G I N Z B U R G CONFERENCE on PHYSICS

May 28 - June 2, 2012 Lebedev Institute / Moscow

Is the low-energy SUSY still alive? What is the current situation with SUSY searches? Is there a time/energy limit for such a game?

Constraints on Supersymmetry using 5 fb¹ LHC data

Dmitri Kazakov

JINR(Dubna) / ITEP (Moscow)

in collaboration with W. de Boer, C. Beskidt and F. Ratnikov, KIT (Karlsruhe)

Phys.Lett. B705 (2011) 393 (arXiv: 1109.6775) JHEP 05 (2012) 94 (arXiv: 1202.3366)

 ✓ Unifying various spins SUSY opens the road toward unification with gravity
 Local SUSY = Theory of (super)gravity

✓ Unifying various spins SUSY opens the road toward unification with gravity
 Local SUSY = Theory of (super)gravity
 ✓ Unifyes the gauge couplings of the SM towards
 Grand Unified Theory (GUT)

✓ Unifying various spins SUSY opens the road toward unification with gravity
 Local SUSY = Theory of (super)gravity
 ✓ Unifyes the gauge couplings of the SM towards
 Grand Unified Theory (GUT)
 ✓ Stabilizes the GUT theory (hierarchy problem)

Cancellation of quadratic terms (divergences)

 $\delta m_{H}^{2} \sim g^{2} M_{SUSY}^{2}$

✓ Unifying various spins SUSY opens the road toward unification with gravity
 Local SUSY = Theory of (super)gravity
 ✓ Unifyes the gauge couplings of the SM towards Grand Unified Theory (GUT)
 ✓ Stabilizes the GUT theory (hierarchy problem)
 ✓ Provides the Dark Matter particle (WIMP)

Dark Matter in the Universe:

Hot DM (not favoured by galaxy formation)

Cold DM (rotation curves of Galaxies)

Unifying various spins SUSY opens the road toward unification with gravity Local SUSY = Theory of (super)gravity ✓ Unifyes the gauge couplings of the SM towards Grand Unified Theory (GUT) ✓ Stabilizes the GUT theory (hierarchy problem) \checkmark Provides the dark Matter particle (WIMP) Provides the first integrable 4-dim quantum theory (N=4 SYM)

N=4 maximally Supersymmetric Yang-Mills theory shows all the features and seems to provide the first integrable model in 4 space-time dimensions

Unifying various spins SUSY opens the road toward unification with gravity Local SUSY = Theory of (super)gravity \checkmark Unifyes the gauge couplings of the SM towards Grand Unified Theory (GUT) ✓ Stabilizes the GUT theory (hierarchy problem) ✓ Provides the dark Matter particle (WIMP) \checkmark Provides the first integrable 4-dim quantum theory (N=4 SYM) \checkmark Stabilizes the string as an origin of a unified superstring theory \longrightarrow No tachions

Where is SUSY?

Accelerators

Telescopes

Underground facilities

SUSY Production at the LHC

SUSY x-sections at the LHC @ 7 TeV

SUSY Signatures at the LHC

Search for superpartners within the MSSM

Typical SUSY signature: Missing Energy and Transverse Momentum

GBackground Processes of the SM for creation of Superpartners

First SUSY results @ LHC

SUSY in 0-lepton channel

Simplified model with two q generations, m(χ 0)~01mg>800 GeV mq>850 GeV Equal mass case: mg=mq>1.075 TeV

MSUGRA/CMSSM: tanβ=10, A0=0, μ>0 Equal mass case: mq=mg > 980 GeV

Progress on SUSY Searches

 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 1 \text{ fb}^{-1}$ CMS Preliminary Results of the first three 700 (GeV/c²) SUSY analyses completed 2011 Limits CDF g, g, tang=5, u<0 on 2011 data (α_T , Same g, g, tanβ=3, μ<0 D0 ···· 2010 Limits 600 Sign and Opposite Sign LEP2 $\tilde{\mathbf{z}}$ $\tan\beta = 10, A_0 = 0, \mu > 0$ m^{1/2} dileptons). LEP2 7 500 9(1000)Gev CMS preliminary L_ = 36 pb⁻¹, vs = 7 TeV m_{1/2} (GeV) 400 α COF 7.2. tanistics 400 DO 2.7, tantal, ed 7(1000)Get 350 SS Dilepton LEP2 💬 750)Gev LEPP 7 300 $\tan\beta = 10, A_{-} = 0, \mu > 0$ 300 F/#501Get 250 lots+MHT OS Dilepton 200 200 11,+0-10 E(500)GeV 150 800 600 1000 200 400 0 200 400 600 800 1000 0 m_o (GeV) m_0 (GeV/c²)

Within the constrained SSM models we are crossing the border of excluding gluinos and squarks up to 1TeV and beyond. The air is getting thin for constrained SUSY. More conclusive results after summer.

