Beyond the SM Physics Perspectives in view of the LHC Run 2, Underground and Cosmic Experiments

Dmitry Kazakov

JINR (Dubna)

ICHEP2016 - I.Shipsey

BUILDING AN UNDERSTANDING OF THE UNIVERSE: A WORK A CENTURY IN THE MAKING

- PARTICLE STANDARD
 MODEL
- COSMOLOGY STANDARD
 MODEL

No more particle physics and cosmology : infinities merged into a unified picture of the Universe

The Standard Model of Particle Physics

Three gauged symmetries SU(3)×SU(2)×U(1)
Three families of quarks and leptons (3×2, 3×1, 1×2, 1×1)
Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking -> Higgs boson
CKM and PMNS mixing of flavours
CP violation via phase factors
Confinement of quarks and gluons inside hadrons
Baryon and lepton number conservation
CPT invariance -> existence of antimatter

To be cleared up

Higgs sector: one or more?

- Neutrino sector: Dirac or Majorana?
- Neutrino sector: Masses?
- What is the DM particle?
- Are there new particles?
- Are there new interactions?

To be understood

- how confinement actually works ?
- how the quark-hadron phase transition happens?
- how CP violation occurs in the Universe?
 - how to protect the SM from would be heavy scale physics?

LHC Run2

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

We are in a data driven era

Event selected in ttH multilepton analysis

Galileo Galiliei 1564-1642 Run: 300571 Event: 905997537 2016-05-31 12:01:03 CEST

Higgs Boson (125)

Higgs Boson (125)

b

b

Н

Higgs is now part of the Intensity Frontier. - A. Petrov

Luminosity	$300 {\rm ~fb^{-1}}$	$3000 {\rm ~fb^{-1}}$	
Coupling parameter	7-parameter fit		
$-\kappa_{\gamma}$	5-7%	2 - 5%	
κ_g	6-8%	3-5%	
κ_W	4-6%	2-5%	
κ_Z	4-6%	2-4%	
κ_u	14-15%	7 - 10%	
κ_d	10-13%	4 - 7 of the	
κ_ℓ	6-8%	nome or	
Γ_H	12 - 15%	The 15 8%	
	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10 - 12%	
κ_{μ}	23-23%	8-8%	
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%	

Snowmass 2013 projections:

	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10-12%	
κ_{μ}	23-23%	8-8%	
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%	

Ranges represent assumptions on systematics: low end is theory uncerts $\times 1/2$, expt systematics $\times 1/\sqrt{\mathcal{L}}$. Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

Expectations in various models:

- All new particles at $M \sim 1$ TeV
- Electroweak precision fits satisfied

	Model	κ_V	κ_b	κ_γ
	Singlet Mixir	$0^{1} \sim 6\%$	$\sim 6\%$	$\sim 6\%$
	recisi	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
	SP JOSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
gar	Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
	Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Snowmass 2013, 1310.8361

- Decoupling MSSM: κ_{γ} assumes 1 TeV stop

with $\tan \beta = 3.2$, $X_t = 0$.

Projections based on scaling 2012–13 expt analyses to higher lumi: probably better already. Thy uncert reductions \approx already achieved! Franz Herzog's talk

