5th anniversary of JUNR in ATLAS

ATLAS

Montenegro, Budva, Becici, 24 - 29 of April 2017 (Burope/Podgorica) Hotel Splendid, Conference Hall

What have we learned over 25 years of ATLAS?

http://www.jinr.r.Qhttps://atlas.cern/16ttp?/home.cern

Dmitry Kazakov

Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research

Where in HEP have we been 25 years ago?

NB: LEP was running till 2000

1992:

- No Higgs boson
- No top quark
- No tau neutrino
- No fourth generation
- No neutrino oscillations
- No pentaquark
- No SUSY
- No Z',W' etc
- No Extra Dimensions
- No Dark Matter

Only limits. Doubts of its existence 1995

- 2000
- Was still possible. Why not?
- 1998 atmospheric neutrinos
 - Contraversal experiments Big hopes for light charginos at LEP String inspired symmetries Not even in agenda
 - Not even in agenda

Which questions in particle physics did we expect to answer with the LHC?

- The origin of spontaneous symmetry breaking
- The origin of flavour mixing (CKM?)
- The origin of CP violation
- The number of generations (3 or more)
- The gauge group except for SU(3)xSU(2)xU(1)
- The number of space dimensions
- The existence of exotic hadrons
- The existence of new particles (forces)
- The origin of Dark Matter

Which questions in particle physics did we answer with the LHC?

 \checkmark

Limits

No

No

- The origin of spontaneous symmetry breaking
- The origin of flavour mixing (CKM?) Measured ?
- The origin of CP violation
- The number of generations (3 or more)
- The gauge group except for SU(3)xSU(2)xU(1)
- The number of space dimensions
- The existence of exotic hadrons
- The existence of new particles (forces) Limits
- The origin of Dark Matter

What do we expect from future runs of the LHC?

- The structure of the Higgs sector
- The search for new particles (forces)
- The search for the Dark Matter particle
- The precision tests of the CKM mixing in B-decays
- The determination of CP phases in B-decays
- The spectroscopy of exotic hadrons
- The search for new gauge bosons
- The search for extra dimensions
- Exotics (?)

What do expect from the LHC RunII?

Event selected in ttH multilepton analysis

CMS

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

Run: 300571 Event: 905997537 2016-05-31 12:01:03 CBST

"Measure what is measureable and make measureable what is not so."

> Galileo Galiliei 1564-1642

HIGGS BOSON (125)

Higgs→γγ

Higgs→ZZ*

HIGGS BOSON (125)

b

ĥ

н

16-1(13 TeV)

Higgs is now part of the Intensity Frontier. - A. Petrov

Luminosity	$300 {\rm ~fb^{-1}}$	3000 fb^{-1}	
Coupling parameter	7-parameter fit		
κ_γ	5 - 7%	2 - 5%	
κ_g	6-8%	3-5%	
κ_W	4-6%	2-5%	
κ_Z	4-6%	2-4%	
κ_u	14-15%	7-10%	
κ_d	10-13%	4-7° + tr	
κ_ℓ	6-8%	nome or	
Γ_H	12 - 15%	The ne 8%	
	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10 - 12%	
κ_{μ}	23-23%	8 - 8%	
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%	

Snowmass 2013 projections:

	additional para	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10-12%		
κ_{μ}	23-23%	8-8%		
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%		

Ranges represent assumptions on systematics: low end is theory uncerts $\times 1/2$, expt systematics $\times 1/\sqrt{\mathcal{L}}$. Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

Expectations in various models:

- All new particles at $M \sim 1 \text{ TeV}$
- Electroweak precision fits satisfied

Model	κ_V	κ_b	κ_γ
Singlet Mixir	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
precis	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
is P. wSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
gangomposite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Snowmass 2013, 1310.8361

- Decoupling MSSM: κ_{γ} assumes 1 TeV stop

with $\tan \beta = 3.2$, $X_t = 0$.

Projections based on scaling 2012–13 expt analyses to higher lumi: probably better already. Thy uncert reductions \approx already achieved! Franz Herzog's talk

