Kinematically Dependent Renormalization

Dmitry Kazakov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Based on arXiv:1804.08387 [hep-th]
Lev's Lipatov Memorial Session
July, 72018 Kolymbari, Crete, Greece

Q This is an attempt to shed some new light on nonrenormalizable interactions with the aim to make sense of them at least in some cases

Q As an example we consider maximally supersymmetric gauge theory in $\mathrm{D}=8$ dimensions and focus on the on-shell scattering amplitudes

Q The reason is that this case was studied in detail
in collaboration with A. Borlakov, D.Tolkachev and D.Vlasenko

> JHEP 1612 (2016) 154, arXiv:1610.05549v2 [hep-th]
> Phys.Rev. D95 (2017) no.4, 045006 arXiv:1603.05501 [hep-th] Phys.Rev. D97 (2018) no.12, 125008 arXiv:1712.04348 [hep-th],
and has important advantages

- All analysis in performed within dimensional regularization

Motivation

Maximal SYM

$\mathrm{D}=4 \mathrm{~N}=4$
$\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}=1$
$\mathrm{D}=10 \mathrm{~N}=1$

- Partial or total cancell-:... from 10 dim (all bubble an-1 be obtained on a torus
- Firct of them can be actification. cancel) All of the by compac inlis at $D=4+6 / L$ superstring by al conformal symmetry sup.

$\mathrm{D}=4 \mathrm{~N}=8$ Supergravity

© On-shell finite up to 8 loops
Similar to higher dim SYM

Object: Helicity Amplitudes on mass shell with arbitrary number of legs and loops

The case: Planar limit $\quad N_{c} \rightarrow \infty, g_{Y M}^{2} \rightarrow 0$ and $g_{Y M}^{2} N_{c}$ - fixed
The aim: to get all loop (exact) result
Study of higher dim SYM gives insight into quantum gravity

UV divergences in all Loops

Spinor-helicity formalism: S-matrix elements

$D=4 \mathrm{~N}=4 \quad$ No UV div
IR div on shell
$\mathrm{D}=6 \mathrm{~N}=2 \quad$ UV div from 3 loops No IR div
$D=8 \mathrm{~N}=1 \quad$ UV div from 1 loop No IR div
$D=10$ N=1 UV div from 1 loop No IR div
All these theories are non-renormalizable by power counting
The coupling g^{2} has dimension $\quad\left[g^{2}\right]=\frac{1}{M^{D-4}}$
The aim: to get all loop (exact) result for the leading (at least) divs

Perturbation Expansion for the 4-point Amplitudes for any D

$A_{4} / A_{4}^{\text {tree }}$
No bubbles No Triangles

$-g^{6}$

IR finite

Leading Divergences from Generalized «Renormalization Group»

- In renormalizable theories the leading divergences can be found from the 1-loop term due to the renormalization group, in particular, for a single coupling theory the coefficient of $1 / \epsilon^{n}$ in \mathbf{n} loops is

$$
\mathcal{R}^{\prime} G=\sum_{n} \frac{a_{n}^{(n)}}{\epsilon^{n}} \quad a_{n}^{(n)}=\left(a_{1}^{(1)}\right)^{n}
$$

- In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation

$$
\mathcal{R}^{\prime} G=1-\sum_{\gamma} K \mathcal{R}_{\gamma}^{\prime}+\sum_{\gamma, \gamma^{\prime}} K \mathcal{R}_{\gamma}^{\prime} K \mathcal{R}_{\gamma^{\prime}}^{\prime}-\ldots
$$

$$
\mathcal{R}^{\prime} G_{n}=\frac{A_{n}^{(n)}\left(\mu^{2}\right)^{n \epsilon}}{\epsilon^{n}}+\frac{A_{n-1}^{(n)}\left(\mu^{2}\right)^{(n-1) \epsilon}}{\epsilon^{n}}+\ldots+\frac{A_{1}^{(n)}\left(\mu^{2}\right)^{\epsilon}}{\epsilon^{n}}
$$

$$
\text { Leading pole }+\frac{B_{n}^{(n)}\left(\mu^{2}\right)^{n \epsilon}}{\epsilon^{n-1}}+\frac{B_{n-1}^{(n)}\left(\mu^{2}\right)^{(n-1) \epsilon}}{\epsilon^{n-1}}+\ldots+\frac{B_{1}^{(n)}\left(\mu^{2}\right)^{\epsilon}}{\epsilon^{n-1}}
$$ +lower order terms