Extra Higgs Bosons

Heavy Higgs \rightarrow ZZ \rightarrow 4l Higgs→hh→bbττ CMS Preliminary 12.9 fb⁻¹ (13 TeV) Resonance search Non-resonance search GeV ATLAS Preliminary Data Data Only SM $H \rightarrow ZZ^* \rightarrow 4I$, inclusive ZZ* **New Physics** 20 H(125) tť+V, VVV 13TeV, 14.8 fb □ qq→ZZ, Zγ* □ gg→ZZ, Zγ* □ Z+X 000 70F 000 Z+Jets, tt W//// Uncertainty Interference 220 000 ATLAS Preliminary • Data 000 ZZ* $H \rightarrow ZZ^* \rightarrow 4I$, inclusive tł+V. VVV 13TeV, 14.8 fb Z+Jets, tt 1111 Uncertainty 000 300 400 500 200 600 700 800 m 4/ (GeV) Charged Non-Resonant Resonant 12.9 fb⁻¹ (13 TeV) 12.9 fb⁻¹ (13 TeV) 10 bbπt) [fb] 10 bbπt) [pb] CMS CMS bb $\mu \tau_{h}$ + bb $e \tau_{h}$ + bb $\tau_{h} \tau_{h}$ bb $\mu\tau_{\rm h}$ + bb $e\tau_{\rm h}$ + bb $\tau_{\rm h}\tau_{\rm h}$ ~60 m preliminary preliminary Combined channels Combined channels 60 55 55 200 300 400 500 600 800 m₄₁ [GeV] 10 Search for H±→tb BR(H→ hh→ BR(hh-50 300<m_µ±<1000 Ge^v 10 45 š 40 10 Ы 10² on ax 35 ATLAS Preliminary Ч ATLAS Preliminary Observed 200 x SM Observed Expected CLs 1s= 13 TeV, 14.7 fb-1 30 95% -e--- Expected CLs ਹੱ^{10⁻} 1s= 13 TeV. 14.7 fb⁻¹ 10 $H^+ \rightarrow \tau v$; hMSSM scenario Expected ± 1\sigma <u>~</u>60 25 Observed exclusion $H^+ \rightarrow \tau v$; hMSSM scenario Expected $\pm 2\sigma$ 95% ---- Expected exclusion 2015 result 20 Observed exclusion : ₫₅₅ 10-90(-- Observed ± 1σ 300 400 500 600 700 800 ······ Expected exclusion_ 15 <u>±</u> 2σ ---- Expected m_н [GeV] 50 $\pm 1\sigma$ 10 200 250 300 350 400 450 500 550 600 ± 2σ Heavy Higgs→ττ m_{H⁺} [GeV] <u>ئىيىلىر</u> با مىيا يىيا ، مىيا ، 550 600 n... [GeV] کھر 10³⊧ *ττ)[pb] 35 ATLAS Preliminary ATLAS Preliminary -- Data ATLAS Preliminary 1s= 13 TeV, 14.7 fb-1 H/A-TT 30 10 √s = 13 TeV, 13.2 fb Events / 0² m.= 600 GeV, tan 8 = 20 $H^+ \rightarrow \tau v$; hMSSM scenario MSSM m Observed exclusion $H/A \to \tau_{had} \tau_{had}$ 10 Multi-iet 25 5.2 fb⁻¹ (13 TeV) Observed exclusion ----- Expected exclusion Z-> TT BR(H/Ab-veto H⁺→ tb W->tv + jets 2015 result ······ Expected exclusion - Observed 20 ± 1σ tt, single top \s = 13 TeV, 13.2 fb -- Observed ± 1σ --- Expected 10 Others ± 20 Uncertaint 15 **± 1**σ ---- Expected $\pm 2\sigma$ Pre-fit backgro XO ± 2σ 10 200 250 300 350 400 450 500 550 600 ττ)[pb] 10 ATLAS Preliminary m_{H⁺} [GeV] - Observed ATLAS Preliminary --- Data H/A→ --- Expected $H/A \rightarrow \tau\tau$, 95 % CL limits 300 400 500 600 700 800 900 10^{3} √s = 13 TeV, 13.2 fb 1000^{H+} ±10 m_{A} = 600 GeV, tan β = 20 $\sqrt{s} = 13 \text{ TeV} < 13.3 \text{ fb}^{-1}$ 10^{-2} $H/A \to \tau_{had} \tau_{had}$ Multi-jet ±20 m_{H*} [GeV] gluon-gluon fusion 510² BR(H/A-2015, 3.2 fb⁻¹ (Obs.) h-veto tt, single top х 600 Data/Pred 2.0 ь ATLAS Preliminary 400 XO I m^{mod} Observed exclusion 200 200 30 10 ······ Expected exclusion 10⁻¹ 2 $m_{\rm T}^{\rm tot}$ 10 200 400 600 800 1000 ± 1σ m_{H[#]} [GeV] 3 TeV, 13.2 fb⁻¹

€bb

d

d ± 1σ d ± 2σ

2HDM

.5

SUSY

Kiwoon Choi

(ICHEP 2016, Chicago)

SUSY has been the prime candidate for BSM physics near the TeV scale.

