

DMITRY KAZAKOV

BOGOLIUBOV LABORATOTY FORT THEORETICAL PHYSICS JOINT INSTITUTE FOR NUCLEAR RESEARCH

IN WAITING FOR NEW PHYSICS

THE PRINCIPLES

The SM of today:

- All particles are discovered
- All symmetries are confirmed
- The mechanism of spontaneous EW symmetry breaking is established
- Essentially all phenomena in particle physics are described by the SM
- All parameters are measured

The main loop-holes of the SM today:

- Bottom line of neutrino masses
- Nature of neutrino (Dirac or Majorana)
 - Dark Matter is not a part of the SM

🖗 What is it?

THE LAGRANGIAN

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} \mathcal{L}_{\mu\nu} \mathcal{P}_{\mu\nu} \mathcal{P}_$$

THE OPEN QUESTIONS

- how confinement actually works ?
- how the quark-hadron phase transition happens?
- how to calculate the hadron matrix elements?
- what defines the spectrum and mixings?
- how CP violation occurs in the Universe?
- how the baryon asymmetry appears?

- Is it self consistent ?
- Does it describe <u>all</u> experimental data?
- Are there any indications for physics beyond the SM?
- Is it compatible with Cosmology? Where is dark matter?

IS THERE ANOTHER SCALE EXCEPT FOR EW AND PLANK?

Fabio Zwirner, EPS HEP 2017

We live in data driven era and need an experimental hint to proceed

THE WAYS BEYOND

- Extension of <u>symmetry</u> group of the SM : SUSY, GUT, new U(1)'s
 - -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle
- Additional <u>particles</u>: Extra generations, extra gauge bosons, extra Higgs bosons, extra neutrinos, etc
 - -> may solve the problem of stability, DM
- New <u>fundamental objects</u> (compositeness)
- Extra dimensions: Compact or flat extra dim
 - -> Opens a whole new world of possibilities, may solve the problem of stability and the hierarchy problem, gives new insight into gravity
- New <u>paradigm</u> beyond local QFT: string theory, brane world, etc
 -> main task is unification with gravity and construction of quantum gravity

NEW SYMMETRIES

SUPERSYMMETRY

Supersymmetry is an extension of the Poincare symmetry of the SM

Supersymmetry is a unique possibility to unify particles with different spin

Supersymmetry remains, to this date, a well-motivated, much anticipated extension to the Standard Model of particle physics

Supersymmetry is a dream of a unified theory of all particles and interactions

NEW SYMMETRIES

SUPERSYMMETRY

Paris Sphicas, EPS HEP 2017

- Low energy Supersymmetry is on stake
- If we do not see it on LHC the low energy motivation fades away
- One can still avoid exclusion of SUSY but the price is more sophisticated models

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

GRAND UNIFICATION

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

Creates new problems:

• Hierarchy of scales $M_W/M_G \sim 10^{-14}$

11

 Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Unification of the gauge couplings and stabilization of the hierarchy mights require low energy SUSY

NEW SYMMETRIES

- Appear in some GUT models
- Inspired by string models

Used as possible BSM signal with energetic single jet or diet events

EXTRA U(1)', SU(2)'

Used as possible Dark matter candidate - Dark photon

Mixture of a usual EM U(1) photon and a new U(1)' one

$$\mathcal{L} \sim F_{\mu\nu} F^{'\mu\nu}$$

Dedicated experiment to look for conversion of a usual photon into a dark one

ADDITIONAL GAUGE BOSONS

Experiment

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances
- Monojets + invisible

No indication so far - experimental limits on Z' and W' masses around few TeV

NEW PARTICLES

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

- The Higgs physics has already started
- This is the task of vital importance.
- May require the electron-positron collider

EXTENDED HIGGS SECTOR

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Perform direct search for additional scalars

PRECISION PHYSICS OF THE HIGGS BOSONS

15

EXTRA HIGGS BOSONS

16

NEW PARTICLES AXION OR AXION-LIKE PARTICLES

Javier Redondo, EPS HEP 2017

PECCEI-QUINN MECHANISM - AXION

- Any theory promoting θ to a dynamical field, $\theta(t, \mathbf{x})$, will dynamically set $\theta \to 0$ after some time...