SubLeading pole

$$
\begin{array}{cc}
A_{1}^{(n)}, B_{1}^{(n)} & \quad \begin{array}{l}
\text { 1-loop graph } \\
B_{2}^{(n)}
\end{array} \\
\text { 2-loop graph }
\end{array}
$$

SubLeading Divergences from Generalized «Renormalization Group»

- In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation
All terms like $\left(\log \mu^{2}\right)^{m} / \epsilon^{k} \quad$ should cancel

$$
\begin{gathered}
A_{n}^{(n)}=(-1)^{n+1} \frac{A_{1}^{(n)}}{n} \\
B_{n}^{(n)}=(-1)^{n}\left(\frac{2}{n} B_{2}^{(n)}+\frac{n-2}{n} B_{1}^{(n)}\right) \\
\mathcal{K} \mathcal{R}^{\prime} G_{n}=\sum_{k=1}^{n}\left(\frac{A_{k}^{(n)}}{\epsilon^{n}}+\frac{B_{k}^{(n)}}{\epsilon^{n-1}}\right) \equiv \frac{A_{n}^{(n)^{\prime}}}{\epsilon^{n}}+\frac{B_{n}^{(n)^{\prime}}}{\epsilon^{n-1}} \\
A_{n}^{(n)^{\prime}}=(-1)^{n+1} A_{n}^{(n)}=\frac{A_{1}^{(n)}}{n}, \\
B_{n}^{(n)^{\prime}}=\left(\frac{2}{n(n-1)} B_{2}^{(n)}+\frac{2}{n} B_{1}^{(n)}\right)
\end{gathered}
$$

Leading pole from 1 loop diagrams

SubLeading pole from 2 loop diagrams

Just like in renormalizable theories one can deduce the leading, subheading, etc divergences from 1,2, etc diagrams

Kinematically dependent renormalization

One-loop box

This is true to all orders of PT like in renormalizable theories via the locality of the counnterterms due to the R-operation

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1 \quad$ Horizontal boxes

Leading poles

$$
A_{n}^{(n)}=s^{n-1} A_{n}
$$

1 loop box

$$
n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3
$$

$$
\begin{array}{r}
A_{1}=\frac{1}{3!} \\
A_{2}=-\frac{1}{3!4!} \\
A_{3}=\frac{2}{33!4!4!}+\frac{2}{35!3!3!}
\end{array}
$$

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes

$$
A_{n}^{(n)}=s^{n-1} A_{n}
$$

$$
n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad \text { 1 loop box }
$$

Summation

$$
\Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}
$$

$$
\begin{gathered}
-\frac{d}{d z} \Sigma_{3}=-\frac{2}{4!} \Sigma_{2}+\frac{2}{5!} \Sigma_{1} \Sigma_{1} . \quad \Sigma_{3}=\Sigma_{1}+A_{1} z-A_{2} z^{2}, \quad \Sigma_{2}=\Sigma_{1}+A_{1} z, \quad A_{1}=\frac{1}{3!}, A_{2}=-\frac{1}{3!4!} \\
\Sigma_{A} \equiv \Sigma_{1} \quad \text { Diff eqn } \quad \frac{d}{d z} \Sigma_{A}=-\frac{1}{3!}+\frac{2}{4!} \Sigma_{A}-\frac{2}{5!} \Sigma_{A}^{2} \quad z=g^{2} s^{2} / \epsilon
\end{gathered}
$$

$$
\Sigma_{A}(z)=-\sqrt{5 / 3} \frac{4 \tan (z /(8 \sqrt{15}))}{1-\tan (z /(8 \sqrt{15})) \sqrt{5 / 3}}=\sqrt{10} \frac{\sin (z /(8 \sqrt{15}))}{\sin \left(z /(8 \sqrt{15})-z_{0}\right)}
$$

$$
\Sigma(z)=-\left(z / 6+z^{2} / 144+z^{3} / 2880+7 z^{4} / 414720+\ldots\right) \quad z_{0}=\arcsin (\sqrt{3 / 8})
$$

