

Moscow International School of Physics

THE STANDARD MODEL AND BEYOND'24

DMITRY KAZAKOV

JINR (DUBNA)

The Universe

Улыбающееся лицо

The Universe

Улыбающееся лицо

The Standard Model

THE STANDARD MODEL OF FUNDAMENTAL INTERACTIONS

THE PRINCIPLES

- Three gauged symmetries SU(3)xSU(2)xU(1)
- For the set of quarks and leptons $(3 \times 2, 3 \times 1, 1 \times 2, 1 \times 1)$
- Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking -> Higgs boson
- CKM and PMNS mixing of flavours
- CP violation via phase factors
- Confinement of quarks and gluons inside hadrons
- Baryon and lepton number conservation
- CPT invariance -> existence of antimatter

THE STANDARD MODEL OF FUNDAMENTAL INTERACTIONS

THE PRINCIPLES

- Three gauged symmetries SU(3)xSU(2)xU(1)
- For the set of quarks and leptons $(3\times 2, 3\times 1, 1\times 2, 1\times 1)$
- Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking -> Higgs boson
- CKM and PMNS mixing of flavours
- CP violation via phase factors
- Confinement of quarks and gluons inside hadrons
- Baryon and lepton number conservation
- CPT invariance -> existence of antimatter

The ST principles allow:

- Extra families of quarks and leptons
- Presence or absence of right-handed neutrino
- Majorana or Dirac nature of neutrino
- Extra Higgs bosons

The Standard Model

$$\mathcal{L} = \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs},$$

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu} \\ &+ i \overline{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha} + i \overline{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha} + i \overline{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\ &+ i \overline{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha} + i \overline{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha} + (D_{\mu} H)^{\dagger} (D_{\mu} H), \end{aligned}$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu} \\ &+ i \overline{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha} + i \overline{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha} + i \overline{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\ &+ i \overline{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha} + i \overline{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha} + (D_{\mu} H)^{\dagger} (D_{\mu} H), \\ &+ i \overline{N}_{\alpha} \gamma^{\mu} \partial_{\mu} N_{\alpha} \end{split}$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu} \\ &+ i \overline{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha} + i \overline{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha} + i \overline{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\ &+ i \overline{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha} + i \overline{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha} + (D_{\mu} H)^{\dagger} (D_{\mu} H), \\ &+ i \overline{N}_{\alpha} \gamma^{\mu} \partial_{\mu} N_{\alpha} \end{split}$$

 $\mathcal{L}_{Yukawa} = y^L_{\alpha\beta}\overline{L}_{\alpha}E_{\beta}H + y^D_{\alpha\beta}\overline{Q}_{\alpha}D_{\beta}H + y^U_{\alpha\beta}\overline{Q}_{\alpha}U_{\beta}\tilde{H} + h.c.,$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu} \\ &+ i \overline{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha} + i \overline{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha} + i \overline{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\ &+ i \overline{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha} + i \overline{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha} + (D_{\mu} H)^{\dagger} (D_{\mu} H), \\ &+ i \overline{N}_{\alpha} \gamma^{\mu} \partial_{\mu} N_{\alpha} \end{split}$$

 $\mathcal{L}_{Yukawa} = y^L_{\alpha\beta}\overline{L}_{\alpha}E_{\beta}H + y^D_{\alpha\beta}\overline{Q}_{\alpha}D_{\beta}H + y^U_{\alpha\beta}\overline{Q}_{\alpha}U_{\beta}\tilde{H} + h.c.,$

$$+y^N_{\alpha\beta}\overline{L}_{\alpha}N_{\beta}\tilde{H}$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu} \\ &+ i \overline{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha} + i \overline{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha} + i \overline{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\ &+ i \overline{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha} + i \overline{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha} + (D_{\mu} H)^{\dagger} (D_{\mu} H), \\ &+ i \overline{N}_{\alpha} \gamma^{\mu} \partial_{\mu} N_{\alpha} \end{split}$$

 $\mathcal{L}_{Yukawa} = y^L_{\alpha\beta} \overline{L}_{\alpha} E_{\beta} H + y^D_{\alpha\beta} \overline{Q}_{\alpha} D_{\beta} H + y^U_{\alpha\beta} \overline{Q}_{\alpha} U_{\beta} \tilde{H} + h.c.,$

$$+y^N_{\alpha\beta}\overline{L}_{\alpha}N_{\beta}\tilde{H}$$

$$\mathcal{L}_{Higgs} = -V = m^2 H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^2$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_$$

 $\mathcal{L}_{Yukawa} = y^L_{\alpha\beta}\overline{L}_{\alpha}E_{\beta}H + y^D_{\alpha\beta}\overline{Q}_{\alpha}D_{\beta}H + y^U_{\alpha\beta}\overline{Q}_{\alpha}U_{\beta}\tilde{H} + h.c.,$

$$+y^N_{\alpha\beta}\overline{L}_{\alpha}N_{\beta}\tilde{H}$$

$$\mathcal{L}_{Higgs} = -V = m^2 H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^2$$

 \mathcal{L}

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^i_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B_$$

 \mathcal{L}

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^{a}_{\mu\nu} G^{a}_{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i}_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} \overline{\mathcal{L}}_{\alpha\nu} \overline{\mathcal{L}}_{\alpha\nu}^{\text{endersent}} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu$$

THE STANDARD MODEL: THE STAT

THE LAGRANGIAN

$$\mathcal{L} = \mathcal{L}_{gauge} + \mathcal{L}_{1}$$

$$\mathcal{L}_{gauge} = -\frac{1}{4}G^{c}_{\mu}$$

$$+i\overline{L}_{\alpha}\gamma^{\mu}D_{\mu}L_{c}$$

$$+i\overline{U}_{\alpha}\gamma^{\mu}D_{\mu}U_{\alpha} \downarrow$$
$$+i\overline{N}_{\alpha}\gamma^{\mu}\partial_{\mu}\rho^{\text{redict}}$$

$$Yuk = parameters \\ Yuk = paramy_{\alpha\beta}^{L} \overline{L}_{\alpha} E_{\beta} H$$

 \mathcal{L}

$$+y^N_{\alpha\beta}L_{\alpha}N$$

$$\mathcal{L}_{Higgs} = -V =$$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{0} \partial_{\nu} g_{\mu}^{a} - g_{\mu}^{a} d^{a} \partial_{\mu} g_{\mu}^{a} g_{\mu}^{a} g_{\mu}^{a} d^{a} d^{a} d^{b} g_{\mu}^{a} g_{\mu}^{a} g_{\mu}^{a} g_{\mu}^{a} d^{b} d^{$$

$$\begin{split} \mathcal{L} &= \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}, \\ \mathcal{L}_{gauge} &= -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} - \frac{1}{4} W^i_{\mu\nu} \overline{\mathcal{L}}_{\alpha\nu} \overline{\mathcal{L}}_{\alpha\nu}^{\text{endersent}} - \frac{1}{4} B_{\mu\nu} B_{\mu\nu$$

> Quarks $Q_L = \begin{pmatrix} up \\ down \end{pmatrix}_L$ $U_R = up_R$ $D_R = down_R$ > Leptons

$$L_{L} = \begin{pmatrix} v \\ e \end{pmatrix}_{L}$$
$$N_{R} = v_{R} ?$$
$$E_{R} = e_{R}$$

$$L_{L} = \begin{pmatrix} v \\ e \end{pmatrix}_{L}$$
$$N_{R} = v_{R} ?$$
$$E_{R} = e_{R}$$

Quarks – "the building blocks of the Universe"

The number of quarks increased with discoveries of new particles and have reached 6

Quarks – "the building blocks of the Universe"

The number of quarks increased with discoveries of new particles and have reached 6

For unknown reasons Nature created 3 copies (generations) of quarks and leptons

The Number of Colours

The x-section of electronpositron annihilation into hadrons is proportional to the number of quark colours. The fit to experimental data at various colliders at different energies gives

$N_c = 3.06 \pm 0.10$

Quark's Colour

Baryons are "made" of quarks

 $\Delta^{-}(d\uparrow d\uparrow d\uparrow)$ $\Omega^-(s\uparrow s\uparrow s\uparrow)$ $^{++}(u \uparrow u \uparrow u \uparrow)$ \triangle

Quark's Colour

Baryons are "made" of quarks

 $\Delta^{-}(d\uparrow d\uparrow d\uparrow)$ $\Omega^-(s\uparrow s\uparrow s\uparrow)$? $^{++}(u \uparrow u \uparrow u \uparrow)$ \triangle

Quark's Colour

Baryons are "made" of quarks

 $\Delta^{-}(d\uparrow d\uparrow d\uparrow)$ $\Omega^{-}(s\uparrow s\uparrow s\uparrow)$ $\Delta^{++}(u \uparrow u \uparrow u \uparrow)$

To avoid Pauli principle veto one can antisymmetrize the wave function introducing a new quantum number -"colour", so that
Quark's Colour

Baryons are "made" of quarks

 $\Delta^{-}(d\uparrow d\uparrow d\uparrow)$ $\Omega^{-}(s\uparrow s\uparrow s\uparrow)$? $\Delta^{++}(u \uparrow u \uparrow u \uparrow)$

To avoid Pauli principle veto one can antisymmetrize the wave function introducing a new quantum number -"colour", so that

 $\Delta^{-} = \epsilon^{ijk} (d_i \uparrow d_j \uparrow d_k \uparrow)$

Colored quarks

Each flavour of quarks can have three color charges: red, green, blue Antiquarks have three anticolors: antipred - violet, antigreen - red, antiblue - yellow

Gluons have eight colors: red-antiblue, green-antired, ...

All bound states of quqrks, baryons and mesons - colorless!

Hypothesis of quark confinement

Quarks are confined inside hadrons due to interactions with gluons, which form strings stretched between quarks

The group structure of the SM

The group structure of the SM

 C_A/C_F

The group structure of the SM

 $\sum_{a=1}^{N} \left(T^a T^{\dagger a} \right)_{ij} = \delta_{ij} C_F \quad , \quad \sum_{i,j=1}^{N_F} T^a_{ij} T^{\dagger b}_{ji} = \delta^{ab} T_F \quad , \quad \sum_{a,b=1}^{N_A} f^{abc} f^{*abd} = \delta^{cd} C_A$ **Casimir Operators** $C_A = N_C$, $C_F = \frac{N_C^2 - 1}{2N_C}$, $T_F = 1/2$ For SU(N) ۲₋ ۲ 1.4 ALEPH 68% CL contour 95% CL contour 1.2 QCD = SU(3)SO(3),E8 ✤ massless gluino 1

QCD analysis definitely singles out the SU(3) group as the symmetry group of strong interactions

Scattering of electrons on protons Parton Model

Q - transfer momentum from electron to proton

W - total energy of created hadrons

$$x = \frac{Q^2}{W^2}$$

scaling

Indetification of partons as quarks

Creation of hadrons at colliders

Electron-positron collider

Proton collider

Hadrons form jets along the line of created quarks

Quark subprocesses

Leptons are from λεπτόσ - light

Muons are created from \mathbf{T} mesons decay in cosmic rays and decay into electrons and two neutrinos

 u_{μ}

 \overline{W}

Electrons form atomic shells and define all chemistry of animated and unanimated nature

Neutrino are produced in hadron decay

$$n(udd) \rightarrow p(uud) + e + \bar{\nu}$$

Electro-weak sector of the SM SU(2) x U(1) versus O(3)

After spontaneous symmetry breaking one has

Electro-weak sector of the SM SU(2) x U(1) versus O(3) 3 gauge bosons 1 gauge boson 3 gauge bosons After spontaneous symmetry breaking one has

3 massive gauge bosons (W⁺, W⁻, Z⁰) and 1 massless (γ)

The Number of Generations

THE STANDARD MODEL: THE FLAVOUR STRUCTURE

Flavour Sector

Matter and Antimatter

Antimatter was created together with matter during the "Big bang"

Antiparticles are created at accelerators in ensemble with particles but the visible Universe does not contain antimatter

Interactions in the SM (Forces)

Interactions in the SM (Forces)

Strong Interactions between quarks via gluons exchange Bound hadrons together, lead to nuclear forces inside the nucleus

Weak Interactions between quarks and leptons via W and Z exchage Responsible for decays of hadrons and leptons

 <u>Electromagnetic</u> Interactioins between quarks and leptons via photon exchange Responsible for all macro forcers in Nature

Yukawa Interactions between quarks and leptons and the Higgs boson Responsible for creation of masses of quarks and leptons