EXTRA HIGGS BOSONS

Heavy Higgs \rightarrow ZZ \rightarrow 4l Higgs→hh→bbττ CMS Preliminary 12.9 fb⁻¹ (13 TeV) Resonance search Non-resonance search GeV ATLAS Prei minary ↓ Γ-ω Data Only SM **-** 271 20 New Physics 3 H(125) 15 Jay, 14 D b^4 🔜 149, VAN □ qq→ZZ, Zγ* □ gg→ZZ, Zγ* □ Z+X $\overline{}$ 70F -h $\overline{}$ Zekta, C www.iurce.tainty Interference معد 000 A7LAS Preliminary · Lulu 000 221 $1 \rightarrow 77^{\circ} \rightarrow 1$, coustave 12To2_11151 C(2, 52) 💶 2-344, U 22. Urbana riv 000 300 400 500 200 600 700 800 m 4/ (GeV) Charged 1.1.1 1.1.1 1111 тт)[pb] SeQ ATLAS Preliminary Observed ---- Dara ATLAS Protiminary ^ლ 10³ ---- Expected Re-m 10F H/A → ττ, 95 % CL limits ∖⊽ ⊨ 13 TeV, 13 P Iø my= 665 GeV/ 12m (1 = 20) ± U vs = 13 TeV, ± 13.3 fb⁻¹ នា ឆ្នាំ10² ដំ $W\delta \to \pi_{\rm so}\pi_{\rm so}$ a2n Matte at ->60 ---gluon-gluon fusion 2015, 3.2 fb⁻¹ (Obs.) Z-+ ct BR(H/Aa veta £60. 164 666 2 900 7 904 ri, obgiorop й<u>ь</u>ь, Ginera Search for H±→tb 2% If not virity 50 Pre-11 background 300<m_µ±<1000 Ge^v ĕ 45 101 40 10 35. ATLAS Preliminary -10 ATLAS Preliminary ,s=10 TeV, 14 × to 30)s= 13 TeV, 14,7 lb⁴ $\Pi^{+} \rightarrow \nabla^{+} hVSSM$ sconaro-DetarPred 25² $\Pi^{*} \rightarrow \pi c$ hMSSM scenario 10 gr Observed exclusion $20\pm$ 2016 result Expected exclusion 2 Coserved exclusion. —— Cbse vad. 200 300 400 500 600 700 800 900 1000 1 - 1. ······ Expected exclusion 15 _ Excepted - 27 **+ 1**c 50 ¹⁵200 250 300 350 400 450 500 550 000 $m_T^{X4} = \sqrt{m_T^2(E_T^{Mass}, r_1) + m_T^2(E_T^{Mass}, r_2) + m_T^2(r_1, r_2)}$ ____ 1 2σ Heavy Higgs→ττ m - [GeV] ⊐ | 550-600 - n [GeV] Resonant 35ATLAS Preliminary 2 12.9 fb⁻¹ (13 TeV) ATLAS Preliminary (a., 3 LaV, 147 lb) 10 bbтт) [fb] 301 bbττ) [pb] CMS bb $\mu \tau$ + bb $e \tau_{h}$ + bb $\tau_{h} \tau_{h}$ $H \rightarrow \infty$; nMSSM scenario" MSSM m^(w) Observed exclusion preliminary 10 Combined channels 25^{-2} 5.2 fb⁻¹ (13 TeV) SN Observed exclusion - Expected exclusion H→b $_{20}$ = 2015 result ----- Expected exclusion = - Observed + 17 BR(H→ hh→ rs = 13 TeV, 132 lb --- Expected Observed ± 1p BR(hh-+ 20 15 = ---- Expected ± 1σ + 2σ ± 2σ - E i i i i E i i i i E i door i i Ē X [qd](1) 10 ATLAS Proliminary m [GeV] A7138 Finites - 22.6 б --- Expected $\cdot 0^{(1)}$ H/A → ++, 95 % CL limits 300 600 700 - 1.4-400 500 800 900 √2 = 11792, 121 Observe Expecter 1000 210 - COCK. Б 65 = 13 TeV = 13.3 fb⁻¹ E LOUIS C Des - **1** -24 gluon-gluon fusion m_r [GeV] ncă. 2015, 3.2 B/1 (Dbs.) ਹ^{10⁻} BR(H/A Expecte х 600 Expected 95% ь ATLAS Preliminary 400 10 300 400 1 m^{ree} Observed exclusion -200 10 ----- Expected exclusion 10 5 ٦Û, 600 200 400 800 1000 a 10 m_{H[#]} [GeV] 3 TeV, 13.2 lb⁻¹

HEAVY HIGGS DECAYS

Branchings

The Higgs Sector

Precision tests

New Higgs bosons

- This is existing physics to be tested with high precision
- The case for future machines
- Can distinguish between different models but cannot prove the one

- Exist in all extensions of the SM
- The spectrum is not predicted but can be foreseen in some models
- No doubt is the new physics case

Supersymmetry remains, to this date, a well-motivated, much anticipated extension to the Standard Model of particle physics

SUPERSYMMETRY/LHC 13

SUPERSYMMETRY/LHC 13

Chargino / neutralino production

Direct production of "electroweakino" pairs

- decays via sleptons / sneutrinos
- using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

No light EWkinos

FUTURE SUSY SEARCHES

SUSY is certainly a compelling candidates of BSM physics, so we should keep searching for her without leaving any stone unturned.