extension to the Standard Model of particle physics

Supersymmetry/LHC 13

for 2-/3-body decay

Supersymmetry/LHC 3

 $\tilde{\chi}_1^{\perp}$

Chargino / neutralino production

Direct production of "electroweakino" pairs

- decays via sleptons / sneutrinos
- using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

LHC Run2

A Sta	TLAS SUSY S atus: August 2016	earches	* - 95	o% C		ver Limits	-	ATLAS Preliminar $\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	e, µ, 1, y	Jets	L _T	JL atin	Mass limit	Vs = 7, 8 TeV	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}q, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ (compressed) \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \rightarrow qqW\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}$	$\begin{array}{cccc} 0.3 \ e, \mu / 1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 b 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	2 608 GeV 1 * scale 865 GeV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
g med.	ğğ, ğ→būξ ⁰ ğğ, ğ→tīξ ⁰ ğğ, ğ→tīξ ⁰ ğğ, ğ→bīξ ¹	0 0-1 e,µ 0-1 e,µ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	1	1.89 TeV m(ℓ ⁸ ₁)=0 GeV 1.89 TeV m(ℓ ⁸ ₁)=0 GeV .37 TeV m(ℓ ⁸ ₁)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
direct production	$ \begin{split} \bar{b}_1 \bar{b}_1, \ \bar{b}_1 \! \rightarrow \! b \bar{\chi}_1^0 \\ \bar{b}_1 \bar{b}_1, \ \bar{b}_1 \! \rightarrow \! b \bar{\chi}_1^1 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! b \bar{\chi}_1^k \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! b \bar{\chi}_1^k \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! b \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_1, \ \bar{t}_1 \! \rightarrow \! c \bar{\chi}_1^0 \\ \bar{t}_1 \bar{t}_2, \ \bar{t}_2 \! \rightarrow \! \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2, \ \bar{t}_2 \! \rightarrow \! \bar{t}_1 + h \end{split} $	$\begin{array}{c} 0 \\ 2 e, \mu \text{ (SS)} \\ 0 - 2 e, \mu \\ 0 - 2 e, \mu \\ 0 \\ 2 e, \mu \text{ (Z)} \\ 3 e, \mu \text{ (Z)} \\ 1 e, \mu \end{array}$	2 b 1 b 1-2 b -2 jets/1-2 b mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes 4 Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	840 GeV 325-685 GeV 170 GeV 200-720 GeV 90-198 GeV 205-650 GeV 90-323 GeV 150-600 GeV 290-700 GeV 320-620 GeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}) < 100 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) < 150 \ \text{GeV}, \ m(\tilde{k}_{1}^{0}) + m(\tilde{k}_{1}^{0}) + 100 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) - 2m(\tilde{k}_{1}^{0}), \ m(\tilde{k}_{1}^{0}) - 55 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) - 1 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) - 150 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 150 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) < 300 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \end{array}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1508.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
direct	$ \begin{array}{l} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \tilde{\ell}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{\dagger}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}), \ell \bar{\nu} \tilde{\ell}_{1} \ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{1} \ell(\bar{\nu}\nu), \ell \bar{\nu} \tilde{\ell}_{1} \ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \delta \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W \rangle \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{23}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod \\ GGM (bino NLSP) weak prod \\ \end{array} $	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2-3 ε.