Electromagnetic Interactions

Performed via exchange of quanta of electromagnetic field - photon
Electromagnetic field is described by Maxwell equations

$$\partial_{\mu}F_{\mu\nu} + j_{\mu} = 0 \qquad \qquad \partial_{t}\vec{E} - \vec{\nabla} \times \vec{B} = -\vec{j}$$
$$\partial_{\mu}\tilde{F}_{\mu\nu} = 0 \qquad \qquad \vec{\nabla}\vec{E} = \rho$$
$$\partial_{t}\vec{B} + \vec{\nabla} \times \vec{E} = 0$$
$$\nabla\vec{F}_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \qquad \qquad \vec{\nabla}\vec{B} - 0$$

3. Charged particles (quarks and leptons) obey Dirac equation

$$(\hat{\partial} - m - e\hat{A})\psi = 0$$
 $\hat{\partial} = \gamma^{\mu}\partial_{\mu}$

Strong Interactions

- 1. Performed via exchange of quanta of gluon (color) field -gluon
- Gluon field is described by Yang-Mills equations (generalization of Maxwell eqs)

 $D_{\mu}F_{\mu\nu} + j_{\mu} = 0$

 $D_{\mu} = \partial_{\mu} + gA_{\mu} \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g[A_{\mu}, A_{\nu}]$

- The main difference from Electrodynamics is that gluons carry color charge and interact with each other
- Postulate of confinement: quarks and gluons cannot be observed in free state, only «colorless» objects are observed
- 5. Colorless objects appear in two combinations: $M = \bar{q}q$ mesons and baryons B = qqq
- 6. However, exotic hadrons are proved to exist

GLUBOLA

BARIONIUM HIBRIDO

Weak Interactions

- 1. Performed via exchange of intermediate weak bosons W, Z
- 2. The fields W and Z are described by Yang-Mills eqs (generalization of Maxwell eqs)
- The fields W, Z carry weak charge (isospin) and interact with each 3. other
- W, Z can be observed in free state and are massive 4.
- Weak interactions involve quarks and leptons 5.
- Weak interactions are short-range $R \sim 1/M_W$ 6.

Weak interactions describe decay of particles 7.

Five fundamental forces of Nature

 $\begin{array}{ll} \text{Gauge transformation} & \psi_i(x) \to U_{ij}(x)\psi_j(x) = exp[i\alpha^a(x)T^a_{ij}]\psi_j(x) \\ & \uparrow & \uparrow \\ & \bar{\psi}_i(x) \to \bar{\psi}_j U^+_{j1}(x) & \text{matrix} & U^+U = 1 & \text{parameter matrix} \\ & a=1,2,...,N \end{array}$

Fermion Kinetic term

 $i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) \to i\bar{\psi}(x)U^{+}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi(x))$ $= i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) + i\bar{\psi}(x)\gamma^{\mu}U^{+}(x)\partial_{\mu}U(x)\psi(x)$

 $\begin{array}{ll} \text{Gauge transformation} & \psi_i(x) \to U_{ij}(x)\psi_j(x) = exp[i\alpha^a(x)T^a_{ij}]\psi_j(x) \\ & \uparrow & \uparrow \\ & \bar{\psi}_i(x) \to \bar{\psi}_j U^+_{j1}(x) & \text{matrix} & U^+U = 1 & \text{parameter matrix} \\ & a=1,2,...,N \end{array}$

Fermion Kinetic term

 $i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) \to i\bar{\psi}(x)U^{+}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi(x))$ $= i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) + i\bar{\psi}(x)\gamma^{\mu}U^{+}(x)\partial_{\mu}U(x)\psi(x)$

$$\begin{array}{ll} \text{Gauge transformation} & \psi_i(x) \to U_{ij}(x)\psi_j(x) = exp[i\alpha^a(x)T^a_{ij}]\psi_j(x) \\ & \uparrow & \uparrow \\ & \bar{\psi}_i(x) \to \bar{\psi}_j U^+_{j1}(x) & \text{matrix} & U^+U = 1 & \text{parameter matrix} \\ & a=1,2,...,N \end{array}$$

Fermion Kinetic term

$$i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) \to i\bar{\psi}(x)U^{+}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi(x))$$
$$= i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) + i\bar{\psi}(x)\gamma^{\mu}U^{+}(x)\partial_{\mu}U(x)\psi(x)$$

Covariant derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu}I + g A^{a}_{\mu}T^{a} \equiv \partial_{\mu}I + g A_{\mu}$$

Gauge field

$$\begin{array}{ll} \text{Gauge transformation} & \psi_i(x) \to U_{ij}(x)\psi_j(x) = exp[i\alpha^a(x)T^a_{ij}]\psi_j(x) \\ & \uparrow & \uparrow \\ & \bar{\psi}_i(x) \to \bar{\psi}_j U^+_{j1}(x) & \text{matrix} & U^+U = 1 & \text{parameter matrix} \\ & a=1,2,...,N \end{array}$$

Fermion Kinetic term

$$i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) \to i\bar{\psi}(x)U^{+}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi(x))$$
$$= i\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) + i\bar{\psi}(x)\gamma^{\mu}U^{+}(x)\partial_{\mu}U(x)\psi(x)$$

Covariant derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu}I + g A^{a}_{\mu}T^{a} \equiv \partial_{\mu}I + g A_{\mu}$$

Gauge field

 $i\psi(x)\gamma^{\mu}D_{\mu}\psi(x)$

Gauge invariant kinetic term

 $\hat{A}_{\mu} \to U^+(x)\hat{A}_{\mu}U(x) + gU^+(x)\partial_{\mu}U(x)$

 $\hat{A}_{\mu} \to U^+(x)\hat{A}_{\mu}U(x) + gU^+(x)\partial_{\mu}U(x)$

$$[D_{\mu}, D_{\nu}] = G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g[A_{\mu}A_{\nu}]$$

 $G_{\mu\nu} \to U^+(x)G_{\mu\nu}U(x)$

Gauge field transformation

$$\hat{A}_{\mu} \to U^+(x)\hat{A}_{\mu}U(x) + gU^+(x)\partial_{\mu}U(x)$$

Field strength tenzor

$$[D_{\mu}, D_{\nu}] = G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g[A_{\mu}A_{\nu}]$$

$$G_{\mu\nu} \to U^+(x)G_{\mu\nu}U(x)$$

Gauge field kinetic term

$$-\frac{1}{4}TrG_{\mu\nu}G^{\mu\nu}$$

Contains self interaction of the gauge fields!

Direct mass terms are forbidden due to $SU(2)_L$ invariance !

Direct mass terms are forbidden due to SU(2)_L invariance !

Lorenz invariant Mass terms

$$\psi_L \psi_R + \psi_R \psi_L$$

SU(2) doublet SU(2) singlet

Direct mass terms are forbidden due to SU(2)_L invariance !

Lorenz invariant Mass terms

 $\frac{\nabla U_{L}(2)}{\psi_{L}\psi_{R}} + \frac{\nabla \psi_{R}\psi_{L}}{\psi_{R}\psi_{L}}$ SU(2) doublet SU(2) singlet

Direct mass terms are forbidden due to SU(2), invariance !

Lorenz invariant Mass terms

 $\overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L} \qquad \overline{\psi}_{L}\psi_{L} = \overline{\psi}_{R}\psi_{R} = 0$ SU(2) doublet SU(2) singlet

28

Direct mass terms are forbidden due to SU(2), invariance !

$$\frac{\psi_{L}\psi_{R}}{\psi_{L}\psi_{R}} + \psi_{R}\psi_{L}$$

SU(2) doublet

$$\psi_L \psi_L = \psi_R \psi_R = 0$$

$$\overline{\psi}_{L}^{c}\psi_{L}+\overline{\psi}_{L}\psi_{L}^{c}$$

$$\overline{\psi}_{R}^{c}\psi_{R}+\overline{\psi}_{R}\psi_{R}^{c}$$
Fermion Masses in the SM

Direct mass terms are forbidden due to SU(2)_L invariance !

Fermion Masses in the SM

Direct mass terms are forbidden due to SU(2)_L invariance !

Spontaneous Symmetry Breaking $SU_c(3) \otimes SU_L(2) \otimes U_Y(1) \rightarrow SU_c(3) \otimes U_{EM}(1)$

Spontaneous Symmetry Breaking $SU_{c}(3) \otimes SU_{I}(2) \otimes U_{Y}(1) \rightarrow SU_{c}(3) \otimes U_{EM}(1)$

Introduce a scalar field with quantum numbers: (1,2,1) $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$ With potential $V = -m^2 H^\dagger H + \frac{\lambda}{2} (H^\dagger H)^2$

Spontaneous Symmetry Breaking $SU_c(3) \otimes SU_L(2) \otimes U_Y(1) \rightarrow SU_c(3) \otimes U_{EM}(1)$

Introduce a scalar field with quantum numbers: (1,2,1)

With potential

$$V = -m^2 H^{\dagger} H + \frac{\lambda}{2} (H^{\dagger} H)^2$$

Mechanism of Spontaneous Symmetry breaking (Brout-Englert-Higgs)

Q: what happens with missing d.o.f (massless Goldstone bosons P, H^+ or ξ)? A: they become longitudinal d.o.f of the gauge bosons W^i_{μ} , i = 1, 2, 3

Mechanism of Spontaneous Symmetry breaking (Brout-Englert-Higgs)

Q: what happens with missing d.o.f (massless Goldstone bosons P, H^+ or ξ)? A: they become longitudinal d.o.f of the gauge bosons $W^i_{\mu}, \ i = 1, 2, 3$

Gauge transformation

 α^a

$$\begin{split} \hat{W}_{\mu} &\to e^{i\alpha^{a}\sigma^{a}} \hat{W}_{\mu} e^{-i\alpha^{a}\sigma^{a}} - \frac{1}{g} \partial_{\mu} (e^{i\alpha^{a}\sigma^{a}}) e^{-i\alpha^{a}\sigma^{a}} \\ &= -\xi^{a} \end{split}$$
 Longitudinal components

Mechanism of Spontaneous Symmetry breaking (Brout-Englert-Higgs)

Q: what happens with missing d.o.f (massless Goldstone bosons P, H^+ or ξ)? A: they become longitudinal d.o.f of the gauge bosons $W^i_{\mu}, \ i = 1, 2, 3$

Gauge transformation

$$\begin{split} \hat{W}_{\mu} &\to e^{i\alpha^{a}\sigma^{a}} \hat{W}_{\mu} e^{-i\alpha^{a}\sigma^{a}} - \frac{1}{g} \partial_{\mu} (e^{i\alpha^{a}\sigma^{a}}) e^{-i\alpha^{a}\sigma^{a}} \\ & a = -\xi^{a} \end{split} \quad \text{Longitudinal components} \end{split}$$

Higgs field kinetic term

$$|D_{\mu}H|^{2} = |\partial_{\mu}H - \frac{g}{2}\hat{W}_{\mu}H - \frac{g}{2}\hat{B}_{\mu}H|^{2}$$

Mechanism of Spontaneous Symmetry breaking (Brout-Englert-Higgs)

Q: what happens with missing d.o.f (massless Goldstone bosons P, H^+ or ξ)? A: they become longitudinal d.o.f of the gauge bosons $W^i_{\mu}, \ i = 1, 2, 3$

Gauge transformation

$$\begin{split} \hat{W}_{\mu} &\to e^{i\alpha^{a}\sigma^{a}} \hat{W}_{\mu} e^{-i\alpha^{a}\sigma^{a}} - \frac{1}{g} \partial_{\mu} (e^{i\alpha^{a}\sigma^{a}}) e^{-i\alpha^{a}\sigma^{a}} \\ & \text{Longitudinal components} \end{split}$$

Higgs field kinetic term

 \mathbf{O}

$$\begin{split} |D_{\mu}H|^{2} &= |\partial_{\mu}H - \frac{g}{2}\hat{W}_{\mu}H - \frac{g'}{2}\hat{B}_{\mu}H|^{2} & \leftarrow H = \begin{pmatrix} 0 \\ v \end{pmatrix} \\ &\to \frac{1}{4}(0v) \begin{pmatrix} gW_{\mu}^{3} + g'B_{\mu} & \sqrt{2}W_{\mu}^{-} \\ \sqrt{2}W_{\mu}^{+} & -gW_{\mu}^{3} + g'B_{\mu} \end{pmatrix}^{2} \begin{pmatrix} 0 \\ v \end{pmatrix} \\ &\to \frac{g^{2}}{2}v^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{4}(-gW_{\mu}^{3} + g'B_{\mu})^{2} \end{split}$$

