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Motivation:

• The Standard Model is renormalizable
• Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

• UV divergences are not under control - infinite number of new types of  divergences
• The amplitudes increase with energy (in PT) and violate unitarity

• To replace the multiplicative renormalization procedure by a new one, 
where the renormalization constant      is replaced by an operator     ,  
which depends on kinematics

• To sum up the leading asymptotics in all orders of PT (generalized RG) 
and to study the high-energy behavior

Suggestion (novel approach to NR interactions):

ẐZ
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Renormalization

Consider 2->2 scattering amplitude on shell

�4(s, t, u) = �tree
4 �̄4(s, t, u) �̄4 = 1 + �...+ �2...

Renormalization (dimensional regularization)
BPHZ  R-operation

Bogolyubov-Parasiuk Theorem:   In any local quantum field theory to get the UV 
finite S-matrix one has to introduce local counter terms to the Lagrangian in each 
order of perturbation theory - R-operation

In renormalizable case this is equivalent to the operation of multiplication by a 
renormalization constant Z 
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Z ! Ẑ

Renormalization

Ẑ is a function (polynomial) of momenta (s,t,u for the 4-point case) 

Example (taken from D=8 YM theory)

Ẑ = 1 + g2
st

✏ s + tg 2g2s t

Either s or t are to be inserted into the loop and integrated

Exactly follows the BPHZ  R-operation
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In non-renormalizable case the BP theorem is still valid and the counter terms are 
also local (at maximum are polynomial over momenta)

• Multiplication operation is replaced by acting of an operator  

• When acting on the diagram  the         factor has to inserted inside the diagram and 
integrated over the internal loop
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BPHZ  R-operation

terms appear after subtraction of (n-k) loop counter terms  

Statement: R0Gn is local, i.e. terms like logk µ2/✏m should cancel for any k and m

Consequence:

The leading divergences are governed by 1 loop diagrams!
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is the contribution to the leading pole in n-loops from the diagrams 
appearing in due corse of  R-operation after subtraction of (n-1) loop 
counter terms
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Two loop example
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• These statements are universal and are valid in non-renormalizable theories as well.

• The only difference is that the counter term         depends on kinematics and has to be 

integrated through the remaining one-loop graph.

• As a result           is not the square of          anymore but is the integrated square (see below).

• This last statement is the general feature of any QFT irrespective of renormalizability
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The Recurrence Relation

This is the generalized RG equation valid in any  (even non-renormalizable) theory!

n�2X

k=1

n A_n = - 2 A_n-1 - A_k A_n-1-k

• This is the general recurrence relation that reflects the locality of the counter 
terms in any theory 

• In renormalizable theories A_n is a constant and this relation  is reduced to the 
algebraic one

• In non-renormalizable theories A_n depends on kinematics and one has to 
integrate through the one loop diagrams

Taking  the sum one can transform the recurrence relation

into integro-diff equation
d

dz
A(z) = �1� 2
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�4
D D = 4, 6, 8, 10

= + + +

+ + +

+ + + ...

�4(s, t, u) = �(1 + �s(s, t, u) + �t(s, t, u) + �u(s, t, u))

[�] = 2�D/2

PT expansion (only s-channel is shown)

2->2 scattering amplitude on shell  m = 0 s+ t+ u = 0

�s =
1X

n=1

(�z)nSn, �t =
1X

n=1

(�z)nTn, �u =
1X

n=1

(�z)nUn, z ⌘ �

✏PT:

The Scalar theory example
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R' = - - -
k = 1

n - 2

n- loop (n-1)- loop k- loop (n-k-1)- loop(n-1)- loop

- ... terms with higher loop remaining diagrams

k- loop
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Recurrence Relations for the Leading Poles

⌃

t0 = �xs, u0 = �(1� x)s

nSn(s, t, u)
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Differential Equation

Summing up the recurrence relation 
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Solution of RG Equation
D = 4

General Solution for any D

is the symbol of ordering in a sense of recurrence relation
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D = 4

�4(s, t, u) = P �

1 + 1
2
�(D/2�1)
�(D�2) �(sD/2�2 + tD/2�2 + uD/2�2) log(µ2/E2)

D = 6

D = 8

D = 10

E ! 1

s+ t+ u = 0

s2 + t2 + u2 > 0

s3 + t3 + u3 = 3stu > 0 s > 0, t, u < 0

High Energy Behaviour of the scattering 
amplitude in            theory�4

D

3/2 > 0 As a result one has a Landau pole as 

All the leading divergences (logs) cancel in all loops

One can explicitly check that        given above vanishesS2

has a Landau pole as 

E ! 1

Conclusion: �4
D

s ⇠ t ⇠ u ⇠ E2

has a Landau pole as 

has a Landau pole as E ! 1

E ! 1



Maximal SUSY theories in various dimesions

D=4   N=4
D=6   N=2
D=8   N=1
D=10 N=1

Partial or total cancellation of UV divergences (all 
bubble and triangle diagrams cancel)
First UV divergent diagrams at D=4+6/L
Conformal or dual conformal symmetry
Common structure of the integrands

