoryφ4
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All the leading divergences (logs) cancel in all loops
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