Gauge Bosons Masses

$$\begin{split} \Delta L_{mass} &\to \frac{g^2}{2} v^2 W^+_{\mu} W^-_{\mu} + \frac{1}{4} (-g W^3_{\mu} + g' B_{\mu})^2 + \frac{1}{4} (g W^3_{\mu} + g' B_{\mu})^2 \\ W^{\pm}_{\mu} &= \frac{W^1_{\mu} \mp W^2_{\mu}}{\sqrt{2}} \\ Z_{\mu} &= -\sin \theta_W B_{\mu} + \cos \theta_W W^3_{\mu} \qquad \tan \theta_W = g'/g \\ \gamma_{\mu} &= \cos \theta_W B_{\mu} + \sin \theta_W W^3_{\mu} \end{split}$$

$$\begin{split} M_W^2 &= \frac{1}{2}g^2v^2 \\ M_Z^2 &= \frac{1}{2}(g^2 + g'^2)v^2 \\ M_\gamma &= 0 \end{split}$$

$$M_W^2 = \frac{g^2}{g^2 + g'^2} M_Z^2 = \cos^2 \theta_W M_Z^2$$

Gauge Bosons Masses

The mass terms

$$\Delta L_{mass} \rightarrow \frac{g^2}{2} v^2 W^+_\mu W^-_\mu + \frac{1}{4} (-g W^3_\mu + g' B_\mu)^2 + \frac{1}{4} (g W^3_\mu + g' B_\mu)^2$$

$$W^{\pm}_{\mu} = \frac{W^{1}_{\mu} \mp W^{2}_{\mu}}{\sqrt{2}}$$
$$Z_{\mu} = -\sin\theta_{W}B_{\mu} + \cos\theta_{W}W^{3}_{\mu}$$
$$\gamma_{\mu} = \cos\theta_{W}B_{\mu} + \sin\theta_{W}W^{3}_{\mu}$$

 $\tan \theta_W = g'/g$

$$\begin{split} M_W^2 &= \frac{1}{2}g^2v^2 \\ M_Z^2 &= \frac{1}{2}(g^2 + g'^2)v^2 \\ M_\gamma &= 0 \end{split}$$

$$M_W^2 = \frac{g^2}{g^2 + g'^2} M_Z^2 = \cos^2 \theta_W M_Z^2$$

The Higgs Boson and Fermion
Masses

$$H = \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix} \Rightarrow V = -m^{2}H^{\dagger}H + \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

$$\Rightarrow V = -\frac{\lambda v^{4}}{2} + \frac{\lambda v^{2}h^{2}}{\sqrt{2}} + \frac{\lambda v}{\sqrt{2}}h^{3} + \frac{\lambda}{8}h^{4} \qquad v^{2} = m^{2}/\lambda$$

$$m_{h} = \sqrt{2}m = \sqrt{2\lambda v}$$

$$L_{Yukawa} = y_{\alpha\beta}^{E} \overline{L}_{\alpha}E_{\beta}H + y_{\alpha\beta}^{D} \overline{Q}_{\alpha}D_{\beta}H + y_{\alpha\beta}^{U} \overline{Q}_{\alpha}U_{\beta}\widetilde{H}$$

$$\alpha, \beta = 1, 2, 3 \text{ - generation index}$$

Dirac fermion mass

 $y^{N}_{\alpha\beta}\overline{L}_{\alpha}N^{}_{\beta}\widetilde{H} \rightarrow M^{v}_{i} = Diag(y^{N}_{\alpha\beta})v$

$$M_i^u = Diag(y_{\alpha\beta}^u)v, \ M_i^d = Diag(y_{\alpha\beta}^d)v, \ M_i^l = Diag(y_{\alpha\beta}^l)v$$

Dirac neutrino mass

Quark/Lepton Mixing

• The mass matrix is non-diagonal in generation space

It can be diagonalized by field rotation Q -> Q'= V Q

$$\overline{D}M_{U}U - > \overline{D}'V_{U}^{\dagger}M_{U}V_{U}U' = \overline{D}'M_{U}^{Diag}U'$$
$$\overline{D}M_{D}D - > \overline{D}'V_{D}^{\dagger}M_{D}V_{D}D' = \overline{D}'M_{D}^{Diag}D'$$

Neutral Current:

$$\overline{U}Z_{\mu}U - > \overline{U}'V_{U}^{\dagger}Z_{\mu}V_{U}U' = \overline{U}'Z_{\mu}U' \quad V_{U}^{\dagger}V_{U} = \overline{U}'Z_{\mu}U'$$

Charged Current

$$\overline{U}W_{\mu}D - > \overline{U}'V_{U}^{+}W_{\mu}V_{D}D = \overline{U}'W_{\mu}V_{U}^{+}V_{D}D'$$

Cabibbo-Kobayashi-Maskawa mixing matrix (quarks) Pontecorvo-Maki-Nakagava-Sakato mixing matrix (leptons) The (only) source of flavour mixing in the SM $K = V_{II}^+ V_D$

Unitarity: KT=1

Mixing Matrix and Unitarity Triangle

Quarks and leptons of different generations can mix interacting with W-boson

Two generations

$$(\bar{u} \ \bar{c}) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} W \begin{pmatrix} d \\ s \end{pmatrix}$$

Mixing matrix

Three generations

$$K = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Two important properties

- 1. CP-violation due to a complex phase δ !
- 2. Unitarity triangle

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$\Rightarrow V_{ub}^{*} + V_{td} = S_{12}V_{cb}^{*}$$

The Unitarity Triangle: all constraints

A consistent picture across a huge array of measurements

Unitarity Triangle measurements

∆m_d 1.0 $\Delta m_d \& \Delta m_s$ sin 2B 0.5 Ц 0.0 α -0.5 ⊢ α -1.0 CKM fitter 20 -0.5 0.5 1.0 1.5 0.0 2.0 $\overline{\rho}$

Amazing progress in the last 27 years; the SM remains intact, but a whole lot still to learn <u>http://ckmfitter.in2p3.fr</u>

Now (dominated by LHCb)

Mass spectrum and Mixing angles

• Mass spectrum?

$$\begin{split} m_{quark} &= y_{quark} \cdot v \\ m_{lepton} &= y_{lepton} \cdot v \\ m_W &= g/\sqrt{2} \cdot v \\ m_W &= g/\sqrt{2} \cdot v \\ m_Z &= \sqrt{g^2 + g'^2}/\sqrt{2} \cdot v \\ M_H &= \sqrt{\lambda} \cdot v \\ \mathbf{SM} & m_\gamma &= 0 \\ m_{gluon} &= 0 \end{split}$$

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

Mass spectrum and Mixing angles

• Mass spectrum?

$$\begin{split} m_{quark} &= y_{quark} \cdot v \\ m_{lepton} &= y_{lepton} \cdot v \\ m_W &= g/\sqrt{2} \cdot v \\ m_W &= g/\sqrt{2} \cdot v \\ m_Z &= \sqrt{g^2 + g'^2}/\sqrt{2} \cdot v \\ m_H &= \sqrt{\lambda} \cdot v \\ \mathbf{M}_H &= \sqrt{\lambda} \cdot v \\ \mathbf{M}_H &= \sqrt{\lambda} \cdot v \\ \mathbf{M}_H &= 0 \\ m_{gluon} &= 0 \\ \end{split}$$

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

What are the CKM and PMNS phases?
Where lies the source of CP violation: in quark or lepton sector?

Mass spectrum and Mixing angles

1

• Mass spectrum?

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

What are the CKM and PMNS phases?
Where lies the source of CP violation: in quark or lepton sector?

$$J_{CP} = \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$$

Calcultion of Theoretical Predictions in HEP

•Choose a process and estimate the required precision => number of loops and legs

.Generate (or draw) Feynman diagrams: from a few to many thousands

.E.g., Mathematica package FeynArts is widely used

 Perform algebraic evaluation and reduce the problem to calculation of so-called master integrals, e.g., by LiteRed package.

 Compute those master integrals either analytically or numerically. There are many advanced methods...

 Perform renormalization, take care on infrared singularities and matching to non-perturbative effects

 Collect all components and get the analytic result for completely differential cross section, e.g., distribution of the reaction products in energy, momenta, and spin.

Create a Monte Carlo event generator to simulate the distribution. Pass it to the colleagues from an experiment

Theoretical Codes for HEP Experiments

Theoretical Codes for HEP experiments

.General, e.g., Pythia, HERWIG and CompHEP: many processes and effects but limited precision

 Tree-level calculations + universal non-perturbative effects like hadronic vacuum polarization, PDFs, and parton showers

.Specific (dedicated), e.g., MC@NLO and POWHEG: a few processes but higher precision due inclusion of higher order radiative corrections

•At least 1-loop (NLO, NNLO etc.) calculations + advanced treatment of nonperturbative effects relevant for the given set of processes

•The codes are used for experimental data simulation **in chains**, so their input and output meet certain standards. E.g., events are generated by one Monte Carlo generator and then processed by the PHOTOS code to simulate multiple photon radiation

Progress of Theoretical Calculations

Example: diagrams generated by CalcHEP

CalcHEP: from Feynman rules to distributions

Resulting M_{bb} and M_{Wtb} kinematical distributions

Using a chain of Programs

Using a chain of programs:

an example on electron loop contributions to g-2 of muon

Step 1. Generate 4-loop QED Feynman diagrams by QGRAF code [Nogueira]
Step 2. Read the diagrams: a bridge between QGRAF and exp [Harlander, Seidensticker, Steinhauser]
Step 3. exp/asy/in hause: asymptotic expansion with mass hierarchy m_e << m_\mu [Harlander, Seidensticker, Steinhauser]/ [Pak, Smirnov; Jantzen, Smirnov, Smirnov]
Step 4. FORM: calculations of diagrams [Vermaseren]
Step 5. FIRE/Crusher: reduction to master integrals [Smirnov]/[Marquard, Seidel]
Step 6. FIESTA: evaluation of master integrals [Smirnov]
Step 7. See a numerical agreement with Kinoshita's results.

*The names of computer codes are in blue. Their authors are given in square brackets.

[A. Kurz, P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. D 93 (2016) 5, 053017]

QED Diagrams for g-2 of muon

All S Z__________(15) \sim (19) (17) (22) (21) 6 (23) (25) (28) man man (27) E Trad cpre hay had ma (47) (46) (44) A{ / / / (55) <u>____</u> <u>7</u>____ \sum ۲<u>(72)</u>

QED Diagrams for g-2 of muon

Two-loop diags

Three-loop diags

loops

(3) (5) Æ ۲ (15) Δ Around (IS) (17) (19) (21) (22) Q (23) front -(28) man (27) E Trad (25) ha ha i ford ent. ma (46) A{~<u>}</u> { /~~~~ /~ (55) (....)

Progress of Theoretical Calculations

Inclusive Higgs : an example of precision

THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

ATLAS+CMS Preliminary LHClopWG	m _{top} summary, f s = 7-13 TeV	September 2017
stat	total stat	
total uncertainty	m _{ten} ± total (stat ± syst)	S Ref.
ATLAS, I+jets (*)	172.31±1.55 (0.75±1.35)	7 TeV [1]
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013) UHC top WG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [11]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS, I+jets	172.08 ± 0.91 (0.38 ± 0.82)	8 TeV [13]
ATLAS comb. (Sep 2017) HTH	172.51 ± 0.50 (0.27 ± 0.42)	7+8 TeV [13]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [14]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62) AB-CONF-2013-665 IT 07 0701-1603.4627 AB-CONF-2013-677 IT Eur Phys.J. C75 (2016) 250 9 1 (2012) 165 IV (2016) 150	13 TeV [16] [13] ATLAS-CONF-3017-011 [14] Phys.Rev Dispersion [15] EPJC 17 (2017) 254
() Supersected by results (4 fax shown below the line (4 an	Phys. J.C72 (2012) 2012 Phys. J.C74 (2014) 2256 1117 Phys. Lett. B781 (2014) 350 A&-COM-2015-102 122 arXiv:1712.01546	Did CHE-PAG-TOP-12-667
165 170 17	5 180	185

Extraordinary agreement between measurements and SM predictions

The Triumph of the Standard Model

THE PROBLEMS

Quantum corrections can make the vacuum unstable

- the whole construction of t trouble being metastable o
- the situation crucially depest top and Higgs mass values a severe fine-tuning and accu

THE PROBLEMS

Quantum corrections can make the vacuum unstable

- the whole construction of t trouble being metastable or
- the situation crucially depest top and Higgs mass values a severe fine-tuning and accu

THE PROBLEMS

Quantum corrections can make the vacuum unstable

- the whole construction of t trouble being metastable or
- the situation crucially depest top and Higgs mass values a severe fine-tuning and accu

THE PROBLEMS

Quantum corrections can make the vacuum unstable

- the whole construction of t trouble being metastable or
- the situation crucially depest top and Higgs mass values a severe fine-tuning and accu

140

THE PROBLEMS

Quantum corrections can make the vacuum unstable

- the whole construction of t trouble being metastable or
- the situation crucially depest top and Higgs mass values a severe fine-tuning and accu

The way out might be the new physics at higher scale

- With the Higgs Boson discovery the Standard Model is completed !
- Why are we not satisfied and think that new physics exists and new discoveries will come?