D=4 N=8  Supergravity On-shell finite up to 7 loops
Similar to higher dim SYM

Object: Helicity Amplitudes on mass shell 
with arbitrary number of legs and loops

The case: Planar limit Nc ! 1, g2YM ! 0 and g2YMNc - fixed

The aim: to get all loop (exact) result

Study of higher dim SYM gives insight into quantum gravity

Bern, Dixon &Co 10

Arkani-Hamed 12Drummond, Henn, 

Korchemsky, S
okatchev 10



Perturbation Expansion for the 4-point 
Amplitudes for any D 
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A4/A
tree
4 1

2

4

15

60

No bubbles
No Triangles

Universal expansion for any D in maximal SYM due to

First UV div at 
L=[6/(D-4)] loops

IR finite

Dual conformal invariance

Т. Dennen Yu-yin Huang 10 ,
S.Caron-Huot D.O'Connell 10 



Recursion relations and RG equations
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Leading logs UV divergences D=6 N=2s ! 1, t ! 1

M4(s, t) = 1 + ⌃s(s, t) + ⌃t(s, t) ⌃s =
1X

n=3

(�z)nSn, ⌃t =
1X

n=3

(�z)nTn

s-channel term Sn(s, t) Tn(s, t) Tn(s, t) = Sn(t, s)

t0 = t(x� y)� sy

S3 = �s/3, T3 = �t/3

t-channel term

nSn(s, t) = �2s

Z 1

0
dx

Z x

0
dy (Sn�1(s, t

0) + Tn�1(s, t
0))

n � 4

Exact relation for all diagrams

Diff equation Generlizaed RG equation z ⌘ g2

✏
$ g2 log(µ2)

z
d

dz
⌃s(s, t, z) = sz�2⌃s(s, t, z)+2sz

Z 1

0
dx

Z x

0
dy(⌃s(s, t

0, z)+⌃t(s, t
0, z))|t0=xt+yu

Bork,Kazakov,Kompaneets,Vlasenko, 13



Solution of RG equation

Horizontal ladder + tennis court

D=6 N=2

Ladder Lddder 2

⌃L(s, z) =
2

s2z2
(esz � 1� sz � s2z2

2
)

⌃L2 =
1

2s2z2


27(ez/3 � 1� z

3
� 1

2

z2

9
� 1

6

z3

27
)(1 + 2

t

s
)� (ez � 1� sz � 1

2
z2 � 1

6
z3)

�

In general case - numerical solution similar to the ladder approximation

⌃s + ⌃t ⇠ e(s+t)z

z ! 1
s+ t = �u > 0, ⌃ ! 1
s+ u = �t > 0, ⌃ ! 1
t+ u = �s < 0, ⌃ ! const
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D=8 N=1

s ! 1, t ! 1

S1 =
1

12
, T1 =

1

12

nSn(s, t) = �2s2
Z 1

0
dx

Z x

0
dy y(1� x) (Sn�1(s, t

0) + Tn�1(s, t
0))|t0=tx+yu

+ s4
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0
dx x2(1� x)2

n�2X

k=1

2k�2X

p=0

1

p!(p+ 2)!

dp

dt0p
(Sk(s, t

0) + Tk(s, t
0))⇥

⇥ dp

dt0p
(Sn�1�k(s, t

0) + Tn�1�k(s, t
0))|t0=�sx (tsx(1� x))p

d

dz
⌃(s, t, z) = � 1

12
+ 2s2

Z 1

0
dx

Z x

0
dy y(1� x) (⌃(s, t0, z) + ⌃(t0, s, z))|t0=tx+yu

�s4
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0
dx x2(1� x)2

1X

p=0

1

p!(p+ 2)!
(
dp

dt0p
(⌃(s, t0, z) + ⌃(t0, s, z))|t0=�sx)

2 (tsx(1� x))p.
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Recursion relations and RG equations

Leading logs UV divergences

Diff equation



D=8 N=1

z = g2s2/✏

⌃(z) = �(z/6 + z2/144 + z3/2880 + 7z4/414720 + . . . )

⌃A(z) = �
p
5/3

4 tan(z/(8
p
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1� tan(z/(8
p
15))

p
5/3

=
p
10

sin(z/(8
p
15))

sin(z/(8
p
15)� z0)

d

dz
⌃A = � 1

3!
+

2

4!
⌃A � 2

5!
⌃2

A

z0 = arcsin(
p

3/8)
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Borlakov,Kazakov,Tolkachev,Vlasenko, 16

Solution of RG equation

Horizontal ladder

Diff equation

In general case - numerical solution similar to the ladder approximation 
possessing infinite number of poles in both directions

infinite number of poles 
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Resume

 The UV divergences in non-renormalizable theories are local and can be 
removed by local counter terms like in renormalizable ones

 The main difference is that the renormalization constant Z depends on 
kinematics and acts like an operator rather than simple multiplication

 Based on locality of the counter terms due to the Bogoliubov-Parasiuk  
theorem one can construct the recurrence relations that define all loop 
divergences starting from one loop

 The recurrence relations can be converted into the generalized RG 
equations just like in renormalizable theories

 The RG equations allow one to sum up the leading (subleading, etc) 
divergences in all loops and define the high-energy behaviour