All loop Exact Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

s-channel term

$$
S_{n}(s, t) \text { t-channel term } \quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)
$$

Exact relation for ALL diagrams

$$
\begin{aligned}
& \quad n S_{n}(s, t)=-\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=t x+y u} \\
& +\quad s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2 k-2} \frac{1}{p!(p+2)!} \frac{d^{p}}{d t^{p} p}\left(S_{k}\left(s, t^{\prime}\right)+T_{k}\left(s, t^{\prime}\right)\right) \times \\
& S_{1}=\frac{1}{12}, T_{1}=\frac{1}{12} \quad \times\left.\frac{d^{p}}{d t^{\prime p}}\left(S_{n-1-k}\left(s, t^{\prime}\right)+T_{n-1-k}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=-s x}(t s x(1-x))^{p}
\end{aligned}
$$

summation $\quad \Sigma_{3}(s, t, z)=\Sigma_{1}(s, t, z)-S_{2}(s, t) z^{2}+S_{1}(s, t) z, \Sigma_{2}(s, t, z)=\Sigma_{1}(s, t, z)+S_{1}(s, t) z$ Diff eqn

$$
\begin{aligned}
& \frac{d}{d z} \Sigma(s, t, z)=-\frac{1}{12}+\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(\Sigma\left(s, t^{\prime}, z\right)+\Sigma\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=t x+y u} \\
& -s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{p=0}^{\infty} \frac{1}{p!(p+2)!}\left(\left.\frac{d^{p}}{d t^{\prime p}}\left(\Sigma\left(s, t^{\prime}, z\right)+\Sigma\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=-s x}\right)^{2}(t s x(1-x))^{p} .
\end{aligned}
$$

All loop Solution (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

PT and Pade versus ladder for $t=s$

$$
z=\frac{g^{2}}{\epsilon}
$$

$$
\Sigma_{L}(s, z)=-\sqrt{5 / 3} \frac{4 \tan \left(z s^{2} /(8 \sqrt{15})\right)}{1-\tan \left(z s^{2} /(8 \sqrt{15})\right) \sqrt{5 / 3}}
$$

Subleading divergences

$$
\begin{array}{cll}
\Sigma_{L}(z)+\epsilon \Sigma_{N L}(z)+\epsilon^{2} \Sigma_{N N L}(z)+\cdots & \Sigma(z)=\sum_{n}^{\infty} z^{n} F_{n} \\
D=4 & N=4 & z=g^{2} / \epsilon \\
D=6 & N=2 & z=g^{2} s / \epsilon, z=g^{2} t / \epsilon \\
D=8 & N=1 & z=g^{2} s^{2} / \epsilon, z=g^{2} s t / \epsilon, . . \\
D=10 & N=1 & z=g^{2} s^{3} / \epsilon, z=g^{2} s^{2} t / \epsilon, . .
\end{array}
$$

$\mathrm{D}=8 \mathrm{~N}=1$

sLadder case

$$
\Sigma_{N L}=s \Sigma_{s B}(z)+t \Sigma_{t B}(z) \quad z=\frac{g^{2} s^{2}}{\epsilon}
$$

$$
\Sigma_{t B}^{\prime}(z)=\frac{5}{6}\left[e^{z / 60}(2 \cos (z / 30)-\sin (z / 30))-2\right]
$$

$$
\Sigma_{t B}=-\frac{1}{36}\left[60+z+e^{z / 60}(-(60+z) \cos (z / 30)-2(-15+z) \sin (z / 30))\right]
$$

Sum of Ladder diagrams (subleading divs)

$$
\Sigma_{s B}^{\prime}=\sum_{n=2}^{\infty} z^{n} B_{s n}^{\prime}
$$

$$
\frac{d^{2} \Sigma_{\Sigma_{B}^{\prime}(z)}^{d z^{2}}+f_{1}(z) \frac{d \Sigma_{\Sigma_{B}^{\prime}}^{\prime}(z)}{d z}+f_{2}(z) \Sigma_{s B}^{\prime}(z)=f_{3}(z) .}{}
$$