- With the Higgs Boson discovery the Standard Model is completed !
- Why are we not satisfied and think that new physics exists and new discoveries will come?

- There are conceptional problems which require a critical view beyond the SM
- There are small discrepancies which might grow up to become a problem for the SM
- It is hard to believe that the quest for the miracle of Nature is over

New particles and Interactions

very of the Higgs Boson

H

Η

CERN, Large Hadron Collider, 2012

Higgs Sector CERN, at Hadron Collider

Decay modes

Higgs bosons - entering precision era

Run-2 analyses with 80 fb⁻¹ for the first time – higher precision is coming!

Is it the SM Higgs boson or not? What are the alternatives?

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension
 - Perform direct search for additional scalars

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

EXTENDED HIGGS SECTOR

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Perform direct search for additional scalars

The mass spectrum of the Higgs bosons (GeV) H⁺ H₃ **700**→ h 120→ **MSSM NMSSM** SM

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

EXTENDED HIGGS SECTOR

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Perform direct search for additional scalars

Is it the SM Higgs boson or not? What are the alternatives?

How to probe?

 Probe deviations from the SM Higgs couplings

- The Higgs physics has already started
- This is the task of vital importance.
- May require the electron-positron collider

EXTENDED HIGGS SECTOR

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Perform direct search for additional scalars

PRECISION PHYSICS OF THE HIGGS BOSONS

EXTRA HIGGS BOSONS

The Higgs potential - test of the SM

Higgs self coupling [Meade]

Snowmass EF Higgs Topical Report 2209.07510

> -3.5 - 11.3 -2.3 - 9.4 -2.4 - 9.2

-2.0 - 9.0

ATLAS

ATLAS

ATLAS

CMS ATLAS CMS

If the questions center on the Higgs, do we need to do more than sit back and wait for more data for more precision (or a Higgs factory)?

Search for DiHiggs in bbyy

H/T N.Craig, R. Petrossian-Byrne

When do we really care about non-resonant di-Higgs (λ_3) for its own sake?

Interesting to think about in more general setups beyond singlet, e.g. composite Higgs

40

See G. Durieux et al, 2110.06941 for recent extensions

Neutrino-misterious particle

Neutrino Sector Neutrino is created in the process of weak decays of hadrons

 $n(udd) \rightarrow p(uud) + e + \bar{\nu}$

Neutrino

- Has no electric chartge
- Do not participate in electromagnetic interactions
- Do not participate in strong interactions ullet
- Participate in weak interactions •
- Interact with the Higggs field \bullet
- Has a very small (< 1 ev) mass •

Non-zero neutrino mass follows from the observation of neutrino oscillations

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{\alpha\beta}^2 L}{4E}\right)$$

Neutrino-misterious particle

Neutrino masses

Is neutrino an antiparticle to itself?

$$\nu_{D} = \begin{pmatrix} \nu_{L} \\ \nu_{R} \end{pmatrix} \quad \nu_{M_{1}} = \begin{pmatrix} \xi_{1} \\ \xi_{1}^{*} \end{pmatrix}, \quad \nu_{M_{2}} = \begin{pmatrix} \xi_{2} \\ \xi_{2}^{*} \end{pmatrix}$$

$$\nu_{D} \neq \nu_{D}^{*}$$

$$m_{\nu_{L}} = m_{\nu_{R}}$$

$$\nu_{M} = \nu_{M}^{*}$$

$$m_{\nu_{M_{1}}} \neq m_{\nu_{M_{2}}}$$

$$\frac{\rho_{M}}{\rho_{M_{1}}} \neq m_{\nu_{M_{2}}}$$

$$\frac{\rho_{M}}{\rho_{M_{1}}} \neq m_{\nu_{M_{2}}}$$

$$\frac{\rho_{M}}{\rho_{M_{1}}} \neq m_{\nu_{M_{2}}}$$

ed coaxi ral coaxi

Is neutrino an antiparticle to itself?

Precision Neutrino Physics

Current knowledge and open questions

precise measurements test the 3-flavor paradigm

Not covered by this talk: direct mass measurements, Dirac/Majorana nature of neutrinos, origin of masses and mixing

©P.Denton

Beyond the Standard Model

IS THERE ANOTHER SCALE EXCEPT FOR EW AND PLANK?

Search for New Physics

Still plenty of room for new discoveries : two main scenarios

Search for (and find) new states
 Resonance needs "descriptive" TH

Most likely look for "new interactions" Small deviations from SM : PRECISION EFT description / BSM model

- Extension of symmetry group of the SM : SUSY, GUT, new U(1)'s
- -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle

- Extension of <u>symmetry</u> group of the SM : SUSY, GUT, new U(1)'s
 - -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle
- Additional <u>particles</u>: Extra generations, extra gauge bosons, extra Higgs bosons, extra neutrinos, etc
 - -> may solve the problem of stability, DM

- Extension of <u>symmetry</u> group of the SM : SUSY, GUT, new U(1)'s
 - -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle
- Additional <u>particles</u>: Extra generations, extra gauge bosons, extra Higgs bosons, extra neutrinos, etc
 - -> may solve the problem of stability, DM
- Extra <u>dimensions</u>: Compact or flat extra dim
 -> Opens a whole new world of possibilities, may solve the problem of stability and the hierarchy problem, gives new insight into gravity

- Extension of <u>symmetry</u> group of the SM : SUSY, GUT, new U(1)'s
 - -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle
- Additional <u>particles</u>: Extra generations, extra gauge bosons, extra Higgs bosons, extra neutrinos, etc
 - -> may solve the problem of stability, DM
- Extra <u>dimensions</u>: Compact or flat extra dim -> Opens a whole new world of possibilities, may solve the problem of stability and the hierarchy problem, gives new insight into gravity
- New <u>paradigm</u> beyond local QFT: string theory, brane world, etc
 -> main task is unification with gravity and construction of quantum gravity

NEW SYMMETRIES

SUPERSYMMETRY

Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

$$[P_{\mu}, P_{\nu}] = 0,$$

$$[P_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}P_{\sigma} - g_{\mu\sigma}P_{\rho}),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(g_{\nu\rho}M_{\mu\sigma} - g_{\nu\sigma}M_{\mu\rho} - g_{\mu\rho}M_{\nu\sigma} + g_{\mu\sigma}M_{\nu\rho})$$

Super Poincare Algebra $Q_i, \ \bar{Q}_i$

$$\begin{split} & [Q_{\alpha}^{i}, P_{\mu}] = [\bar{Q}_{\dot{\alpha}}^{i}, P_{\mu}] = 0, \\ & [Q_{\alpha}^{i}, M_{\mu\nu}] = \frac{1}{2} (\sigma_{\mu\nu})_{\alpha}^{\beta} Q_{\beta}^{i}, \qquad [\bar{Q}_{\dot{\alpha}}^{i}, M_{\mu\nu}] = -\frac{1}{2} \bar{Q}_{\dot{\beta}}^{i} (\bar{\sigma}_{\mu\nu})_{\dot{\alpha}}^{\dot{\beta}}, \\ & \{Q_{\alpha}^{i}, \bar{Q}_{\dot{\beta}}^{j}\} = 2\delta^{ij} (\sigma^{\mu})_{\alpha\dot{\beta}} P_{\mu}, \\ & \{Q_{\alpha}^{i}, Q_{\beta}^{j}\} = 2\epsilon_{\alpha\beta} Z^{ij}, \qquad Z^{ij} = Z_{ij}^{+}, \\ & \{\bar{Q}_{\dot{\alpha}}^{i}, \bar{Q}_{\dot{\beta}}^{j}\} = -2\epsilon_{\dot{\alpha}\dot{\beta}} Z^{ij}, \qquad [Z_{ij}, anything] = 0, \\ & \alpha, \dot{\alpha} = 1, 2 \qquad i, j = 1, 2, \dots, N. \end{split}$$

NEW SYMMETRIES

SUPERSYMMETRY

Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

$$[P_{\mu}, P_{\nu}] = 0,$$

$$[P_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}P_{\sigma} - g_{\mu\sigma}P_{\rho}),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(g_{\nu\rho}M_{\mu\sigma} - g_{\nu\sigma}M_{\mu\rho} - g_{\mu\rho}M_{\nu\sigma} + g_{\mu\sigma}M_{\nu\rho})$$

Super Poincare Algebra $Q_i, \ \bar{Q}_i$

$$\begin{split} &[Q_{\alpha}^{i}, P_{\mu}] = [\bar{Q}_{\dot{\alpha}}^{i}, P_{\mu}] = 0, \\ &[Q_{\alpha}^{i}, M_{\mu\nu}] = \frac{1}{2} (\sigma_{\mu\nu})_{\alpha}^{\beta} Q_{\beta}^{i}, \qquad [\bar{Q}_{\dot{\alpha}}^{i}, M_{\mu\nu}] = -\frac{1}{2} \bar{Q}_{\dot{\beta}}^{i} (\bar{\sigma}_{\mu\nu})_{\dot{\alpha}}^{\dot{\beta}}, \\ &\{Q_{\alpha}^{i}, \bar{Q}_{\beta}^{j}\} = 2\delta^{ij} (\sigma^{\mu})_{\alpha\beta} P_{\mu} \\ &\{Q_{\alpha}^{i}, Q_{\beta}^{j}\} = 2\epsilon_{\alpha\beta} Z^{ij}, \qquad Z^{ij} = Z_{ij}^{+}, \\ &\{\bar{Q}_{\dot{\alpha}}^{i}, \bar{Q}_{\dot{\beta}}^{j}\} = -2\epsilon_{\dot{\alpha}\dot{\beta}} Z^{ij}, \qquad [Z_{ij}, anything] = 0, \\ &\alpha, \dot{\alpha} = 1, 2 \qquad i, j = 1, 2, \dots, N. \end{split}$$

SUSY MULTIPLETS

Chiral multiplet N = 1, $\lambda = 0$ We ctor multiplet N = 1, $\lambda = 1/2$ N = 1, $\lambda = 1/2$ N = 1, $\lambda = 1/2$ $\lambda = 1/2$ $\lambda = 1/$

spinor vector

68
SUSY MULTIPLETS

Chiral multiplet N = 1, $\lambda = 0$ We ctor multiplet N = 1, $\lambda = 1/2$ N = 1, $\lambda = 1/2$ N = 1, $\lambda = 1/2$ $\lambda = 1/2$ $\lambda = 1/$

68

Members of a supermultiplet are called superpartners

SUSY MULTIPLETS

Chiral multiplet $N = 1, \ \lambda = 0$

Vector multiplet $N = 1, \lambda = 1/2$

helicity
 -1/2
 0
 1/2
 scalar
 spinor

 # of states
 1
 2
 1

$$(\phi, \psi)$$
 (ϕ, ψ)

 helicity
 -1 - 1/2
 1/2
 1
 (λ, A_{μ})

 # of states
 1
 1
 1
 1

spinor vector

Members of a supermultiplet are called superpartners

Extended supersymmetry

N=4	SUSY YM	helicity	-1 -1/2 0 1/2 1
	λ = -1	# of states	1 4 6 4 1
N=8	SUGRA	helicity	-2 -3/2 -1 -1/2 0 1/2 1 3/2 2
	λ = -2	# of states	1 8 28 56 70 56 28 8 1

SUSY MULTIPLETS

Chiral multiplet $N = 1, \ \lambda = 0$

Vector multiplet $N = 1, \lambda = 1/2$

helicity
 -1/2
 0
 1/2
 scalar
 spinor

 # of states
 1
 2
 1

$$(\varphi, \psi)$$
 (φ, ψ)

 helicity
 -1 - 1/2
 1/2
 1
 (λ, A_{μ})

 # of states
 1
 1
 1
 1

spinor vector

Members of a supermultiplet are called superpartners

Extended supersymmetry

N=4	SUSY YM	helicity	-1 -1/2 0 1/2 1
	λ = -1	# of states	1 4 6 4 1
N=8	SUGRA	helicity	-2 -3/2 -1 -1/2 0 1/2 1 3/2 2
	λ = -2	# of states	1 8 28 56 70 56 28 8 1

$$N \leq 4S$$
 — spin

 $N \le 4$ For renormalizable theories (YM)

 $N \le 8$ For (super)gravity

Bosons and Fermions come in pairs

Supersymmetry is a dream of a unified theory of all particles and interactions

Standard particles

Standard particles

SUSY particles

Supersymmetry is a dream of a unified theory of all particles and interactions

Standard particles

Standard particles

SUPERSYMMETRY

SUSY particles

Why SUSY?