HEP_2011_GRENOBLE

Search for supersymmetry in events involving third generation squarks and sleptons with ATLAS

LHC Seminar February 14, 2012

Ximo Poveda (University of Wisconsin-Madison) on behalf of the ATLAS Collaboration

Summary

- Variety of searches for SUSY events with third generation squarks and sleptons
- Exploring signatures with heavy quarks or tau leptons using 2 fb⁻¹ of data:
 - $\circ~$ 1 or 2 τ leptons: gluino or squark mediated $\tilde{\tau}_1$ production
 - $\circ~$ 2 $\emph{b-jets}$ + lepton veto: direct $\widetilde{b}_1\widetilde{b}_1^*$ production
 - \circ 0 lepton + *b*-jets: gluino mediated \tilde{b}_1 production
 - \circ 1 lepton + *b*-jets: direct $\tilde{t}_1 \tilde{t}_1^*$ and gluino mediated \tilde{t}_1 production
 - \circ 2 SS leptons: gluino mediated \tilde{t}_1 production
- No significant excess observed over SM expectations → Limits on the masses of the sparticles in a various SUSY scenarios

$ ilde{b}_1 ilde{b}_1^*$ (MSSM)	$ ilde{b}_1 o b ilde{\chi}_1^0$	$m_{\tilde{b}_1} = 390 { m GeV} (m_{\tilde{\chi}^0_1} = 0)$	2 <i>b</i> -jets
$ ilde{b}_1 ilde{b}_1^*$ (MSSM)	$ ilde{b}_1 o b ilde{\chi}_1^0$	$m_{ ilde{b}_1} = 350 \; ext{GeV} \; (m_{ ilde{\chi}_1^0} = 120 \; ext{GeV})$	2 <i>b</i> -jets
$\widetilde{g}\widetilde{g}$, $\widetilde{b}_1\widetilde{b}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{b}_1 b$, $ ilde{b}_1 ightarrow b ilde{\chi}_1^0$	$m_{ ilde{g}} = 920 { m GeV} (m_{ ilde{b}_1} < 800 { m GeV})$	$0\ell + b$ -jets
$\widetilde{g}\widetilde{g}$ (simpl. model)	${ ilde g} o {ar b} { ilde \chi}_1^0$	$m_{ ilde{g}} = 900 \; ext{GeV} \; (m_{ ilde{\chi}_1^0}^1 < 300 \;\; ext{GeV})$	$0\ell + b$ -jets
$\widetilde{g}\widetilde{g}$, $\widetilde{t}_1\widetilde{t}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{t}_1 t$, $ ilde{t}_1 ightarrow t ilde{\chi}_1^0$	$m_{ ilde{g}} = 620 { m GeV} (m_{ ilde{t}_1} < 440 { m GeV})$	1ℓ + <i>b</i> -jets
$ ilde{g} ilde{g}$, $ ilde{t}_1 ilde{t}_1^*$ (MSSM)	${ ilde g} o { ilde t}_1 t$, ${ ilde t}_1 o t { ilde \chi}_1^0$	$m_{ ilde{g}} = 650 { m GeV} (m_{ ilde{t}_1} < 450 { m GeV})$	2ℓSS
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{ ilde{g}} = 700 { m GeV} (m_{ ilde{\chi}^0_1} < 100 { m GeV})$	1ℓ + <i>b</i> -jets
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{ ilde{g}} = 650 \; ext{GeV} \; (m_{ ilde{\chi}_1^0} < 215 \; \; ext{GeV})$	2lSS
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow tb + ilde{\chi}_1^0$	$m_{ ilde{g}} = 710 ext{GeV} (m_{ ilde{\chi}_1^0} < 100 ext{GeV})$	$1\ell + b$ -jets

LHC Reach at 7 and 14 TeV

Energy is more important than luminosity

Rare Decays: $Br[B_s \rightarrow \mu^+ \mu^-]$

G Rare Decays: $Br[B_s \rightarrow \mu^+\mu^-]$ Constraint

95% C.L. Excluded regions for

 $Br[B_s \to \mu^+ \mu^-] < 4.5 \cdot 10^{-9}$ $Br[B_s \to X_s \gamma] = (3.55 \pm 0.24) \cdot 10^{-4}$ $Br[B_u \to \tau \nu] = (1.68 \pm 0.31) \cdot 10^{-4}$

