Can one say SUSY from the window in the sky?

Dmitri Kazakov

Joint Institute for Nuclear Research

Dubna, Russia

What is SUSY?

Supersymmetry is a boson-fermion sy First Papers in 1971-1972 that is aimed to unify all forces in gravity within a singe fram are based of No evidence in particle physics yet manifestation

colliders and in non-accelerator experiments

Particle Content of the MSSM

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_{Y}(1)$		
Gauge							
G^a	gluon g ^a	gluino g̃ ^a	8	1	0		
V^k	Weak $W^k(W^{\pm}, Z)$	wino, zino $\tilde{w}^k(\tilde{w}^{\pm},\tilde{z})$	1	3	0		
V'	Hypercharge $B(\gamma)$	$bino$ $ ilde{b}(ilde{\gamma})$	1	1	0		
Matter							
L_i sler	otons $ \begin{cases} \tilde{L}_i = (\tilde{v}, \tilde{e})_L \\ \tilde{z} & \tilde{e} \end{cases} $	$L_i = (v, e)_L$	1	2	-1		
E_i	$\tilde{E}_i = \tilde{e}_R$	eptons $\begin{cases} L_i = (v, e)_L \\ E_i = e_R \end{cases}$	1	1	2		
Q_i	$ ilde{Q}_i = (ilde{u}, ilde{d})_L$	$Q_i = (u,d)_L$	3	2	1/3		
U_i squ	$\tilde{u}_i = \tilde{u}_R$	$uarks \leftarrow U_i = u_R^c$	3*	1	-4/3		
D_i	$L ilde{D}_i = ilde{d}_R$	$D_i = d_R^c$	3*	1	2/3		
Higgs		~					
H_1	$\int H_1$	H_1	1	2	-1		
H_2	$\frac{\text{iggses}}{H_2} \qquad \frac{\text{higg}}{H_2}$	gsinos $\left\{ \tilde{H}_{2} \right\}$	1	2	1		

Soft SUSY Breaking

SUGRA Universality hypothesis (gravity is colour and flavour blind): Soft parameters are equal at Planck (GUT) scale

$$-L_{Soft} = A\{y_{t}Q_{L}H_{2}U_{R} + y_{b}Q_{L}H_{1}D_{R} + y_{L}L_{L}H_{1}E_{R}\} + B\mu H_{1}H_{2}$$

$$+m_{0}^{2}\sum_{i}|\varphi_{i}|^{2} + \frac{1}{2}M_{1/2}\sum_{\alpha}\widetilde{\lambda_{\alpha}}\widetilde{\lambda_{\alpha}}$$

Five universal soft parameters: February, 1-7

$$A, m_0, M_{1/2}, B \leftrightarrow \tan\beta = v_2 / v_1$$
 and μ

Creation and Decay of Superpartners in Cascade Processes @ LHC

Background Processes of the SM for creation of Superpartners

Search for Supersymmetry @ LHC

5 σ reach in jets + \cancel{E}_T channel

Reach limits for various channels at 100 fb ⁻¹

The Lightest Superparticle

Gravity mediation LSP =
$$\chi_1^{-0}$$

Gauge mediation LSP =
$$G$$

tion LSP =
$$\widetilde{G}$$
 stable

$$\operatorname{LSP} = \begin{cases}
\widetilde{G} & \text{stable} \\
\widetilde{\chi}_{1}^{0} & \widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}, h\widetilde{G}, Z\widetilde{G} \\
\widetilde{l}_{R} & \widetilde{l}_{R} \rightarrow \tau \widetilde{G}
\end{cases}$$
photons/jets + \mathscr{E}_{T}

lepton + \mathscr{E}_{T}

ation LSP =
$$\begin{cases}
\widetilde{\chi}_{1}^{0} & \text{stable} \\
\widetilde{\chi}_{1}^{0} & \text{stable} \\
\widetilde{\chi}_{1}^{0} & \text{stable}
\end{cases}$$
lepton + \mathscr{E}_{T}