- Unification with gravity!
- Unification of the gauge couplings
- $\frac{1}{2}$ Solution of the hierarchy problem
- Explanation of the EW symmetry violation
- Provided the DM particle

Supersymmetry is a dream of a unified theory of all particles and interactions

Standard particles

SUPERSYMMETRY

Standard particles

SUSY particles

Unification with gravity!

- Unification of the gauge couplings
- Solution of the hierarchy problem
- Explanation of the EW symmetry violation
- Provided the DM particle

Unification with gravity!

$$\{Q_{\alpha}^{i}, \overline{Q}_{\beta}^{j}\} = 2\delta^{ij}(\sigma^{\mu})_{\alpha\beta}P_{\mu} \implies \{\delta_{\varepsilon}, \overline{\delta}_{\overline{\varepsilon}}\} = 2(\varepsilon\sigma^{\mu}\overline{\varepsilon})P_{\mu}$$

$$\varepsilon = \varepsilon(x) \text{ local coordinate transf.} \implies (\text{super})\text{gravity}$$

Local supersymmetry = general relativity !

Supersymmetry is a dream of a unified theory of all particles and interactions

71

Why SUSY?

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

Unification of the gauge couplings

The basis of a grand Unified Theory

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

Unification of the gauge couplings

The basis of a grand Unified Theory

Solution of the hierarchy problem

Cancellations of corrections and stabilization of the Higgs potential

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

Unification of the gauge couplings

The basis of a grand Unified Theory

$\stackrel{\bigcirc}{\Rightarrow}$ Solution of the hierarchy problem

Cancellations of corrections and stabilization of the Higgs potential

Explanation of the EW symmetry violation

Violation of symmetry comes from radiative corrections

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

The basis of a grand Unified Theory

Solution of the hierarchy problem

Cancellations of corrections and stabilization of the Higgs potential

$\stackrel{\bigcirc}{\Rightarrow}$ Explanation of the EW symmetry violation

Provided the DM particle

$$\widetilde{\chi}^{0} = N_{1}\widetilde{\gamma} + N_{2}\widetilde{z} + N_{3}\widetilde{H}_{1}^{0} + N_{4}\widetilde{H}_{2}^{0}$$

Neutralino=DM

Violation of symmetry comes from radiative corrections

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge					
$\mathbf{G}^{\mathbf{a}}$	gluon g^a	gluino $ ilde{g}^a$	8	0	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino \tilde{w}^k $(\tilde{w}^{\pm}, \tilde{z})$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $ ilde{b}(ilde{\gamma})$	1	1	0
Matter					
$\mathbf{L_i}$	$\tilde{L}_i = (\tilde{\nu}, \tilde{e})_L$	$\int L_i = (\nu, e)_L$	1	2	-1
$\mathbf{E_i}$	sleptons $\langle \tilde{E}_i = \tilde{e}_R$	leptons $\langle E_i = e_R$	1	1	2
$\mathbf{N_{i}}$	$\tilde{N}_i = \tilde{\nu}_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$\int Q_i = (u,d)_L$	3	2	1/3
$\mathbf{U_i}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
$\mathbf{D_i}$	$\tilde{D}_i = \tilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
${ m H_1}$	H_1	himmines $\int \tilde{H}_1$	1	2	-1
H_2	$111ggses \left(H_2 \right)$	\tilde{H}_2	1	2	1

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge		$gluino \tilde{g}^a$			
G^{a}	gluon g^a	$\cdot \cdot $	8	0	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino $w^{-}(w^{-}, z)$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter					
$\mathbf{L_i}$	$(\tilde{L}_i = (\tilde{\nu}, \tilde{e})_L$	$\int L_i = (\nu, e)_L$	1	2	-1
$\mathbf{E_i}$	sleptons $\{ \tilde{E}_i = \tilde{e}_R \}$	leptons $\langle E_i = e_R$	1	1	2
$\mathbf{N_{i}}$	$\tilde{N}_i = \tilde{\nu}_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$Q_i = (u, d)_L$	3	2	1/3
$\mathbf{U_i}$	squarks $\{ \tilde{U}_i = \tilde{u}_R \}$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
$\mathbf{D_i}$	$\tilde{D}_i = \tilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
${ m H_1}$	$\mathbf{H}_{\mathbf{H}_1}$	higgsinos $\int \tilde{H}_1$	1	2	-1
${ m H_2}$	Inggses $\begin{pmatrix} H_2 \end{pmatrix}$	\tilde{H}_2	1	2	1

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge		gluino $\tilde{\mathbf{g}}^{a}$			
$\mathbf{G}^{\mathbf{a}}$	gluon g^a	$\cdot \cdot $	8	0	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino $w^{*}(w, z)$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter	\simeq				
$\mathbf{L_i}$	$ \begin{array}{c} L_i = (\tilde{\nu}, \tilde{e})_L \\ \tilde{\nu} & \tilde{\nu} \end{array} $	$(L_i = (\nu, e)_L)$	1	2	-1
$\mathbf{E_i}$	sleptons $\left\{ \begin{array}{c} E_i = e_R \\ \tilde{N} & \tilde{C} \end{array} \right\}$	leptons $\langle E_i = e_R \rangle$	1	1	2
$\mathbf{N_{i}}$	$\nabla_i = \nu_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$ Q_i = (u,d)_L $	3	2	1/3
${ m U_i}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
$\mathbf{D_i}$	$ ilde{D}_i = ilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
H_{1}	H_{1}	himmines $\int \tilde{H}_1$	1	2	-1
H_2	niggses $\int H_2$	\tilde{H}_2	1	2	1

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge		gluino $\tilde{\mathbf{g}}^{a}$			
$\mathbf{G}^{\mathbf{a}}$	gluon g^a	\sim $\sim k \qquad \sim \pm \sim$	8	0	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino $w^{*}(w^{-}, z)$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter	~				
$\mathbf{L_i}$	$ \begin{array}{c} L_i = (\tilde{\nu}, \tilde{e})_L \\ \tilde{r} & \tilde{r} \end{array} $	$(L_i = (\nu, e)_L)$	1	2	-1
$\mathbf{E_i}$	sleptons $\begin{cases} E_i = e_R \\ \tilde{N} = \tilde{c} \end{cases}$	leptons $\langle E_i = e_R \rangle$	1	1	2
$\mathbf{N_i}$	$\nabla_i = \nu_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$\int Q_i = (u,d)_L$	3	2	1/3
$\mathbf{U_i}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
$\mathbf{D_i}$	$ ilde{D}_i = ilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
${ m H_1}$	H_1	himmin of $\tilde{\tilde{H}}_1$	1	2	-1
${ m H_2}$	$\Pi ggses \left\{ H_2 \right\}$	$\operatorname{Higgsinos} \left\{ \widetilde{H}_{2} \right\}$	1	2	1

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge G ^a V ^k V'	gluon g^a Weak W^k (W^{\pm}, Z) Hypercharge $B(\gamma)$	gluino \tilde{g}^{a} wino, zino $\tilde{w}^{k}(\tilde{w}^{\pm}, \tilde{z})$ bino $\tilde{b}(\tilde{v})$	8 1 1	0 3 1	0 0 0
Matter			T	I	0
$\begin{array}{c} \mathbf{L_i} \\ \mathbf{E_i} \\ \mathbf{N_i} \\ \mathbf{Q_i} \\ \mathbf{U_i} \\ \mathbf{D_i} \end{array}$	sleptons $\begin{cases} \tilde{L}_{i} = (\tilde{\nu}, \tilde{e})_{L} \\ \tilde{E}_{i} = \tilde{e}_{R} \\ \tilde{N}_{i} = \tilde{\nu}_{R} \end{cases}$ squarks $\begin{cases} \tilde{Q}_{i} = (\tilde{u}, \tilde{d})_{L} \\ \tilde{U}_{i} = \tilde{u}_{R} \\ \tilde{D}_{i} = \tilde{d}_{R} \end{cases}$	leptons $\begin{cases} L_i = (\nu, e)_L \\ E_i = e_R \\ N_i = \nu_R \end{cases}$ quarks $\begin{cases} Q_i = (u, d)_L \\ U_i = u_R^c \\ D_i = d_R^c \end{cases}$	$egin{array}{cccc} 1 \\ 1 \\ 1 \\ 3 \\ 3^* \\ 3^* \end{array}$	2 1 1 2 1 1	$-1 \\ 2 \\ 0 \\ 1/3 \\ -4/3 \\ 2/3$
Higgs					
$\mathrm{H_1}\ \mathrm{H_2}$	Higgses $\begin{cases} H_1 \\ H_2 \end{cases}$	higgsinos $\begin{cases} \tilde{H}_1 \\ \tilde{H}_2 \end{cases}$	1 1	$2 \\ 2$	-1 1
S	Singlet s	singlino s	1	1	0

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge		gluino g̃ ^a			
$\mathbf{G}^{\mathbf{a}}$	gluon g^a	$\sim k (2 \pm 2)$	8	0	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino $w(w, z)$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter	~				
$\mathbf{L_i}$	$ \begin{bmatrix} L_i = (\tilde{\nu}, \tilde{e})_L \\ \tilde{\nu} & \tilde{e} \end{bmatrix} $	$\int L_i = (\nu, e)_L$	1	2	-1
$\mathbf{E_i}$	sleptons $\left\{ \begin{array}{c} E_i = e_R \\ \tilde{N} & \tilde{C} \end{array} \right\}$	leptons $\langle E_i = e_R$	1	1	2
$\mathbf{N_{i}}$	$N_i = \nu_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$Q_i = (u,d)_L$	3	2	1/3
$\mathrm{U_{i}}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
$\mathbf{D_i}$	$\widetilde{D}_i = \widetilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
${ m H_1}$	H_{i}	higginog $\int \tilde{H_1}$	1	2	-1
H_2	$111ggses \ \ H_2$	$111ggS1110S \ \tilde{H}_2$	W2.	2	1
S	Singlet s	singlino s	1	1	0

THE R-PARITY

B - Baryon Number L - Lepton Number S - Spin

The Usual Particle : R = + 1SUSY Particle : R = -1

THE R-PARITY

SUSY Particle :

The Usual Particle : R = + 1

R = -1

B - Baryon Number L - Lepton Number S - Spin

The consequences:

 $R = (-)^{3(B-L)+2S}$

- The superpartners are created in pairs
- The lightest superparticle is stable

THE R-PARITY

SUSY Particle :

The Usual Particle : R = + 1

 χ_0

R = -1

B - Baryon Number L - Lepton Number S - Spin

The consequences:

 $R = (-)^{3(B-L)+2S}$

The superpartners are created in pairsThe lightest superparticle is stable

- The lightest superparticle (LSP) should be neutral - the best candidate is neutralino (photino or higgsino)
 It can survive from the Big Bang and
- form the Dark matter in the Universe

THE DECAY OF SUPERPARTNERS

squarks $\tilde{q}_{L,R} \rightarrow q + \chi_i^{\sim 0}$ $\tilde{q}_L \rightarrow q' + \chi_i^{\pm}$ $\tilde{q}_{L.R} \rightarrow q + g$ $\tilde{l} \rightarrow l + \tilde{\chi}_{:}^{0}$ sleptons $\tilde{l}_L \rightarrow v_I + \chi_I^{\pm}$ Final states neutralino chargino $\widetilde{\chi}_{i}^{\pm} \rightarrow e + v_{e} + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + l^{+} + l^{-}$ $\widetilde{\chi}_{i}^{\pm} \rightarrow q + \overline{q}' + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + q + \overline{q}'$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{\pm} + l^{\pm} + v_{l}$ $g \rightarrow q + \overline{q} + \overline{\gamma}$ gluino $\gamma + \not E_{\tau}$ $\tilde{g} \rightarrow g + \tilde{\gamma}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + v_{l} + v_{l}$ \mathbf{F}_{T}

SOFT SUSY BREAKING

Breaking via F and D terms in a hidden sector

SOFT SUSY BREAKING

Breaking via F and D terms in a hidden sector

$$-L_{Soft} = \sum_{\alpha} M_i \widetilde{\lambda}_i \widetilde{\lambda}_i + \sum_i m_{0i}^2 |A_i|^2 + \sum_{ijk} A_{ijk} A_i A_j A_k + \sum_{ij} B_{ij} A_i A_j$$

gauginos scalar fields

SOFT SUSY BREAKING

$$-L_{Soft} = \sum_{\alpha} M_i \widetilde{\lambda}_i \widetilde{\lambda}_i + \sum_i m_{0i}^2 |A_i|^2 + \sum_{ijk} A_{ijk} A_i A_j A_k + \sum_{ij} B_{ij} A_i A_j$$

gauginos scalar fields

Over 100 of free parameters !