Negative interference is possible

Anomalous magnetic moment

g-2 Constraint on Parameter space

Fixes the sign of μ

The only requirement that limits the SUSY masses from above

Almost excluded by rare decay

$$Br[B_s \to \mu^+ \mu^-]$$

G Heavy Higgs Production at the LHC

$$\sigma_{Higgs} = \frac{1}{32} \int_0^1 dx_1 dx_2 \ g[x_1] \ g[x_2] \ |\mathcal{M}_{Higgs}|^2 \frac{2\pi}{m_{Higgs}^2} \delta(E^2 x_1 x_2 - m_{Higgs}^2)$$

$$\mathcal{M}_{h} = \frac{\alpha_{s}}{4\pi} \frac{m_{h}^{2}}{2\sqrt{2}v} \left(\frac{\cos\alpha}{\sin\beta} F_{1/2}^{h} [\frac{4m_{t}^{2}}{m_{h}^{2}}] - \frac{\sin\alpha}{\cos\beta} F_{1/2}^{h} [\frac{4m_{b}^{2}}{m_{h}^{2}}] \right),$$

$$\mathcal{M}_{H} = \frac{\alpha_{s}}{4\pi} \frac{m_{H}^{2}}{2\sqrt{2}v} \left(\frac{\sin\alpha}{\sin\beta} F_{1/2}^{H} [\frac{4m_{t}^{2}}{m_{H}^{2}}] + \frac{\cos\alpha}{\cos\beta} F_{1/2}^{H} [\frac{4m_{b}^{2}}{m_{H}^{2}}] \right),$$

$$\mathcal{M}_{A} = \frac{\alpha_{s}}{4\pi} \frac{m_{A}^{2}}{2\sqrt{2}v} \left(\frac{\cos\beta}{\sin\beta} F_{1/2}^{A} [\frac{4m_{t}^{2}}{m_{A}^{2}}] + \frac{\sin\beta}{\cos\beta} F_{1/2}^{A} [\frac{4m_{b}^{2}}{m_{A}^{2}}] \right)$$

Relic Abundace of the Dark Matter

The Dark Matter Annihilation

WMAP:
$$\Omega_{DM}h^{2} = 0.1131 \pm 0.0034 \qquad \Omega h^{2} = \frac{3 \cdot 10^{-27}}{\langle \sigma v \rangle}$$
$$h \approx 0.71 \qquad (\langle \sigma v \rangle = 2 \cdot 10^{-26} cm^{3}/s)$$
$$\langle \sigma v \rangle \sim \frac{M_{\chi}^{4} m_{b}^{2} \tan^{2} \beta}{\sin^{4} 2\theta_{W} M_{Z}^{2}} \frac{(N_{31} \sin \beta - N_{41} \cos \beta)^{2} (N_{21} \cos \theta_{W} - N_{11} \sin \theta_{W})^{2}}{(4M_{\chi}^{2} - M_{A}^{2})^{2} + M_{A}^{2} \Gamma_{A}^{2}}$$

 $|\tilde{\chi}_{1}^{0}\rangle = N_{11}|B_{0}\rangle + N_{21}|W_{0}^{3}\rangle + N_{31}|H_{1}\rangle + N_{41}|H_{2}\rangle$

Relic Abundace of the DM Constraint

The value of $\tan\beta$

 $\tan\beta\approx 50\,$ almost everywhere except for the coannihilation regions

The value of m_A

 m_A may be as low as 500 GeV except for the coannihilation regions

SUSY Limits without Direct DM Search

The values of A_0 and $\tan\beta$ are ajusted

This includes:

- the Higgs searches
- the relic abundancy
- and collider limits

Direct DM Searches

 $\sigma =$

SUSY Limits from Direct DM Search

- LHC constraints are rather insensitive to large values of m_0
- They can be supplemented by direct DM searches

SUSY Limits from Combined Fit to all Data with 5/fb

The values of $\tan \beta$ and A₀ are adjusted Larger scale for $m_{1/2}$

Constraints from the lightest Higgs of 125 GeV

Conclusions

- LHC is on the way of covering the parameter space of the MSSM
- Modern combined limit on $m_{1/2}$ is about 500 GeV for $m_0 < 1000 \text{ GeV}$
- This implies the lower limit on the WIMP mass of 210 GeV and gluino of 1190 GeV
- For larger values of m_0 the values of $m_{1/2}$ drop below 350 GeV which gives LSP mass of 130 GeV and gluino mass of 970 GeV
- Today's lower limit on squark masses (except \tilde{t}) is 1400 GeV and gluino mass is 900 GeV

Let 2012 be the year of Higgs discovery and SUSY evidence!