

SUSY interpretation of the CGRET excess of diffuse Galactic gamma rays and implementation for the LHC

Dmitri Kazakov

JINR(Dubna) & ITEP(Moscow)

In collaboration with W. de Boer, C. Sander, V. Zhukov (Uni Karlsruhe) and A. Gladyshev (JINR, Dubna)

Outline

- Diffuse Galactic γ Rays from EGRET
- Reconstruction of the Halo profile
- DM annihilation in the MSSM
- Restriction to SUSY Parameter Space
- SUSY Production at LHC in EGRET Region
- Conclusions

A&A 444 (2005)17 PL B636 (2006)13 PRL 95 (2005) 209001

THE AIM

To explore the possibility that we might have already observed the DM annihilation in Galactic halo and to see which consequences it might have

<u>optimistic</u> attitude: to find the mass of a WIMP and its spatial distribution
<u>pessimistic</u> attitude: to sink all this in uncertainties and error bars

DIFFUSE GAMMA RAYS FROM THE SKY

Energetic Gamma Ray Experiment Telescope (EGRET)

EGRET All-Sky Gamma-Ray Survey Above 100 MeV

Instrumental parameters:

Energy range: 0.02-30 GeV Energy resolution: ~20% Effective area: 1500 cm² Angular resol.: <0.5⁰

Data taking: 1991-2000

Main EGRET results: Catalogue of point sources Excess in diffuse gamma rays

EXCESS OF DIFFUSE GAMMAY RAYS ABOVE 1 GEV

DIFFUSE GAMMA RAYS IN EGRET ENERGY RANGE

A: inner Galactic plane (±30°)
B: Galactic plane avoiding inner Galaxy (30-330°)
C: Outer Galaxy (90-270°)
D: low Latitude (10°-20°)
E: intermediate Latitude
F: galactic poles(60°-90°)

Excess same shape in all regions implying same source everywhere in galaxy

PHYSICS PROBLEMS

What is the origin of excess of diffuse Galactic Gamma Rays?

- What is Cold Dark Matter made of?
- Where are the Supersymmetric Particles?

Solution:

- EGRET excess is due to DM annihilation
- DM is made of WIMPs which are SUSY particles distributed in Halo of our Galaxy
- SUSY Neutralinos have a mass around 60 GeV and should be produced at the LHC

EXCESS OF DIFFUSE GAMMAY RAYS WITH AND WITHOUT DM ANNIHILATION

ANALYSIS OF EGRET DATA IN 6 SKY DIRECTIONS

BACKGROUND + SIGNAL DESCRIBE EGRET DATA

FIT TO WIMP MASS

Heavy neutralino

M_x~ 50-80 GeV

Heavy WIMP is excluded

DIFFUSE GAMMA RAYS IN EGRET ENERGY RANGE

FITTED HALO PARAMETERS

0.3 kpc

 2.3 GeV cm^{-3}

14 kpc

2.1 kpc

1.3 kpc

0.8

 $\sigma_{z,a}$

 ρ_b

 R_h

 $\sigma_{R,b}$

 $\sigma_{z,b}$

c/a

0

8.5 kpc

4 kpc

 $0.47~{\rm GeV~cm^{-3}}$

 3.3 GeV cm^{-3}

0.9

 γ

 R_0

a

 ρ_0

 ρ_a

b/a

14 kpc coincides with ring of stars at 14–18 kpc due to infall of dwarf galaxy

4 kpc coincides with ring of neutral hydrogen molecules!

HALO PROFILE AND ROTATION CURVE

Halo profile with rings of DM

Rotation curve of the Milky Way

SUPPORT FOR THE RUNG STRUCTURE

N-body simulation of the tidal disruption of the Canis Major dwarf Galaxy fitted to the observed stars (red points). The simulation predicts a ringlike structure of dark matter with a radius of 13 kpc The gas layer of the Galactic Disk as function of the distance from the Galactic center.

OPEN PROBLEMS & POSSIBLE ANSWERS

- The Origin of Rings: merge with dwarf galaxy
- Absolute flux boosting: clumpiness of DM
- Excess in Charged particle spectrum (positrons, antiprotons): galactic magnetic fields
- Direct DM search: x-section + flux

DIRECT DM SEARCHES

Spin-independent

Spin-dependent

Predictions from EGRET data assuming Supersymmetry

Recent Results on Direct Detection

Spin Independent

Spin Dependent

The Chicagoland Observatory for Underground Particle Physics (COUPP)

Cryogenic Dark Matter Search (CDMS)

SUSY DARK MATTER

DM NEUTRALINO ANNIHILATION FINAL STATES

DM NEUTRALINO ANNIHILATION CROSS-SECTION

Dominant annihilation x-section: $\chi + \chi \rightarrow A \rightarrow bb$ quark pair

GAUGINO CONTENT OF THE LIGHTEST NEUTRALINO

	$ ilde{b}^0$	$ ilde w^0$	$ ilde{h}^0_1$	$ ilde{h}^0_2$
$ ilde{\chi}_1^0$	0.833	0.026	0.122	0.018
$ ilde{\chi}^0_2$	0.119	0.621	0.187	0.072
$ ilde{\chi}^0_3$	0.014	0.030	0.442	0.515
$ ilde{\chi}_4^0$	0.033	0.323	0.249	0.395

The lightest neutralino is almost bino – the superpartner of a photon DM = superpartner of the CMB

ALLOWED SUSY PARAMETER SPACE

EGRET POINT AND MASS SPECTRUM

SUSY MASS SPECTRUM

Fitted SUSY Parameters

SUSY Masses in GeV

Parameter	Value
Tan β	52.2
m 0	1500
m 1/2	170
Sign µ	+
A(0)	0
$\alpha_{s}(M_{Z})$	0.122
$\alpha_{em}(M_Z)$	0.0078153697
$Sin^2 \theta_W \mid_{\overline{MS}}$	0.2314
m _t	175 GeV
m _b	4.214 GeV

Particle	Mass
$\tilde{\chi}^{0}_{1,2,3,4}$	64, 113, 194, 229
$\tilde{\chi}_{1,2}^{\pm}, \tilde{g}$	110, 130, 516
$\tilde{u}_{1,2} = c_{1,2}$	1519, 1523
$\tilde{d}_{1,2} = \tilde{s}_{1,2}$	1522, 1524
$\tilde{t}_{1,2}$	906, 1046
$\tilde{b}_{1,2}$	1309, 1152
$\tilde{e}_{1,2} = \tilde{\mu}_{1,2}$	1497, 1499
$ ilde{ au}_{1,2}$	1305, 1288
$ ilde{V}_e, ilde{V}_\mu, ilde{V}_ au$	1495, 1495, 1286
h, H, A, H ^{\pm}	115, 372, 372, 383

SUSY PRODUCTION AT LHC

SUSY $gg \rightarrow \breve{g}\breve{g}$ IN ATLAS

26

CONCLUSIONS

If one accepts:

the interpretation of excess in diffuse galactic gamma rays as a signal of the DM annihilation
the interpretation of the Cold Dark Matter as SUSY neutralino particles

Then:

 SUSY provides simultaneous consistent description of all observable data including astrophysics

Parameter space of SUSY is highly restricted

- In the narrow allowed region the SUSY mass spectrum may be predicted
- Light superpartners are observable at the LHC