SUSY Models and Signatures

SUSY Models and Signatures

Direct production at colliders at high energies

particle physic Indirect manifestation at low energies Rare decays ($B_s \to s\gamma, B_s \to \mu^+\mu^-, B_s \to \gamma\nu$ g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe DM annihilation signal in cosmic rays Direct DM interaction with nucleons
Direct production at colliders at high energies

particle physic Indirect manifestation at low energies Rare decays ($B_s \to s\gamma, B_s \to \mu^+ \mu^-, B_s \to \gamma \nu$ g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe DM annihilation signal in cosmic rays Direct DM interaction with nucleons

Nothing so far ...

WHAT IS THE LHC REACH NOW?

WHAT IS THE LHC REACH NOW?

Universal parameters

WHAT IS THE LHC REACH NOW?

Universal parameters

SUPERSYMMETRY @ LHC

- SUSY limits for strong int's are pushed above I TeV
- This already requires fine tuning - little hierarchy prob
- No guiding lines

RECENT LHC LIMITS ON MSSM '23 82

RUN2 LHC limits om MSSM, ATLAS&CMS

RUN2 LHC LIMITS ON GMSB MSSM, CMS

83

2HDM AND HMSSM LIMITS, RUN2

2HDM hMSSM combined results, RUN2

Much more details see in a talk by <u>Adam Bailey</u> (+ comprehensive list of analyses for ATLAS & CMS)

SUPERSYMMETRY @ LHC

Chargino / neutralino production

Direct production of "electroweakino" pairs

- decays via sleptons / sneutrinos
- using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

No light EWkinos

85

 χ_1^{\perp}

ATLAS AND CMS LIMITS 2023

Sp. 2+-eff D c. y 2 de y <th2 de="" th="" y<=""> <th2 de="" th="" y<=""> <th2 de="" th="" y<=""><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th><u> </u></th><th></th><th></th><th></th><th><u> </u></th><th></th></th2></th2></th2>							1	<u> </u>				<u> </u>	
BL with T C / 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	ŝ	$\bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_1^0$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	140 140	<pre>q [1x, 8x Degen.] q [8x Degen.]</pre>		1.0 0.9		1.85	m(\tilde{k}_{1}^{0})≤400 GeV m(\tilde{q})-m(\tilde{k}_{1}^{0})=5 GeV	2010.14293 2102.10874
Sol BB μ-qw/r ² BB 1 μ μ 2 μ m ² / ₁ μ	lusive Searche	§§, $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$	0 e, µ	2-6 jets	$E_T^{\rm miss}$	140	R R		Forbidden	1	2.3	m(\tilde{k}_{1}^{0})=0 GeV m(\tilde{k}_{1}^{0})=1000 GeV	2010.14293 2010.14293
No.5 Control		$gg, g \rightarrow qqW \tilde{\chi}_1^0$	1 е, µ ее, µµ	2-6 jets 2 iets	r miss	140	ĝ a				2.2	m(\bar{k}_{1}^{0})<600 GeV	2101.01629
$ \frac{39}{4} = \frac{3}{2} \frac{9}{4} \frac{1}{2} $		$gg, g \rightarrow qqWZ\tilde{\chi}_1^0$	0 ε,μ SS ε,μ	7-11 jets 6 jets	E_T^{miss}	140	in a second seco		1	.15	1.97	m(k1)<700 GeV m(k1)<600 GeV	2008.06032 2307.01094
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Inc	§§, $\tilde{g} \rightarrow \tilde{u} \tilde{\chi}_1^0$	0-1 ε,μ SS ε,μ	3 b 6 jets	$E_T^{\rm miss}$	140 140	R R			1.25	2.45	m(x) m(x1)=200 GeV m(x1)<500 GeV m(x1)=300 GeV	2211.08028 1909.08457
$\frac{1}{2} \frac{1}{2} \frac{1}$		$b_{1}b_{1}$	0 e,µ	2 b	$E_T^{\rm miss}$	140	b ₁ b ₁		0.68	1.255		m(x ⁰ ₁)<400 GeV 10 GeV<Δm(b ₁ ,x ⁰)<20 GeV	2101.12527 2101.12527
$ \frac{1}{2} = 1$	squarks oduction	$b_1b_1, b_1 \rightarrow b\tilde{\chi}^0_2 \rightarrow bh\tilde{\chi}^0_1$	0 ε,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	140 140	δ ₁ Forbidden	1	0.13-0.85	.23-1.35	Δm($\tilde{k}_{2}^{0}, \tilde{k}_{2}^{0}, \tilde{k}_{2}^{0$	${}^{(0)}_{1} = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ ${}^{(0)}_{2}, \tilde{\chi}_{1}^{0} = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array}} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 e, µ	≥ 1 jet 2 iste/t h	ET ET	140	ī ₁	Fact it is	1.05	1.25		m(\tilde{t}_1^0)-1 GeV	2004.14060, 2012.03799
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	' g	$I_1I_1, I_1 \rightarrow WB\ell_1$	1.2 -	2 jote/1 h	ET Emiss	140	7	Forbidden	Fashiddan			m(t)=500 GeV	2012.03799, ALEAS-CONF-2023-043
$\frac{i_{1}^{2}i_{1}^{2}i_{2}^{2}-i_{1}^{2}i_{2}^{2}}{i_{2}^{2}i_{1}^{2}i_{1}^{2}-i_{1}^{2}-i_{2}^{2}} = \frac{1}{2} + 1$	3 ⁴ g	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow \tau_1 \partial v, \tau_1 \rightarrow \tau_0$ $\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e, μ 0 e, μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1	2 2 7	0.5	0.85	1.4		m(t)=0 GeV m(t)=0 GeV	1805.01649 2102.10874
$\frac{1}{2} \int_{0}^{1} \int_{0}^$		$\bar{v}\bar{v}$ $\bar{v} \rightarrow t\bar{v}^0$ $\bar{v}^0 \rightarrow T/b\bar{v}^0$	1-2 e.u	1-4 h	Fmiss	140	h.		0.067-1	1.18		m(k ⁰)-500 CeV	2006 05880
$ \frac{\xi_{1}^{2} \xi_{2}^{2} v_{1} w_{2}}{\xi_{1}^{2} \xi_{1}^{2} w_{1}^{2} \psi_{1}^{2} \psi_{2}^{2} (\xi_{1}^{2} - \xi_{1}^{2} - \xi_{2}^{2} - \xi_{1}^{2} - \xi_{2}^{2} - \xi_{1}^{2} - \xi$		$\tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z$	3 ε,μ	1 b	E_T^{miss}	140	ĩ ₂	Forbidden	0.86		m(\tilde{t}_{1}^{0})=3	$m(\tilde{x}_1)=500 \text{ GeV}$ 60 GeV, $m(\tilde{x}_1)=m(\tilde{x}_1^0)=40 \text{ GeV}$	2006.05880
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple ℓ/jets εε, μμ	a ≥ 1 jet	E_T^{miss} E_T^{miss}	140 140	$ \frac{\tilde{\chi}_{1}^{*}/\tilde{\chi}_{0}^{0}}{\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}} = 0.205 $		0.96		m	$m(\tilde{\chi}_1^0)=0$, wino-bino $(\tilde{\chi}_1^+)-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ţ	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e, µ		E_T^{miss}	140	$\tilde{\chi}_{1}^{*}$	0.42				$m(\tilde{x}_{1}^{0})=0$, wino-bino	1908.08215
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple ℓ/jets	3	E_T^{miss}	140	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}$ Forbidden		1.06	6		$m(\bar{k}_1^0)=70$ GeV, wino-bino	2004.10894, 2108.07586
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{+}$ via $\tilde{\ell}_{L}/\tilde{v}$	2 e, µ		E_T^{max}	140	$\tilde{\chi}_{1}^{*}$		1.0			$m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{\ell}_{1}^{+}) + m(\tilde{\ell}_{1}^{+}))$	1908.08215
$\frac{d}{dt} = \frac{2}{6} \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{1}{4} \frac$	≥ 00	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tilde{t}\tilde{X}_1$	2 τ		$E_{T_{1}}^{mes}$	140	τ [τ _R , τ _{R,L}]	0.34 0.48				$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2023-029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	шŝ	$\tilde{\ell}_{\mathbf{I},\mathbf{R}}\tilde{\ell}_{\mathbf{I},\mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{\circ}$	2 е, µ ее, µµ	0 jets ≥ 1 jet	E_T^{mass} E_T^{mass}	140 140	î î (0.26	0.7			m(\vec{k}_1^0)=0 m($\vec{\ell}$)-m(\vec{k}_1^0)=10 GeV	1908.08215 1911.12606
$\frac{0 \ \epsilon_{,\mu} \ \geq 2 \ \text{large pis} \ E_{T}^{\text{lam}} \ 140}{2 \ \epsilon_{,\mu} \ \geq 2 \ \text{is} \ E_{T}^{\text{lam}} \ 140} \begin{bmatrix} \mu \\ \mu \\ 2 \ \epsilon_{,\mu} \ \geq 2 \ \text{is} \ E_{T}^{\text{lam}} \ 140} \\ \mu \\ \frac{2 \ \epsilon_{,\mu} \ \geq 2 \ \text{is} \ E_{T}^{\text{lam}} \ 140}{\mu} \begin{bmatrix} \mu \\ \mu$		ĤĤ,Ĥ→hĜ/ZĜ	0 e, μ 4 e, μ	≥ 3 <i>b</i> 0 jets	E_T^{miss} E_T^{miss}	140 140	Ĥ H	0.5	0.94			$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	To appear 2103.11684
$\frac{2 \ e, \mu}{k_{1}^{2} \ e_{1}^{2} \ e_{2}^{2} \ e_{2$			$0 e, \mu \ge$	2 large jet	E_T^{fniss}	140	Ĥ		0.45-0.93			$BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	2108.07586
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2 ε,μ	≥ 2 jets	E_T^{max}	140	Ĥ		0.77		BR($\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$)=BR($\tilde{\chi}_1^0 \rightarrow h\tilde{G}$)=0.5	2204.13072
Stable § R-hadron pixel dE/dx E_T^{mis} 140 E_T^{mis} 0.36 $T(E) = 0.1 \text{ fs}$ 2011.07812 2010.0116 2011.0164 2011.0164	٣.	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	E_T^{miss}	140	$\frac{\tilde{\chi}_{1}^{*}}{\tilde{\chi}_{1}^{*}}$ 0.21		0.66			Pure Wino Pure higgsino	2201.02472 2201.02472
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ng-live Inticles	Stable § R-hadron	pixel dE/dx		Emiss	140	Ĩ.				2.05		2205.06013
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Metastable § R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		Emiss	140	$\bar{g} = [\tau(\bar{g}) = 10 \text{ ns}]$				2.2	$m(\tilde{x}_1^0)=100 \text{ GeV}$	2205.06013
$\frac{pixel dE/dx}{k_{T}^{2}} \frac{k_{T}^{2}}{k_{T}^{2}} $	D0	$\ell\ell, \ell \rightarrow \ell G$	Displ. lep		ET	140	ē, µ Ŧ	0.34	0.7			$\tau(\ell) = 0.1 \text{ ns}$ $\tau(\ell) = 0.1 \text{ ns}$	2011.07812 2011.07812
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			pixel dE/dx		E_T^{miss}	140	Ŧ	0.36				$r(\hat{\ell}) = 10 \text{ ns}$	2205.06013
$\frac{\hat{x}_{1}\tilde{x}_{1}\tilde{x}_{2}^{2} \rightarrow WW/Z\ell\ell\ell\ell_{VV}}{\hat{y}_{5}^{2} + qq\bar{q}_{1}^{2}\tilde{x}_{1}^{2} - qq\bar{q}_{1}^{2}\tilde{x}_{1}^{2}\tilde{x}_{1}^{2} - qd\bar{x}_{1}^{2}\tilde{x}_{1}^{2} - q\bar{q}_{1}^{2}\tilde{x}_{1}^{2}\tilde{x}_{1}^{2} - q\bar{q}_{1}^{2}\tilde{x}_{1}^{2}\tilde{x}_{1}^{2}\tilde{x}_{1}^{2} - q\bar{q}_{1}^{2}\tilde{x}_{1}^{2$	RPV	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ	0.:	e min	140	$\tilde{X}_{1}^{\mp}/\tilde{X}_{1}^{0}$ [BR(Z τ)=1, BR(Z τ	e)-1]	0.625 1.05	5	-	Pure Wino	2011.10543
$\frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{1}} = \frac{g_{2}}{g_{2}} = \frac{g_{2}}{g$		$\tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	∪ jets ⊳9 inte	E_T	140	$\chi_1^-/\chi_2^- [\lambda_{133} \neq 0, \lambda_{12k} \neq 0]$)] 	0.95	1.5	5	m(\tilde{t}_{1}^{*})=200 GeV	2103.11684
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$gg, g \rightarrow qqx_1, x_1 \rightarrow qqq$ $\tilde{u} \in \mathcal{K}^0 \times \mathcal{K}^0 \to chr$		≥o jets Multinke		36.1	g [m(x ₁)=50 GeV, 1250 C 1 [λ" =2e-4, 1e-2]	38V]	5 1.05	1	2.25	m(10) - 200 Covy him lite	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$ii, i \to u_1, x_1 \to ibs$ $ii, i \to b \overline{v}^{\pm}, \overline{v}^{\pm}, b hr$		> Ab		140	7	Forbidden	0.05			m(x)=200 GeV, bino-like m(x)=500 GeV	2010 01015
$\frac{1}{1} \tilde{f}_{1}, \tilde{f}_{1} \rightarrow q\ell \qquad 2 e, \mu \qquad 2 b \qquad 36.1 \\ 1 \mu \qquad DV \qquad 136 \qquad \tilde{f}_{1} \qquad 1 e + 10 < \chi_{21k} < 3e - 9] \qquad 0.4 - 1.45 \qquad BR(\tilde{f}_{1} \rightarrow be/b\mu) > 20\% \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs \qquad 1 - 2 e, \mu \qquad \geq 6 \text{ jets} \qquad 140 \qquad \tilde{\ell}_{1} \qquad 1 e - 10 < \chi_{21k} < 3e - 9] \qquad 1.0 \qquad 1.6 \qquad BR(\tilde{f}_{1} \rightarrow be/b\mu) > 20\% \\ \tilde{\chi}_{1}^{0}/\tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs \qquad 1 - 2 e, \mu \qquad \geq 6 \text{ jets} \qquad 140 \qquad \tilde{\ell}_{1} \qquad 0.2 - 0.32 \qquad \qquad Pure higgsino \qquad 2106.09609$		$\tilde{i}_1\tilde{i}_1, \tilde{i}_1 \rightarrow bs$		2 jets + 2 b	,	36.7	11 [ag. bs]	0.42	0.61			11(c1)-000 G0V	1710.07171
$\frac{\chi_{1}^{\pm}}{\chi_{2}^{0}}\chi_{1,\chi_{1,2}}^{0} \rightarrow tbs, \chi_{1}^{\pm} \rightarrow bbs$ $1-2 e, \mu \ge 6 \text{ jets}$ 140 $\frac{\chi_{1}^{\pm}}{\chi_{1}^{0}}$ $0.2-0.32$ Pure higgsino 2106.09609 Pure higgsin		$\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow q\ell$	2 e, µ	2 b		36.1	11 11 [10-10< X., <10-8.3	9e-10< .K., <3e-91	10	0.4-1.45	1.6	$BR(\tilde{l}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{l}_1 \rightarrow g\mu) = 100\%, \cos \theta = 1$	1710.05544
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]		$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_{1,\tilde{\chi}_1^0}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 e,μ	≥6 jets		140	X ⁰ ₁	0.2-0.32	1.0			Pure higgsino	2106.09609
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]													
	*Only	a selection of the available ma	ass limits on n	new state	s or	1	0-1		1	1		lass scale [TeV]	-

