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Motivation of SUSY in  
Particle Physics 

! Unification with Gravity

Unification of matter (fermions) with forces (bosons) naturally arises
from an attempt to unify gravity with the other interactions

Local supersymmetry =  general relativity !

⇒⇒ ⇒ ⇒
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‣  N=4 SUSY: Cancellation of all divergences
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Creation and Decay of 
Superpartners @ LHC

Constraints from the decay B0
s
→ µ+µ−

and LHC limits on

Supersymmetry

C. Beskidt1, W. de Boer1, D.I. Kazakov2,3, F. Ratnikov1, E. Ziebarth1, V. Zhukov1

1 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology,
P.O. Box 6980, 76128 Karlsruhe, Germany

2 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
141980, 6 Joliot-Curie, Dubna, Moscow Region, Russia

3 Institute for Theoretical and Experimental Physics,
117218, 25 B.Cheremushkinskaya, Moscow, Russia

Abstract

The pure leptonic decay B
0
s → µ

+
µ
− is strongly suppressed in the Stan-

dard Model (SM), but can have large enhancements in Supersymmetry,
especially at large values of tanβ. New limits on this decay channel from
recent LHC data have been used to claim that these limits restrict the
SUSY parameter space even more than the direct searches. However,
direct searches are hardly dependent on tanβ, while B

0
s → µ

+
µ
− is pro-

portional to tan6 β. In order to compare the limits from direct SUSY
searches, Higgs searches and B

0
s → µ

+
µ
− one needs to fix tanβ. This

can be done by fitting additionally the relic density, which requires large
tanβ in a large region of parameter space. We show that B0

s → µ
+
µ
−

is not constraining the parameter space of the CMSSM, but that the di-
rect searches and the present Higgs limits are the most constraining, if
combined with cosmology. The expected B

0
s → µ

+
µ
− constraints, if the

limits approach the SM within a factor of two, which is expected in the
near future, are also shown.

1 Introduction

Flavour Changing Neutral Currents (FCNC), like the leptonic decays of neutral B-mesons, are strongly
suppressed in the Standard Model (SM), since they can only occur via loops involving the weak bosons.
These decays are helicity suppressed, so the amplitudes are proportional to the mass of final state
particles and the highest rates will be into tau leptons. The experimental signature for leptonic
decays is clear: search for an invariant mass in the mass window of the B-meson. This is easier
for muonic decays. Hence, muonic B-decays have been investigated in much more detail at hadron
colliders, especially since these decays can be strongly enhanced by loop corrections involving particles
beyond the SM, like Supersymmetry [1, 2, 3, 4]. The B

0
s → µ

+
µ
− decay mode has received a lot of

attention [5, 6, 7] after the CDF collaboration announced a measurement a factor five to six above
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The pure leptonic decay B
0
s → µ

+
µ
− is strongly suppressed in the Stan-

dard Model (SM), but can have large enhancements in Supersymmetry,
especially at large values of tanβ. New limits on this decay channel from
recent LHC data have been used to claim that these limits restrict the
SUSY parameter space even more than the direct searches. However,
direct searches are hardly dependent on tanβ, while B

0
s → µ

+
µ
− is pro-

portional to tan6 β. In order to compare the limits from direct SUSY
searches, Higgs searches and B

0
s → µ

+
µ
− one needs to fix tanβ. This

can be done by fitting additionally the relic density, which requires large
tanβ in a large region of parameter space. We show that B0

s → µ
+
µ
−

is not constraining the parameter space of the CMSSM, but that the di-
rect searches and the present Higgs limits are the most constraining, if
combined with cosmology. The expected B

0
s → µ

+
µ
− constraints, if the

limits approach the SM within a factor of two, which is expected in the
near future, are also shown.

1 Introduction

Flavour Changing Neutral Currents (FCNC), like the leptonic decays of neutral B-mesons, are strongly
suppressed in the Standard Model (SM), since they can only occur via loops involving the weak bosons.
These decays are helicity suppressed, so the amplitudes are proportional to the mass of final state
particles and the highest rates will be into tau leptons. The experimental signature for leptonic
decays is clear: search for an invariant mass in the mass window of the B-meson. This is easier
for muonic decays. Hence, muonic B-decays have been investigated in much more detail at hadron
colliders, especially since these decays can be strongly enhanced by loop corrections involving particles
beyond the SM, like Supersymmetry [1, 2, 3, 4]. The B

0
s → µ

+
µ
− decay mode has received a lot of

attention [5, 6, 7] after the CDF collaboration announced a measurement a factor five to six above
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SUSY provides a candidate for the
 Dark matter – a stable neutral particle

The flat rotation curves of spiral 
galaxies provide the most direct 

evidence for the existence of large 
amount of the dark matter. 

Spiral galaxies consist of a central 
bulge and a very thin disc, and 

surrounded by an approximately 
spherical halo of dark matter

Dark Matter in the Universe
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