stable

$$\widetilde{\chi}_1^0 \to \gamma \widetilde{G}, h\widetilde{G}, Z\widetilde{G}$$

$$\tilde{l}_R \to \tau \widetilde{G}$$

$$'_L$$
 stable

signature

jets/leptons
$$+ \mathbb{Z}_T$$

$$\mathbf{E}_{T}$$

photons/jets
$$+ \cancel{E}_{T}$$

lepton
$$+ \mathbb{Z}_T$$

lepton
$$+ \cancel{E}_T$$

• R-parity violation

LSP is unstable -> SM particles

Beyond 2010, Cape Town Neutrinoless double β decay

Cosmological Constraints

Precise cosmological data

$$\Omega h^2 = 1 \iff \rho = \rho_{crit}$$

$$\Omega_{vacuum} \approx 73\%$$

$$\Omega_{DarkMatter} \approx 23 \pm 4\%$$

$$\Omega_{Baryon} \approx 4\%$$

Dark Matter in the Universe:

CMBR thermal fluctuations

(from WMAP)

Hot DM (not favoured by galaxy formation)

Cold DM (rotation curves of Galaxies)

SUSY Dark Matter

Neutralino = SUSY candidate for the cold Dark Matter Neutralino = the Lightest Superparticle (LSP) = WIMP

$$\widetilde{\chi}^{0} = N_{1}\widetilde{\gamma} + N_{2}\widetilde{z} + N_{3}\widetilde{H}_{1}^{0} + N_{4}\widetilde{H}_{2}^{0}$$

photino zino higgsino higgsino

$$M_{\chi}^{theor} = 40 \div 400 \text{ GeV}$$

$$R = (-1)^{3(B-L)+2S}$$

$$R = (-1)^{3(B-L)+2S}$$

$$R_{p} = +1, R_{\tilde{p}} = -1$$

- Superparticles are created in pairs
- The lightest superparticle is stable

Dark Matter Detection

Direct detection

No convincing evidence so far Hope for new results soon

Why WIMP?

Boltzman Equation

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma \mathbf{v} \rangle (n_{\chi}^2 - n_{\chi,eq}^2), \qquad H = \dot{R} / R$$

Hubble constant

Relic Abundance

$$\Omega_{\chi}h^{2} = \frac{m_{\chi}n_{\chi}}{\rho_{c}} \approx \frac{2 \cdot 10^{-27} cm^{3} sec^{-1}}{\langle \sigma v \rangle}$$

$$\Omega_{\chi} h^2 \sim 0.113 \pm 0.009,$$

v ~ 300 km / sec

$$\sigma \sim 10^{-34} \, cm^2 = 100 \, pb$$

Typical EW x-section

DM Neutralino Annihilation Final States

\mathbf{Z}/γ ≈37 gammas

Dominant

 $\chi + \chi \Rightarrow A \Rightarrow$ b bbar quark pair Sum of diagrams should yield $\langle \sigma v \rangle = 2.10^{-26}$ cm³/s to get correct relic density Quark-fragmentation known! Hence spectra of positrons, gammas and antiprotons known! Relative amount of γ ,p,e+ known as well.

Analysis of EGRET Data in 6 Sky Directions

Diffuse gamma rays from FERMI

Why diffuse spectrum disagrees 100% with EGRET at 3 GeV while VELA spectrum agrees with EGRET at 3 GeV within 20%?