μ 4 ε.μ 4 ε.μ 1 ε.μ + γ 2 γ	0 0 0-2 jets 0-2 k 0	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-335 GeV 140-475 GeV 355 GeV 715 GeV 715 GeV 715 GeV 635 GeV 115-370 GeV 590 GeV	$\begin{split} & m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ & m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, ~m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, ~m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~\tilde{\ell}~\text{decoupled} \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~\tilde{\ell}~\text{decoupled} \\ & m(\tilde{k}_{2}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{1}^{0})) \\ & c{+}{<}1~mm \\ & c{+}{<}1~mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5096 1507.05493 1507.05493
particles	Direct $\hat{x}_{1}^{+}\hat{x}_{1}^{-}$ prod., long-lived.) Direct $\hat{x}_{1}^{+}\hat{x}_{1}^{-}$ prod., long-lived.) Stable, stopped \hat{g} R-hadron Stable \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\hat{\tau}, \hat{x}_{1}^{0} \rightarrow \hat{\tau}(\hat{\tau}, \hat{\mu}) +$ GMSB, $\hat{x}_{1}^{0} \rightarrow \gamma G$, long-lived \hat{x}_{1}^{0} $\hat{g}\hat{g}, \hat{x}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ GGM $\hat{g}\hat{g}, \hat{x}_{1}^{0} \rightarrow 2G$	ξ_1^a Disapp. trk ξ_1^a dE/dx trk 0 trk dE/dx trk r(e, μ) 1-2 μ 2 γ displ. $ee/e\mu/\mu \mu$ displ. vtx + jets	1 jet 1-5 jets	Yes Yes - - - Yes -	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	270 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	$\begin{array}{c} m(\tilde{k}_{1}^{\pm}) - m(\tilde{k}_{1}^{0}) - 160 \ \text{MeV}, \ r(\tilde{k}_{1}^{\pm}) = 0.2 \ \text{ns} \\ m(\tilde{k}_{1}^{\pm}) - m(\tilde{k}_{1}^{0}) - 160 \ \text{MeV}, \ r(\tilde{k}_{1}^{\pm}) < 15 \ \text{ns} \\ m(\tilde{k}_{1}^{0}) = 100 \ \text{GeV}, \ 10 \ \mu\text{s} < r(\tilde{k}) < 1000 \ \text{s} \\ \hline 1.57 \ \text{TeV} \\ \hline 1.57 \ \text{TeV} \\ m(\tilde{k}_{1}^{0}) = 100 \ \text{GeV}, \ r > 10 \ \text{ns} \\ 10 - \tan\beta < 50 \\ 1 < r(\tilde{k}_{1}^{0}) < 3 \ \text{ns}, \ \text{SPS8 model} \\ 7 < cr(\tilde{k}_{1}^{0}) < 3 \ \text{ns}, \ \text{SPS8 model} \\ 7 < cr(\tilde{k}_{1}^{0}) < 480 \ \text{mm}, \ m(\tilde{g}) = 1.3 \ \text{TeV} \\ 8 < cr(\tilde{k}_{1}^{0}) < 480 \ \text{mm}, \ m(\tilde{g}) = 1.1 \ \text{TeV} \\ \end{array}$	1310.3675 1506.05332 1310.6584 1606.05129 1804.04520 1411.6795 1409.5542 1504.05162 1504.05162
APV	$\begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow eev, e\muv, \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{-} \rightarrow \tau\tau v_{e}, e\tauv \\ \tilde{g}_{t}^{\dagger}, \tilde{g} \rightarrow qqq \\ \tilde{g}_{t}^{\dagger}, \tilde{g} \rightarrow qq\bar{q} \\ \tilde{g}_{t}^{\dagger}, \tilde{g} \rightarrow dq\bar{q} \\ \tilde{g}_{t}^{\dagger}, \tilde{g} \rightarrow dq\bar{q} \\ \tilde{g}_{t}^{\dagger}, \tilde{g} \rightarrow dq\bar{q} \\ \tilde{f}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array}$	$\tau = e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $\mu\mu\nu = 4 e, \mu$ $r_{\tau} = 3 e, \mu + \tau$ 0 = 44 $2 e, \mu$ (SS) 0 = 2 $2 e, \mu$	- 0-3 h 5 large-R je 5 large-R je 0-3 h 2 jets + 2 h 2 h	- Yes Yes Yes ts - ts - Yes -	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	2 450 GeV 1.08 Te 1 410 GeV 450-510 GeV 0.4-1.0 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-022, ATLAS-CONF-2016-08 ATLAS-CONF-2015-015
	0	0	20	Vac	20.9	510 GeV	m(E ²)<200 GeV	1501.01325