phenomena is shown. Many of the limits are based or

86

LONG LIVED PARTICLES

"The non-standard" (Long-Lived Particle) signatures

LLP:

a proper lifetime $c\tau_o$ is greater than or comparable to the characteristic size of the (sub)detectors

 ✓ small ct₀ that comparable to the inner tracker size, no displaced tracks →
 "standard" prompt decay

✓ intermediate $c\tau_0$ → LLP

 ✓ very large/infinite large cτ₀ → stable particles, "standard" MET signatures

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497 LLP White Paper: arXiv:1903.04497

LLP theory motivations arXiv:1806.07396

displaced jets/leptons

Stealth supersymmetry model

88

Stealth supersymmetry idea

SUSY is natural, low-scale SUSY breaking, hidden sector with one chiral singlet supefield (singlino/singlet). The lightest supersymmetric particle – gravitino (GMSB), LOSP decay to gravitino through a hidden sector. R-odd singlino, R-even singlet. Masses in a hidden sector of order the EW scale, states approximately supersymmetric – mass splitting is much smaller than masses, states are closely degenerated by masses. Suppression of large missing E_T (connected with gravitino).

Stealth supersymmetry idea

SUSY breaking – low-scale vs high-scale (large soft mass contributions to the stealth sector), mX_1X_2

Soft SUSY_breaking B-term (or M_{Pl} suppression in SUGRA)

$$\mathcal{L} \supset \int d^2\theta \ m \left(1 + \theta^2 m_{3/2}\right) X_1 X_2 \supset m_{3/2} m X_1 X_2$$

 $\delta m = m - \sqrt{m^2 - B} \approx \frac{B}{2m}$

splitting of about 10 GeV,

$$B = m_{3/2}m$$

 $m_{3/2} \lesssim 2\delta m \lesssim 20 \,\,\mathrm{GeV}$

Stealth masses of about the EW scale – accident or common underlying physics? Small $B\mu$ /dynamically generated masses

GMSB decay width

$$\Gamma(\tilde{g} \to g\tilde{G}) = \frac{m_{\tilde{g}}^5}{48\pi M^2 m_{\tilde{G}}^2} = 1.1 \times 10^{-9} \,\text{GeV} \, \left(\frac{m_{\tilde{g}}}{250 \,\,\text{GeV}}\right)^5 \left(\frac{m_{\tilde{G}}}{1 \,\,\text{eV}}\right)^{-2}$$

will be modified by new hidden sector

FUTURE SUSY SEARCHES

SUSY is certainly a compelling candidates of BSM physics, so we should keep searching for her without leaving any stone unturned.

* Taking the gauge coupling unification seriously, SUSY may have some chance to be seen at LHC, and a good chance at the FCC:

THE UNIFICATION PARADIGM

D=10

Unification Theories

Electricity and magnetism are different manifestations of a unified "electromagnetic" force. Electromagnetism, gravity, and the nuclear forces may be parts of a single unified force or interaction. Grand Unification and Superstring theories attempt to describe this unified force and make predictions which can be tested with the Tevatron.

Unifie

Electromagnetic

Weak

Strong

 Unification of strong, weak and electromagnetic interactions within Grand Unified Theories is a new step in unification of all forces of Nature

Electroweak

 Creation of a unified theory of everything based on string paradigm seems to be possible

GUT

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW SYMMETRIES

GRAND UNIFICATION

Grand Unification is an extension of the Gauge symmetry of the SM

 $\Rightarrow g_{GUT}$

 $SU_c(3)\otimes$ g_3

quarks leptons

 g_2

Low energy

 \Rightarrow High energy

 g_1

 $SU_L(2) \otimes U_Y(1) \Rightarrow G_{GUT} \ (or \ G^n + \text{discrete symmetry})$ gluons W, Z photon \Rightarrow gauge bosons \Rightarrow fermions

ельник, 19 августа 13 г.

ельник, 19 августа 13 г.

GUT MODELS

GUT MODELS

SO(10) - Optimal GUT

Matter fields - just one representation

 $\underline{16} = (u_1 \ u_2 \ u_3 \ d_1 \ d_2 \ d_3 \ \nu_e \ e^- \ u_1^c \ u_2^c \ u_3^c \ d_1^c \ d_2^c \ d_3^c \ \nu_e^c \ e^+)_{Left}$ SU(5) decomposition $\underline{16} = \underline{5}^* + \underline{10} + \underline{1} \qquad fermions,$ $\underline{45} = \underline{24} + \underline{10} + \underline{10}^* + \underline{1} \qquad gauge \ bosons$

GUT SYMMETRY BREAKING

GUT symmetry is broken spontaneously by Brout-Englert-Higgs Mechanism

GUT symmetry is broken spontaneously by Brout-Englert-Higgs MechanismSU(5)Higgs Multiplets $SU(5) \xrightarrow{\Sigma} SU(3) \times SU(2) \times U(1) \xrightarrow{H} SU(3) \times U(1)$ $< \Sigma_{24} >= \begin{pmatrix} V & & & \\ & V & & \\ & & -3/2 V & \\ & & -3/2 V & \\ & & & -3/2 V \end{pmatrix}$ $< H_5 >= \begin{pmatrix} 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ v/\sqrt{2} & \\ & v \sim 10^2 \ GeV$

94

GUT symmetry is broken spontaneously by Brout-Englert-Higgs Mechanism SU(5) $SU(5) \xrightarrow{\Sigma} SU(3) \times SU(2) \times U(1) \xrightarrow{H} SU(3) \times U(1)$ Higgs Multiplets $<\Sigma_{24}>= \begin{pmatrix} V & & & \\ & V & & \\ & & -3/2 V & \\ & & -3/2 V \end{pmatrix} \qquad < H_5>= \begin{pmatrix} 0 & & \\ 0 & & \\ 0 & \\ v/\sqrt{2} \end{pmatrix} \\ V \sim 10^{15} \ GeV \qquad \qquad V \sim 10^2 \ GeV$ SO(10) <u>Higgs Multiplets</u> $16 \ or \ 126; \ 45 \ or \ 54 \ or \ 210$ $SO(6) \otimes SO(4) \sim SU(4) \otimes SU_L(2) \otimes SU_R(2)$ $M_1 \gg M_2 \gg \cdots M_W$

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ **processes**

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Experiment: mean life time > $10^{31} - 10^{33}$ years

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Experiment: mean life time > $10^{31} - 10^{33}$ years

 $au_{proton} \sim 10^{32} years$ $au_{Universe} \approx 14 \cdot 10^9 years$

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

- Unification of the gauge couplings
- stabilization of the hierarchy

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Experiment: mean life time > $10^{31} - 10^{33}$ years

$$\tau_{proton} \sim 10^{32} years$$

$$\tau_{Universe} \approx 14 \cdot 10^9 years$$

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

- Unification of the gauge couplings
- stabilization of the hierarchy

Low energy SUSY

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Experiment: mean life time > $10^{31} - 10^{33}$ years

$$au_{proton} \sim 10^{32} years$$

 $au_{Universe} \approx 14 \cdot 10^9 years$

Crucial points:

- SUSY leads to unification
- SUSY solves the hierarchy problems for GUTs
- No GUT without SUSY

Crucial points:

- SUSY leads to unification
- SUSY solves the hierarchy problems for GUTs
- No GUT without SUSY

New properties:

- Later unification higher GUT scale
- Longer proton life-time $au \sim M_{GUT}^4$
- New modes of proton decay

Crucial points:

- SUSY leads to unification
- SUSY solves the hierarchy problems for GUTs
- No GUT without SUSY

New properties:

- Later unification higher GUT scale
- Longer proton life-time $au \sim M_{GUT}^4$
- New modes of proton decay

NEW SYMMETRIES

EXTRA U(1)', SU(2)'

- Appear in some GUT models
- Inspired by string models

NEW SYMMETRIES

- Appear in some GUT models
- Inspired by string models

Used as possible BSM signal with energetic single jet or diet events

EXTRA U(1)', SU(2)'

NEW SYMMETRIES

- Appear in some GUT models
- Inspired by string models

Used as possible BSM signal with energetic single jet or diet events

EXTRA U(1)', SU(2)'

Used as possible Dark matter candidate - Dark photon

Mixture of a usual EM U(1) photon and a new U(1)' one

$$\mathcal{L} \sim F_{\mu\nu} F^{'\mu\nu}$$

Dedicated experiment to look for conversion of a usual photon into a dark one
Experiment

ADDITIONAL GAUGE BOSONS

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances
- Monojets + invisible

Experiment

• Search for Z' (Di-muon events)

- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances
- Monojets + invisible

ADDITIONAL GAUGE BOSONS

Experiment

ADDITIONAL GAUGE BOSONS

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances

• Monojets + invisible

SSM W' >4.74 TeV

Experiment

ADDITIONAL GAUGE BOSONS

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances

No indication so far - experimental limits on Z' and W' masses around few TeV

NEW PARTICLES AXION OR AXION-LIKE PARTICLES

Javier Redondo, EPS HEP 2017

- CP violation in QCD sector: CKM angle $\delta_{13} = 1.2 \pm 0.1 \, \mathrm{rad}$

AND flavour-neutral phase $\theta = \theta_{\rm QCD} + N_f \delta$

$$\mathcal{L}_{\rm SM} \in -\bar{q}_L \begin{pmatrix} m_u e^{i\delta/2} & 0 & \dots \\ 0 & m_d e^{i\delta/2} & \dots \\ 0 & 0 & \dots \end{pmatrix} \begin{pmatrix} u \\ d \\ \dots \end{pmatrix}_R - \frac{\alpha_s}{8\pi} G \widetilde{G} \theta_{\rm QCD}$$
Axial anomaly
$$A = \frac{\alpha_s}{2\pi} G \widetilde{G} \theta_{\rm QCD}$$

NEW PARTICLES AXION OR AXION-LIKE PARTICLES

Javier Redondo, EPS HEP 2017

PECCEI-QUINN MECHANISM - AXION

- Any theory promoting θ to a dynamical field, $\theta(t, \mathbf{x})$, will dynamically set $\theta \to 0$ after some time...