Diff eqn

$$
f_{1}(z)=-\frac{1}{6}+\frac{\Sigma_{A}}{15},
$$

$$
f_{2}(z)=\frac{1}{80}-\frac{\Sigma_{A}}{360}+\frac{\Sigma_{A}^{2}}{600}+\frac{1}{15} \frac{d \Sigma_{A}}{d z},
$$

$$
f_{3}(z)=\frac{2321}{5!5!2} \Sigma_{A}+\frac{11}{1800} \Sigma_{t B}^{\prime}-\frac{47}{5!45} \Sigma_{A}^{2}-\frac{1}{5!72} \Sigma_{A} \Sigma_{t B}^{\prime}+\frac{23}{6750} \Sigma_{A}^{3}+\frac{1}{1200} \Sigma_{A}^{2} \Sigma_{t B}^{\prime}
$$

$$
-\frac{19}{36} \frac{d \Sigma_{A}}{d z}-\frac{1}{15} \frac{d \Sigma_{t B}^{\prime}}{d z}+\frac{23}{225} \frac{d \Sigma_{A}^{2}}{d z}+\frac{1}{30} \frac{d\left(\Sigma_{A} \Sigma_{t B}^{\prime}\right)}{d z}-\frac{3}{32}
$$

Solution to Diff eqn
smooth monotonic function

$$
\Sigma_{s B}^{\prime}(z)=\frac{d \Sigma_{A}}{d z} u(z) \quad u(z)=\int_{0}^{z} d y \int_{0}^{y} d x \frac{f_{3}(x)}{d \Sigma_{A}(x) / d x}
$$

Scheme dependence and arbitrariness of subtraction

subleading case

$$
\left.\left.A_{1}^{\prime}+B_{s 1}^{\prime}=\frac{1}{6 \epsilon}\left(1+C_{1}\right)=\right) \quad \Delta \Sigma_{s B}^{\prime}=C_{1} z \frac{d \Sigma_{A}^{\prime}}{d z} . \quad \longrightarrow \quad z \rightarrow z\left(1+C_{1}\right) \epsilon\right) .
$$

sub-subleading case

$$
\begin{gathered}
A_{2}^{\prime}+B_{2}^{\prime}=\frac{s}{3!4!\epsilon^{2}}\left(1-\frac{5}{12} \epsilon+2 c_{1} \epsilon+C_{2} \xi^{2}\right) \quad \Delta \Sigma_{s C}^{\prime}=C_{2} z^{2} \frac{d \Sigma_{A}^{\prime}}{d z} . \\
\longrightarrow z \rightarrow z\left(1+c_{1} \epsilon\right)+z^{2} C_{2} \epsilon^{2} . \\
\left.\Delta \Sigma_{s C}^{\prime}=-C_{1}^{2} \frac{z}{4!}\left(\frac{d \Sigma_{A}^{\prime}}{d z}-12 \frac{d^{2} \Sigma_{A}^{\prime}}{d z^{2}}\right) \longrightarrow z \rightarrow z\left(1+c_{1} \epsilon\right)+z^{2}\left(c_{2}+C_{1}^{2}\right) 4!\right) \epsilon^{2}
\end{gathered}
$$

Scheme dependence and arbitrariness of subtraction

sub-subleading case
$\left.A_{2}^{\prime}+B_{2}^{\prime}=\frac{s}{3!4!\epsilon^{2}}\left(1-\frac{5}{12} \epsilon+2 c_{1}\right\}+c_{2} \epsilon^{2}\right)$
linear term
new contribution from subleading term

$$
\Delta \Sigma_{s C}^{\prime}(3-\text { loop })=-\frac{719 c_{1} s^{2}}{1036800 \epsilon} \quad \longleftrightarrow \quad \Sigma_{s B}^{\prime}(3-\text { loop })=-\frac{71 s^{2}}{345600 \epsilon^{2}}
$$

the source of
a problem

$$
\Delta \Sigma_{s C}^{\prime}(3-\text { loop })=c_{1} z \frac{d \Sigma_{s B}^{\prime t r u n c}}{d z}(3-\text { loop })
$$

$$
z \rightarrow z\left(1+c_{1} \epsilon\right)+z^{2}\left(c_{2}-c_{1}^{2} / 4!\right) \epsilon^{2}+z^{3} c_{1}^{3} / 6!\epsilon^{3}-z^{4} c_{1}^{4} / 4!6!\epsilon^{4}+\ldots .
$$

