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 This is an attempt to shed some new light on non-
renormalizable interactions with the aim to make sense of 
them at least in some cases

 As an example we consider maximally supersymmetric 
gauge  theory in D=8 dimensions and focus on the on-shell 
scattering amplitudes

 The reason is that this case was studied in detail 

and has important advantages

 All analysis in performed within dimensional regularization
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Motivation

Maximal SYM

D=4 N=4
D=6 N=2
D=8 N=1
D=10 N=1

Partial or total cancellation of UV divergences 

(all bubble and triangle diagrams cancel)

First UV divergent diagrams at D=4+6/L

Conformal or dual conformal symmetry

Common structure of the integrands
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Object: Helicity Amplitudes on mass shell 
with arbitrary number of legs and loops

The case: Planar limit Nc → ∞, g2
YM

→ 0 and g2
YM

Nc - fixed

The aim: to get all loop (exact) result

D=4 N=8  Supergravity
On-shell finite up to 8 loops

Similar to higher dim SYM

Study of higher dim SYM gives insight into quantum gravity

All of them can be obtained from 10dim 

superstring by compactification on a torus



UV divergences in all Loops
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D=4 N=4        No UV div                IR div on shell

D=6 N=2        UV div from 3 loops    No IR div

D=8 N=1        UV div from 1 loop      No IR div

D=10 N=1      UV div from 1 loop      No IR div

The aim: to get all loop (exact) result for the leading (at least) divs

All these theories are non-renormalizable by power counting

The coupling         has dimension [g2] =
1

MD−4

g
2

Spinor-helicity formalism: S-matrix elements



Perturbation Expansion for the 4-point 
Amplitudes for any D 

A4/A
tree

4 1

2

4

15

60

No bubbles
No Triangles

Universal expansion for any D in maximal SYM due to

First UV div at 

L=[6/(D-4)] loops

IR finite
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Dual conformal invariance

Т. Dennen Yu-yin Huang 10 ,
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Leading Divergences from Generalized 

«Renormalization Group»
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• In renormalizable theories the leading divergences can be found 

from the 1-loop term due to the renormalization group, in particular, 

for a single coupling theory the coefficient of            in n loops is 1/✏n

• In non-renormalizable theories the leading divergences can be also 

found from 1-loop due to locality and R-operation
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SubLeading Divergences from Generalized 

«Renormalization Group»
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• In non-renormalizable theories the leading divergences can be also 

found from 1-loop due to locality and R-operation

Leading pole

from 1 loop

diagrams 
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from 2 loop 

diagrams 

Just like in 

renormalizable 

theories one can 

deduce the 

leading, 

subheading, etc 

divergences from 

1, 2, etc diagrams



Kinematically dependent renormalization

Two-loop box  
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This is true to all orders of PT like in renormalizable  theories  via the 

locality of the counnterterms due to  the R-operation 



Ladder diagrams (leading divs)

Horizontal boxes D=8 N=1
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Ladder diagrams (leading divs)
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Horizontal boxes D=8 N=1
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All loop Exact Recurrence Relation

D=8 N=1

Sn(s, t) Tn(s, t) Tn(s, t) = Sn(t, s)

Exact relation for ALL diagrams

summation

Diff eqn

S1 =
1

12
, T1 =

1

12

s-channel term t-channel term

nSn(s, t) = −2s2
Z 1

0

dx

Z x

0

dy y(1− x) (Sn�1(s, t
0) + Tn�1(s, t

0))|t0=tx+yu

+ s4
Z 1

0

dx x2(1− x)2
n�2X
k=1

2k�2X
p=0

1

p!(p+ 2)!

dp

dt0p
(Sk(s, t

0) + Tk(s, t
0))×

×

dp

dt0p
(Sn�1�k(s, t

0) + Tn�1�k(s, t
0))|t0=�sx (tsx(1− x))p

Σ3(s, t, z) = Σ1(s, t, z)− S2(s, t)z
2 + S1(s, t)z, Σ2(s, t, z) = Σ1(s, t, z) + S1(s, t)z

d

dz
Σ(s, t, z) = −

1

12
+ 2s2

Z 1

0

dx

Z x

0

dy y(1− x) (Σ(s, t0, z) + Σ(t0, s, z))|t0=tx+yu

−s4
Z 1

0

dx x2(1− x)2
1X
p=0

1

p!(p+ 2)!
(
dp

dt0p
(Σ(s, t0, z) + Σ(t0, s, z))|t0=�sx)

2 (tsx(1− x))p.



All loop Solution (leading divs)
D=8 N=1

ΣL(s, z) = −
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ladder for t=s
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g
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Numerical solution 0

Numerical solution 1

The ladder sequence

PT series: 15 terms

Pade approximation [7,6]
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Subleading divergences

ΣL(z) + ✏ΣNL(z) + ✏
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D = 6 N = 2 z = g2s/✏, z = g2t/✏

D = 8 N = 1 z = g2s2/✏, z = g2st/✏, ..

D = 10 N = 1 z = g2s3/✏, z = g2s2t/✏, ..
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Sum of Ladder diagrams (subleading divs)
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Scheme dependence and 
arbitrariness of subtraction 
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Scheme dependence and 
arbitrariness of subtraction 

A
0

2
+B

0

2
=

s

3!4!✏2

✓

1−
5

12
✏+ 2c1✏+ c2✏

2

◆

sub-subleading case

∆Σ
0

sC(3− loop) = −

719c1s
2

1036800✏
Σ

0

sB
(3− loop) = −

71s2

345600✏2

z → z(1 + c1✏) + z2(c2 − c2
1
/4!)✏2 + z3c3

1
/6!✏3 − z4c4

1
/4!6!✏4 + ....

Σ
0
trunc

sB
(3− loop) = −

719s2

3110400✏2

 linear term

 new contribution from 

subleading term

∆Σ
0

sC(3− loop) = c1z
dΣ

0
trunc

sB

dz
(3− loop)

 the source of 

a problem



Kinematically dependent renormalization 
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• R-operation is equivalent to
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Kinematically dependent renormalization 
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 operator kinematically dependent renormalization
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Kinematically dependent renormalization

Two-loop box operator action 

g4st g4 s t s

t s t

Three-loop box counterterms Tennis court counterterms

 Z-operator reproduces  R-operation like in renormalizable 

theories



Kinematically dependent renormalization

Two-loop box operator action 
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g4 s t s t s t

Three-loop box counterterms Tennis court counterterms

 Z-operator reproduces  R-operation like in renormalizable 

theories



Kinematically dependent renormalization

 scheme dependence

g
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 scheme dependence

 renormalizable theories  nonrenormalizable theories

 infinite number of free 

parameters  lead to a single 

multiplication constant  -> 

redefinition of a single 

coupling

 infinite number of free 

parameters  lead to a single 

multiplication constant  

acting as an operator -> 

redefinition of a series of 

couplings 
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Conclusions 

 The structure of UV divergences in non-renormalizable theories essentially 

copies that of renormalizable ones

 The main difference is that the renormalization constant Z depends on 

kinematics and acts like an operator rather than simple multiplication

As a result, one can construct the higher derivative theory that gives the 

finite scattering amplitudes with a single arbitrary coupling g  defined in PT 

within the given renormalization scheme. 

 Assuming that one accepts these arguments, there is still a problem 

that at each order of PT the amplitude increases with energy, thus 

violating unitarity.  However, apparently, this problem has to be 

addressed after summation  of the whole PT series.

Transition to another scheme is performed by  the action on the amplitude 

of a finite renormalization operator z that depends on kinematics.