WHAT IS THE MASS TO GET $\Omega_{CDM}h^2 = 0.12$? 19

- Some amount of axion Dark matter is unavoidable!

- Less minimal axion models have further possibilities

NEW PARTICLES

NEUTRINOS

$$m_{\nu_e} < 2 \ eV$$
 $m_{\nu_e} < 0.2 \ eV$ $0.06 \ eV < \sum m_{\nu} < 0.12 \ eV$ β -decayKATRINOscillationsCMB spectrum
PlanckTroitsk-MainzFinckFinck

$0\beta\beta\nu$ **DIRAC OR MAJORANA?**

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW PARTICLES

The Dark Matter is made of:

- Macro objects Not seen
- New particles right heavy neutrino
 - axion (axino)
 - neutralino
 - **mSUGRA** - sneutrino
 - gravitino
 - heavy photon
 - heavy pseudo-goldstone
 - light sterile higgs

might be invisible (?)

detectable in 3 spheres less theory favorable might be undetectable (?) WINP is our chance!

possible, but not But we have to look elsewhere ! related to the other models

Creation at the LHC

 $q + q \rightarrow X +$

 Ω_x

DARK MATTER

WIMP

Not from

the SM

DARK MATTER: DIRECT DETECTION

NEW FUNDAMENTAL OBJECTS

Higgs boson -> pseudo Numbu-Goldstone boson

Global symmetry G broken to H of SM

Higgs boson $\Leftrightarrow \pi - meson$ $W, Z \text{ bosons} \Leftrightarrow \rho - mesons$

Should be

 $\pi', \pi'', \rho', \rho'', \dots$

Advantage: No artificial scalar field Protection from high energy physics

COMPOSITENESS

Quarks and Leptons made of preons

New strong confining forces

Technicolor Walking Technicolor Extended Technicolor

- No new excited states observed
- Problems with precision EW observables
- No viable simple scheme

NEW DIMENSIONS

EXTRA SPACE DIM $1+3 \rightarrow 1+n, n > 3$

Motivations

1. String theory

2. Interesting possibility that opens wide opportunities

- String theory suffers conformal anomalies that make it inconsistent.
- Conformal anomaly cancels at D=26 for a bosonic string and D=10 for a fermionic string

PHENOMENOLOGY OF EXTRA D

Accelerator signatures

- Gravitational radiation in the bulk => missing energy
- Present LHC bounds $M_* \geq 3 5$ TeV
- Vast phenomenology but no Vast phenomenology far indication so far Massive string vibrations => resonances in dijet distribution $M_i^2 = M_0^2 + M_s^2$
- Higher spin excitation gluons with strop present LHC
- Large] reso M_k experime TeV R

 change of Newton's law at short distances (detectable only in case of 2 large extra dim) ew short range forces (light scalars and ge fields)

$$V(r) = -G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

NEW PARADIGM

STRING THEORY

- * All five string theories are only consistent in 10 space-time dimensions
- * All five string theories have world-sheet supersymmetry and lead to space-timesupersymmetry in 10 dimensions
- * All five string theories are related and part of a single ''theory'': M-theory

M-theory is a patchwork of the constituent theories plus many "rules".

CONCLUDING REMARKS

- LHC experiments are at the front line of mystery land: be patient and ready for unexpected
- Target #1: Higgs sector
- Target #2: Dark Matter
- **Marget #3: Neutrino sector**
- Target #4: New physics (supersymmetry)
- Future development of HEP crucially depends on LHC outcome

Complimentary searches for dark matter and insights in neutrino physics are of extreme importance

The areas that were left behind come to the front: confinement, exotic hadrons, dense hadron matter