Kinematically dependent renormalization

- R-operation is equivalent to
renormalizable theories
nonrenormalizable theories

$$
\begin{gathered}
\bar{A}_{4}=\left.Z_{4}\left(g^{2}\right) \bar{A}_{4}^{\text {bare }}\right|_{g_{\text {bare }}^{2}->g^{2} Z_{4}} \\
g_{\text {bare }}^{2}=\mu^{\epsilon} Z_{4}\left(g^{2}\right) g^{2} \\
Z=1-\sum_{i} K R^{\prime} G_{i}
\end{gathered}
$$

simple multiplication
operator multiplication

$$
Z=1+\frac{g^{2}}{\epsilon}+g^{4}\left(\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon}\right)+\ldots
$$

$$
\begin{aligned}
Z= & 1+\frac{g^{2}}{\epsilon} s t+g^{4} s t\left(\frac{s^{2}+t^{2}}{\epsilon^{2}}+\frac{s^{2}+s t+t^{2}}{\epsilon}\right)+\cdots \\
& \frac{g^{2}}{\epsilon}\left(D_{\rho} D_{\sigma} F_{\mu \nu}\right)^{2}
\end{aligned}
$$

Kinematically dependent renormalization

operator kinematically dependent renormalization
at 2 loops

$$
\bar{A}_{4}=1-\frac{g_{B}^{2} s t}{3!\epsilon}-\frac{g_{B}^{4} s t}{3!4!}\left(\frac{s^{2}+t^{2}}{\epsilon^{2}}+\frac{27 / 4 s^{2}+1 / 3 s t+27 / 4 t^{2}}{\epsilon}\right)+\ldots
$$

$$
\bar{A}_{4}=\left.Z_{4}\left(g^{2}\right) \bar{A}_{4}^{\text {bare }}\right|_{g_{b a r e}^{2}->g^{2} Z_{4}}
$$

$$
Z_{4}=1+\frac{g^{2} s t}{3!\epsilon}+\frac{g^{4} s t}{3!4!}\left(-\frac{s^{2}+t^{2}}{\epsilon^{2}}+\frac{5 / 12 s^{2}+1 / 3 s t+5 / 12 t^{2}}{\epsilon}\right)
$$

$$
g_{B}^{2}=g^{2}\left(1+\frac{g^{2}}{3!\epsilon}\right)
$$

this is operator action!
compare with R-operation

Kinematically dependent renormalization

Two-loop box operator action

Z-operator reproduces R-operation like in renormalizable theories

Kinematically dependent renormalization

Two-loop box operator action

Tennis court counterterms

Z-operator reproduces R-operation like in renormalizable theories

Kinematically dependent renormalization

renormalizable theories
scheme dependence
$g^{2}=z g^{\prime 2}, \quad z=1+g^{\prime 2} c_{1}+g^{\prime 4} c_{2}+\ldots$
infinite number of free parameters lead to a single multiplication constant -> redefinition of a single coupling
nonrenormalizable theories
scheme dependence
$g^{2}=z g^{\prime 2}, \quad z=1+g^{\prime 2} s t c_{1}+g^{\prime 4} s t\left(s^{2}+t^{2}\right) c_{2}+\ldots$
infinite number of free parameters lead to a single multiplication constant acting as an operator -> redefinition of a series of couplings

Conclusions

\& The structure of UV divergences in non-renormalizable theories essentially copies that of renormalizable ones
\& The main difference is that the renormalization constant Z depends on kinematics and acts like an operator rather than simple multiplication
\& As a result, one can construct the higher derivative theory that gives the finite scattering amplitudes with a single arbitrary coupling g defined in PT within the given renormalization scheme.
\& Transition to another scheme is performed by the action on the amplitude of a finite renormalization operator z that depends on kinematics.

8 Assuming that one accepts these arguments, there is still a problem that at each order of PT the amplitude increases with energy, thus violating unitarity. However, apparently, this problem has to be addressed after summation of the whole PT series.