Even when we abandon the naturalness, still there are some indications that SUSY may not be too far away from the weak scale.

* Higgs mass = 125 GeV:
$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \ln\left(\frac{m_{\text{stop}}}{m_t}\right) + \dots$$

→ squark and slepton masses: $m_0 < 1000$ TeV for tan $\beta > 2$

Future SUSY Searches

SUSY is certainly a compelling candidates of BSM physics, so we should keep searching for her without leaving any stone unturned.

* Taking the gauge coupling unification seriously, SUSY may have some chance to be seen at LHC, and a good chance at the FCC:

Dark Matter Searches

Future DM Searches

even the simplest versions of SUSY (cMSSM, NUHM)

Remaining parameter space is directly probed by direct WIMP searches with tonne

scale detectors: DEAP-3600, XENON1T, LUX/LZ

Complementarity with LHC (cMSSM/NUHM are mostly out of reach of the 14 TeV run!)

Indirect Detection of DM

INDIRECT DETECTION

- Dark matter may pair annihilate or decay in our galactic neighborhood to
 - Positrons
 - High-Energy Photons
 - Neutrinos
 - Antiprotons
 - Antideuterons
 - ...

INDIRECT DM: POSITRON RESULTS

- Since 2010, electron and positron fluxes have been measured by AMS with remarkable precision, constrained up to ~400 GeV
- Dark matter implications require precise determinations of cosmic ray

INDIRECT DM: PHOTON RESULTS

- Rapid improvements in recent years, Fermi-LAT now excludes WIMP makes up to ~100 GeV for certain annihilation channels
 - The future is the Cherenkov Telescope Array, which will extend the reach by two orders in mass up to masses

~ 10 TeV

Dark Matter/New Physics

The Dark Matter is made of:

- Macro objects Not seen
- New particles right heavy neutrino
 - axion (axino)
 - neutralino
 - sneutrino **mSUGRA**
 - gravitino
 - heavy photon
 - heavy pseudo-goldstone
 - light sterile higgs

not favorable but possible might be invisible (?) detectable in 3 spheres less theory favorable

might be undetectable (?) WINP is our chance!

But we have to look elsewhere! possible, but not related to the other models

Creation at the LHC

 Ω_{x}

 $q + \overline{q} \rightarrow X + \overline{X}$

Not from the SM

Dark Matter/New Physics

Neutrino Physics

No evidence for sterile neutrinos 2.0 Long Baseline Experiments 1.5 Long baseline oscillation experiments: an international campaign to test the 8/1 3-flavor paradigm, measure CP violation and 1.0 go beyond. CDITE Normal Hierarchy 0.5 Generation 2 expts MB/SB T 0.00 0.01 0.02 0.03 0.04 0.05 0.0 sin²0₁₃ 2.0 IceCube 90% CL (1605.01990) By combining with SK in a global fit MINOS 90% CL (1607.01176) Kopp et al. (2013) Marrone @ Neutrino 2016 Collin et al. (2016) 1.5 10^{2} CP conservation excluded at >2 σ 90% C.L. Allowed LSND S/J 1.0 - MiniBooNE 10 - MiniBooNE (⊽ mode For the first time robust indication of CP violation Inverted Hierarchy- Δm^2_{41} (eV²) in the leptonic sector 0.0^[1.1.1] 0.00 0.01 0.02 0.03 0.04 0.05 0.0 EX C 10-2 sin²0₁₃ ICHEP 2016 -- I. Shipsey 90% C.L. Excluded 10⁻¹ -NOMAD 10^{-3} Except the reactor neutrino anomaly --- KARMEN2 - MINOS and Daya Bay/Bugey-3 Δm^2_{41} --- MINOS+ ve Appearance Data Bugey 10⁻⁴ – 10⁻⁶ 10⁻⁴ 10⁻³ 10⁻² 10^{-5} 10^{-1} Data / Predic $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$ 10-2 RENO 90% C.L. Excluded 10⁻³ - NOMAD Daya Bay --- KARMEN2 - Other experiments 10 - MINOS and Daya Bay/Bugey-3 0.8 - RENO --- MINOS+ ve Appearance Data Global average RENO 95% C.L. (Fixed sin²20., 10⁻⁴ Experiments Unc. RENO 95% C.L. (Varying sin²20₁₃) 10⁻⁴ 10⁻³ 10⁻² 10⁻⁵ 10-1 Model Unc. Bugey 90% C.L. (40m/15m) $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{u4}|^2$ 10 10^{2} 10^{-2} 10-1 10 10^{3} 10-3 sin²20 Distance (m

ED

knowledge of the neutrino mixing parameters provides a firm prediction for the range of values of the parameter m_{ββ} in both hierarchies (NH favored)

NEW

HYSICS

21

ίù

dip

d D

tritium expts m_e < 2 eV, \rightarrow KATRIN < 0.2 eV.