WHAT IS THE MASS TO GET $\Omega_{CDM}h^2 = 0.12$? 101

- Less minimal axion models have further possibilities

Three questions

- What is Dark matter and what it is composed of?
- What is the role of Dark matter in the energetic balance of the Universe?
- How to find manifestations of Dark Mater in space, underground and at Large Hadron Collider?

Gravitational manifestation of existence of Dark matter

FRITZ ZWICKY

- Swiss Astrophysicist
- Helped to invent Schmidt Telescope
- Helped to discover neutron stars
- Virial theorem of unseen matter: today known as "dark matter"
- Supernovae as yardstick for deep space measurements

Introduced the notions of

- Supernova and neutron stars
- Gravitational Lensing

Dark matter (hidden mass)

Galactic coaster Coma (1934г.)

Stars rotation curves

Centrifugal force

Gravity

Dark matter is bounded at Galactic scales

Solar system

Galaxy

• Today we know thousands of rotation curves and all of them indicate in favour of existence of hidden mass in the halo of a Galaxy which is 10 times exceeds the mass of the stars in a disk

Gravitational Lences

Consequence of GR: deflection of light in gravitational field

The formation of a virtual image of a distant galaxy due to the deflection of light rays by dark matter located between the galaxy and the observer

Observation of Dark Matter

Bullet cluster

The mass distribution reconstructed from strong and weak gravitational lensing is shown in blue, the X-ray emission of hot gas observed by the Chandra telescope is shown in red. The most direct observational evidence comes from the Bullet cluster. In most regions, dark and visible matter are found together due to their gravitational pull. In the Bullet cluster, they have diverged due to past collisions between two small clusters. Electromagnetic interactions between the gas particles led to a concentration of gas near the impact site.

X-ray observations show that most of the luminous matter is concentrated in the center of the cluster. Gravitational lensing shows that dark matter is located outside the central region. Unlike galactic rotation curves, these proofs are independent of the details of Newtonian gravity, directly supporting the dark matter hypothesis.

The formation of large-scale structures in the Universe

First, the formation of structures from dark matter occurs, and then the concentration of ordinary matter occurs in the gravitational potential formed by dark matter

Cosmic MicrowaveBackground

Angular harmonics expansion

Temperature fluctuations of CMB

$$\Omega_{UsualMatter} = 4.9\%$$
$$\Omega_{DarkMatter} = 26.8\%$$
$$\Omega_{DarkEnergy} = 68.3\%$$

 $\Omega = 1.02 \pm 0.02$

The Energy Balance of the Universe

Our knowledge concerns only a small part of the universe, but perhaps we know 90% (50%) of elementary particles

What is Dark Matter ?

111

What is Dark Matter ?

DARK

111

What is Dark Matter ?

DARK WIMP

What is Dark Matter ?

DARK WIMP TRANSPARENT

DARK WIMP TRANSPARENT GRAVITINO

What is Dark Matter ?

DARK WIMP TRANSPARENT GRAVITINO 2

INVISIBLE

What is Dark Matter ?

DARK WIMP TRANSPARENT GRAVITINO

INVISIBLE AXION

What is Dark Matter ?

DARK

WIMP

?

111

TRANSPARENTINVISIBLEGRAVITINOAXIONWhat is it made of ?

The Origin of Dark Matter

The Dark Matter is made of:

- Macro objects Not seen
- New particles right neutrino
 - axion (axino)
 - neutralino mSUGRA
 - sneutrino
- Not from the SM **{**
- gravitino
 - heavy photon
 - heavy pseudo-goldstone
 - light sterile higgs

The Origin of Dark Matter

The Dark Matter is made of:

- Macro objects Not seen
- New particles right neutrino
 - axion (axino)
 - neutralino mSUGRA
 - sneutrino
 - gravitino
 - heavy photon
 - heavy pseudo-goldstone
 - light sterile higgs

not favorable but possible

might be invisible (?)

detectable in 3 spheres

less theory favorable

might be undetectable (?)

possible, but not related to the other models

Not from the SM

Dark Matter candidates

Can one register the Dark matter particle?

If it is a WIMP, then it can be detected by means of elementary particle physics. If it is only a gravitationally interacting particle, then detection is very difficult.

Search for Dark Matter Particles

The signal is absent so far

Search for Dark Matter Particles

Dark Matter and Axion Searches - Belina von Krosigk

Ways to search for dark matter and axions / ALPs

ALP: axionlike particle

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

DARK MATTER: DIRECT DETECTION

Direct Detection of WIMPs

Dark Matter and Axion Searches - Belina von Krosigk

Direct detection of WIMP(-like) candidates

11 UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

18

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Top PMTs

Detection of light WIMPs

Dark Matter and Axion Searches - Belina von Krosigk

Most recent results ~1 GeV: DarkSide-20k

Main unknowns: fluctuations in ionization guenching, in energy partitioning between excitons and electrons, and in ion-electron recombinations PTFE amount ITO Coded Results (left) confirmed using an alternative Bayesian approach (right), where the Diving Bell analytical calibration responses are made explicit in the likelihood Extraction Grid Field Cages [cm²] 10-35 PTFE Reflector EDrift 10-40 σsı ITO Coated 10-37 Cathode Window -10⁻¹⁰ [cm²] 10-39 Xenon1T (Migdal) 10-42 Xenon1T (2020) σ^{DM} CRESST-III Matter 10^{-4} PandaX-4T (2022) Bottom PMTs 10-43 Frequentist CDEX DS-50 (2018) 10^{-43} 10⁻⁴⁴ лад DS-50 expected 50 kg active mass of LAr Bayesian DS-50 observed 10-45 10^{-4} 2.0 3.0 4.0 6.0 10.0 10^{-1} 100 101 $M_{\chi} [GeV/c^2]$ m_{χ} [GeV/c²] DS50 2018 DS50 2022 CDMSlite 2017 PandaX-4T 2022 PICASSO 2017 LUX 2021 CDMS 2013 DAMIC 2020 Cogent 2013 Xenon1T 2020 DAMA/LIBRA 2008 Cresst-III 2019 DarkSide-50, Phys.Rev.D 107 (2023) 6, 063001 Pico-60 2019 LAr Neutrino Floor DarkSide-50, Eur. Phys. J. C 83, 322 (2023) Xenon1T Migdal 2019

Search for Axions and Axion-like particles

Dark Matter and Axion Searches - Belina von Krosigk

Axion couplings

26

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 **Detection of ALPs**

Dark Matter and Axion Searches - Belina von Krosigk

Mass ranges of <u>some</u> beyond SM particles

C. O'Hare, https://doi.org/10.5281/zenodo.3932430

28

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

120

Baryon asymmetry of the Universe

• If there were no baryon asymmetry, there would be no matter in the universe!

•It indicates the existence of a fundamental symmetry breaking between particles and antiparticles

Average number of photons per unit volume

 $n_{\gamma} = 410.4 \pm 0.9 \ cm^{-3}$

Average number of protons per unit volume

$$n_B = 0.25 \cdot 10^{-6} \ cm^{-3}$$

Left after proton-antiproton annihilation

n_B _	$0.25 \cdot 10^{-6}$	$- = 6.1 \cdot 10^{-10}$
$\overline{n_{\gamma}}$ –	410.4	

Three Sakharov's criteria

- Violation of baryon number
- Violation of C and CP invariance
- Violation of яегтаl equilibrium
- What is the source of baryon asymmetry of the Universe?
- Where the symmetry between particles and antiparticles is violated?
Baryon asymmetry of the Universe

Baryon asymmetry of the Universe

- Baryon number is conserved in the SM with exponential accuracy
- Violation of baryon number occurs in Grand Unified Theories and in Lepton=fourth color models (Pati-Salam model)

New particles = Leptoquarks, Extended Highs sector

$$B = \frac{N_q - N_{\bar{q}}}{3}$$

 \bullet Violation of CP invariance in the SM achieved via phase factors in the CKM and \checkmark PMNS mixing matrices

BAU requires larger CP than in the SM

Possible Baryogeneses via Leptogeneses

The presence of new phase factors in extended models (2HDM, SUSY, etc)

• Small discrepancy with experimental data

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)
- Instability of electroweak vacuum

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)
- Instability of electroweak vacuum
- Inability to describe the Dark matter (unless it has pure gravitational nature)

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)
- Instability of electroweak vacuum
- Inability to describe the Dark matter (unless it has pure gravitational nature)
- Baryon asymmetry of the Universe is a fundamental problem (Baryon and Lepton genesis might require new ingredients)

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)
- Instability of electroweak vacuum
- Inability to describe the Dark matter (unless it has pure gravitational nature)
- Baryon asymmetry of the Universe is a fundamental problem (Baryon and Lepton genesis might require new ingredients)
- Lack of understanding of flavor structure of the SM calls for explanation at higher level

- Small discrepancy with experimental data
- Possible new ingredients in neutrino sector (majorana neutrino)
- Instability of electroweak vacuum
- Inability to describe the Dark matter (unless it has pure gravitational nature)
- Baryon asymmetry of the Universe is a fundamental problem (Baryon and Lepton genesis might require new ingredients)
- Lack of understanding of flavor structure of the SM calls for explanation at higher level
- New era in gravity due to discovery of gravitational waves and black holes might change the landscape

Ideas (conventional and not)

- Symmetries
 - Supersymmetry, family, ...
- Compositeness
 - Higgs, fermions, ...
- Extra dimensions
 - large, warped, ...
- Dark or hidden sectors
 - Dark, SUSY-breaking, random, ...
- Unification
 - GUT, string, ...

- New dynamical ideas
 - Relaxion, nnaturalness, clockwork, string instantons, ...
- Random or environmental
 - multiverse
- String remnants (need not solve SM problem)
 - Z', vector fermions, extended Higgs, dark, moduli, axions, ...

E8 roots

E8 roots

Symmetry might be tricky

We like elegant solutions

"Whatever happened to elegant solutions?"

Future Particle Physics

Beyond SM Energy frontier: HL LHC, FCC e⁺e⁻mode, CLIC, China colliders Intensity Frontier: SuperBelle, BEPCIII, SHiP, NA62, NA64, VEPP, Super c-τ-factory Precision Frontier: g-2, nEDM

Under –ground, -water, -ice: Icecube, Baikal Neutrino: JUNO, HyperK, ..., DUNE Cosmic Rays: Pierre Auger,..., satellites

New Dynamics in SM EIC (electron ion collider) BNL NICA FAIR JLAB U-76 China electron-ion collider

Russia & JINR

Beyond SM Intensity & Precision Frontier: VEPP, Super c-τ-factory, nEDM

Under –ground, -water: GVD-Baikal Neutrino: BEST, NEUTRINO-4, DANSS, ... Cosmic Rays: Pamir, Tian-Shan, satellites ...

New Dynamics in SM NICA: MPD heavy-ion collisions BM@N short-range nucleon correlations SPD spin structure, partonic 3D-structure exotic resonances electron-ion collider option R&D U-76 SPASCHARM charm and exotic resonances

Which way to go?

BEYOND THE STANDARD MODEL: CONCLUSIONS

Which way to go?

BEYOND THE STANDARD MODEL: CONCLUSIONS

Which way to go?

BEYOND THE STANDARD MODEL: CONCLUSIONS

Which way to go?

What the future may bring?