Fitted Hallo Parameters

Gamma Ray Flux: (<\sigmav> from WMAP)

$$\phi_{\pmb{\chi}}(E,\psi) = \frac{\langle \sigma v \rangle}{4\pi} \sum_{\pmb{f}} \frac{dN_{\pmb{f}}}{dE} b_{\pmb{f}} \int\limits_{\pmb{line of sight}} B_{\pmb{l}} \frac{1}{2} \frac{\langle \rho_{\pmb{\chi}}^2 \rangle}{M_{\pmb{\chi}}^2} dl_{\pmb{\psi}}$$

$$\rho_{\chi}(\tilde{r}) = \rho_0 \left(\frac{R_0}{\tilde{r}}\right)^{\gamma} \left[\frac{1 + \left(\frac{\tilde{r}}{a}\right)^{\alpha}}{1 + \left(\frac{R_0}{a}\right)^{\alpha}}\right]^{\frac{\gamma - \beta}{\alpha}} + \sum_{n=1}^{N} \rho_n \exp\left(-\frac{(\tilde{r}_{gc} - Rn)^2}{2\sigma_{R_n}^2} - \frac{(z_n)^2}{2\sigma_{z_n}^2}\right)$$

Parameter	Value	Parameter	Value
α	2	R_a	4.3 kpc
β	2	$\sigma_{R,a}$	3.4 kpc
γ	0	$\sigma_{z,a}$	0.3 kpc
R_0	$8.5~\mathrm{kpc}$	ρ_b	$2.3~\mathrm{GeV~cm^{-3}}$
a	$4~{ m kpc}$	R_b	14 kpc
ρ_0	$0.47~\mathrm{GeV~cm^{-3}}$	$\sigma_{R,b}$	2.1 kpc
ρ_a	$3.3~{ m GeV~cm^{-3}}$	$\sigma_{z,b}$	1.3 kpc
b/a	0.9	c/a	0.8

Enhancement of rings over 1/r² profile 2 and 7, respectively.

Mass in rings 1.6 and 0.3% of total DM

14 kpc coincides with ring of stars at 14-18 kpc due to infall of dwarf galaxy

4 kpc coincides with ring of neutral hydrogen molecules!

Hallo Density on Scale of 30 Kpc

Side view

Isother. NFW

R200 295 kpc 145 kpc

DM: 3.1012 Mb 3.1011 Mb

Vis.: 6.1010 Mo

Outer Ring: 3.1010 Mo

Inner Ring: 3.109 Mo

Top view

February, 1-7

Clustering of of Dark Matter

Cluster size: ≈ Solar system?

 $M_{min} \cong 10^{-8} - 10^{-6} \text{ Mp?}$

Steeply falling mass spectrum.

Boost factor $\sim \langle \rho^2 \rangle / \langle \rho \rangle^2 \sim 20-2000$

From fit: B≈100 for WIMP of 60 GeV

Clumps with M_{min} -> dominant contribution -> MANY clumps in given direction -> same boostfactor in all directions

PAMELA: positron and antiproton measurements

Positrons: excess

Antiprotons: NO excess

Rotation Curve for the Milky Way

Contributions to the rotation curve of the Milky Way from

- Visible bulge
- Visible disk
- Dark halo
- Inner dark ring
- Outer dark ring

Allowed SUSY Parameter Space

MSUGRA can fulfill all constraints from WMAP, LEP, b->sy, g-2 and EGRET simultaneously, if DM is neutralino with mass in range 50-100 GeV and squarks and sleptons are O(1 TeV) m_0 common spin 0 mass $m_{1/2}$ common spin $\frac{1}{2}$ mass

High $tan\beta$ solution $tan\beta = 50$

 $tan\beta = v_2/v_1$

EGRET Point and Mass Spectrum

W.de Boer, C.sander, V.Zhukov, A.Gladyshev, and D.Kazakov,

PL B636 (2006)13

PHYSICS PROBLEMS

- Cosmologists: What is CDM and Dark Energy made of?
- Astrophysicists:

What is the origin of excess of diffuse Galactic Gamma Rays?

- Particle physicists :
 - Where are the Supersymmetric Particles?
- Astronomers:

Why a change of slope in the galactic rotation curve 1.1 R₀?

Solution: DM is made of WIMPs which are SUSY particles distributed in Halo of our Galaxy with a mass around 70 GeV