From cosmology: Σ m < 0.23 eV (95% CL) In the next decade there are good prospects to reach, via multiple probes, a sensitivity at the level of Σ mi < 0.01 eV

Therefore, it is timely and compelling to embark on a renewed discovery quest to observe neutrinoless double beta decay.

g-2

Theory: 12,672 Feynman Diagrams 2.00231930436356 ± 0.0000000000154

Hicp IC

- UT defined by two parameters only

 can be overconstrained
- The height (irreducible complex phase η
) controls the strength
 of CP violation in the Standard Model

Flavour physics at the LHC a great success, with run-1 delivering in all important topics

Observation of $B_s \rightarrow \mu \mu$

Precise studies of CPV in the B_s system

But some intriguing anomalies have emerged from LHC-b and the B-factories

Anomalous behaviour In $b \rightarrow sl+l-observables$

 $B_s \rightarrow \phi \mu \mu$

differential BR vs q^2

5

10

LHCb

SM pred.

Data

15

Hints of lepton universality violation in $B \rightarrow D^{(*)} lv ...$

...and in $B \rightarrow Kl^+l^-$

And longstanding inconsistency In exclusive vs inclusive V_{ub} and V_{cb} determinations.

The quest for indirect discovery of new physics requires patterns of deviations to exist

 $dB(B_s^0 \rightarrow \phi \mu \mu)/dq^2 [10^{-8} GeV^{-2}c^4]$

Exotics ... What to say?

- Up to 25% mass limit increase by extending 2015 to 2016
- ~50% of the analyses updated to Run2

<u>د</u>ں

08/06/2016

ICHEP 2016 / M. Buttignol

Gravitational Waves! Amazing! Advanced LIGO Observing Run 1 Sept. 18, 2016 to Jan. 12 events) September 14, 2015 December 26, 2015 October 12, 2015 CONFIRMED CANDIDATE CONFIRMED LIGO's first observing run September 12, 2015 - January 19, 2016 September 2015 October 2015 December 2015 November 2015 January 2016

ZΟ

Gravitational Waves

What does the signal tell us about the source?

Equation of state

Outstanding Questions in Particle Physics *circa* **2016** ... there has never been a better time to be a particle physicist!

Higgs boson and EWSB

- \Box m_H natural or fine-tuned ?
- \rightarrow if natural: what new physics/symmetry?
- □ does it regularize the divergent V_LV_L cross-section at high $M(V_LV_L)$? Or is there a new dynamics?
- elementary or composite Higgs ?
- □ is it alone or are there other Higgs bosons ?
- origin of couplings to fermions
- coupling to dark matter ?
- does it violate CP ?
- cosmological EW phase transition

Dark matter:

- composition: WIMP, sterile neutrinos, axions, other hidden sector particles, ...
- one type or more ?
- only gravitational or other interactions ?

The two epochs of Universe's accelerated expansion:

- primordial: is inflation correct ? which (scalar) fields? role of quantum gravity?
- ☐ today: dark energy (why is ∧ so small?) or gravity modification ?

Quarks and leptons:

- why 3 families ?
- masses and mixing
- **CP** violation in the lepton sector
- matter and antimatter asymmetry
- baryon and charged lepton number violation

Physics at the highest E-scales:

- how is gravity connected with the other forces ?
- do forces unify at high energy ?

Neutrinos:

- v masses and and their origin
- what is the role of H(125)?
- □ Majorana or Dirac ?
- CP violation
- □ additional species \rightarrow sterile *v* ?

Conclusion

the discussion of the **future** in HEP must start from the understanding that there is no experiment/facility, proposed or conceivable, in the lab or in space, accelerator or nonaccelerator driven, which can **guarantee** <u>discoveries</u> beyond the SM, and/or <u>answers</u> to the big questions of the field:

To understand the fundamental nature of energy, matter, space, and time, and to apply that knowledge to understand the birth, evolution and fate of the universe