* Taking the gauge coupling unification seriously, SUSY may have some chance to be seen at LHC, and a good chance at the FCC:

Dark Matter Searches

Direct detection

FUTURE DM SEARCHES

Complementarity with LHC (cMSSM/NUHM are mostly out of reach of the 14 TeV run!)

INDIRECT DETECTION OF DM

INDIRECT DETECTION

- Dark matter may pair annihilate or decay in our galactic neighborhood to
 - Positrons
 - High-Energy Photons
 - Neutrinos
 - Antiprotons
 - Antideuterons
 - ...

INDIRECT DM: POSITRON RESULTS

- Since 2010, electron and positron fluxes have been measured by AMS with remarkable precision, constrained up to ~400 GeV
- Dark matter implications require precise determinations of cosmic ray

INDIRECT DM: PHOTON RESULTS

- Rapid improvements in recent years, Fermi-LAT now excludes WIMP makes up to ~100 GeV for certain annihilation channels
 - The future is the Cherenkov Telescope Array, which will extend the reach by two orders in mass up to masses

^{~ 10} TeV

DARK MATTER/NEW PHYSICS

SIMPs(strong interacting massive particle)

- dark matter is strongly interacting under the other SU(N) gauge interactions.
- DM may be pion/Baryon/gluball of the new strong interactions or couple to new scalar by large Yukawa coupling

dark photon

* U(1) gauge boson is relatively easy going object "gauge invariant $F'_{\mu\nu}$ "

- ✤ sequestering U(1)_D dark sector from SM sector,
- * Interaction with SM may arises from kinetic mixing $F_{\mu\nu}F'^{\mu\nu}$
- The set of the set of u and a set of u a

Nature of Dark matter is one of the big questions that particle physics

earches and we are wondering over

Flavour Physics 20 Store Contraction Contractica Contr CHICAGO

- UT defined by two parameters only \rightarrow can be overconstrained
- The height (irreducible complex phase $\overline{\eta}$) controls the strength of CP violation in the Standard Model

Quark flavor physics

Triumph of the CKM description

All the flavour changing processes are described by the four parameters of the CKM mass mixing matrix (λ, A, ρ, η)

Δm_d & Δm_s

γ

 Δm_{\star}

>0.

0.6

fitter

;y

-0.5

õ

ρ

BR(B

-0.5

-1

n

- Great success of the Stand
 - All of the measurements a
 - In the presence of relevant cross each other in a single

0.5

Exotic hadrons

Challenging problem in particle physics well inside the SM

Time to come back?

- How confinement actually works?
- Why colourless states?
- Which bound states exist in Nature?

- Lattice gauge theories
- Holographic approach
- Gauge theories in dual description
- Back to analyticity & unitarity ?

Exotics/Extra Dim/Extra Sym

- LHC experiments conducting BSM searches in broad and complementary signatures
- Known excesses (Diboson in Run1 and Diphoton in 2015) not confirmed using 2016 data
- No new significant excesses observed. Set new frontier scale:
 Contact Interaction energy: 25.2 TeV
- ADD BH **mass**: 9.55 TeV
- W' mass: 4.74 TeV
- Dark photon lifetime: 2.5~100 mm (dark photon 400 MeV)
- Magnetic charge: |g|>1.5gD (up to 4 gD)

- Up to 25% mass limit increase by extending 2015 to 2016
- ~50% of the analyses updated to Run2

Quo vadis?

The situation before the LHC:

- The SM was incomplete at 100 GeV scale (WW x-section increases with energy)
- There should be either Higgs boson or its substitute (elementary or composite) to make the SM consistent
- Guaranteed discovery and IO0 GeV !
 - If the Higgs boson, then its mass is not protected quadratic radiative corrections of possible new physics
 - New physics at TeV scale leads to little fine-tuning -> naturalness

Conclusion: look for new physics at TeV scale!

Quo vadis?

The situation with the LHC:

- The Higgs boson is discovered!
- The SM is consistent (at least up to high scale: metastability of the vacuum, ghost poles above the Plank scale)
- But the Higgs mass is not protected
- Is the naturalness the right argument?
- No guaranteed discovery at TeV scale !

Conclusion: look for new physics everywhere

Quo vadis?

What tells us that there is something beyond?

- The SM does not seem to be the ultimate consistent theory: leaves many whys and hows
- The Dark matter is made of something, presumably new particle(s)
- The string and braneworld paradigm is still appealing and gravity is still not conquered
- Complete picture should include cosmology, hence the dark energy puzzle awaits solution

The situation may change in a second when something shows up (remind the situation with DM and DE)

Procedo!