

Particle physics: present and prospects

Dmitry Kazakov

JINR (Dubna)

ITEP (Moscow)

MIPT (Dolgoprudny)

1

The Standard Theory

- Three gauged symmetries SU(3)xSU(2)xU(1)
- For the set of quarks and leptons $(3\times 2, 3\times 1, 1\times 2, 1\times 1)$
- Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking -> Higgs boson
- CKM and PMNS mixing of flavours
- CP violation via phase factors
- Confinement of quarks and gluons inside hadrons
- Baryon and lepton number conservation
- CPT invariance -> existence of antimatter

The ST principles allow: Extra families of quarks and leptons Presence or absence of right-handed neutrino Majorana or Dirac nature of neutrino Extra Higgs bosons

Seems to be excluded by exp

Still unclear Still unclear Still unclear

Main questions to the ST

- Is it self consistent ?
- Does it describe <u>all</u> experimental data?
- Are there <u>any</u> indications for physics beyond the SM?
- Is there another scale except for EW and Planck?
- Is it compatible with Cosmology?

Why's?

- why the SU(3)xSU(2)xU(1)?
- why 3 generations ?
- why quark-lepton symmetry?
- why V-A weak interaction?
- why L-R asymmetry?
- why B & L conservation?

🏺 etc

How's?

- how confinement actually works ?
- how the quark-hadron phase transition happens?
- how neutrinos get a mass?
- how CP violation occurs in the Universe?
- how to protect the SM from would be heavy scale physics?

Final section Field and the section of the section

• The situation may change in GUTs due to new heavy fields @ the GUT scale

 requires modification of the ST at VERY high energies

Quantum anomalies may ruin the ST if not cancelled among quarks and leptons

Anomalies in the SM

$$TrY_L = 3\left(\frac{1}{3} + \frac{1}{3}\right) - 1 - 1 = 0,$$

$$TrY_q = 3\left(\frac{1}{3} + \frac{1}{3} - \frac{4}{3} - (-\frac{2}{3})\right) = 0,$$

$$TrY = 3\left(\frac{1}{3} + \frac{1}{3} - \frac{4}{3} - (-\frac{2}{3})\right) - 1 - 1 - (-2) = 0.$$

- cancellation of anomalies requires quark-lepton symmetry
- this is a hint towards the Grand Unified Theories

Quantum corrections can make the vacuum unstable

the whole construction of the SM may be in trouble being metastable or even unstable

180

178

168

166

6

115

the situation crucially depends on the top and Higgs mass values and requires severe fine-tuning and accuracy

The way out might be the new physics at higher scale:

- SUSY is one example: $V_{SUSY} = |F|^2 + |D|^2 \ge 0$
- Extended Higgs sector is another example:

Several Higgs fields with several Higgs-like couplings push the smallest coupling up (might have also several minima)

GUT's provide the third example:

In a unified theory the Higgs coupling might be attracted by the gauge coupling and stabilize the potential

New physics at high scale may destroy the EW scale of the ST

Quantum corrections to the Higgs potential due to New physics

- The Higgs sector is not protected by any symmetry
- creates the hierarchy problem

- requires modification of the ST
- the way out might be the new physics at higher scale:

SUSY is one example:

Extra dimensions is another example:

Does the ST describes all experimental data?

EW observables pool

Flavour Physics observ

The Mass Spectrum and Mixing

• Mass spectrum?

- Mixing Matrices?
- Quark-Lepton Symmetry
- Strong difference in parameters

What re the CKM and PMNS phases?
Where lies the source of CP violation: in qurk or lepton sector?

Neutrino Sector

Neutrino masses

Neutrino Sector

Dirac or Majorana?

Is there another scale except for EW and Planck?

Is it compatible with Cosmology?

Astrophysics & Cosmology challenge

• Baryon asymmetry of the Universe

$$\frac{N(B) - N(\bar{B})}{N_{\gamma}} \sim (6.19 \pm 0.14) \times 10^{-10}$$

• Relic abundance of the Dark Matter

 $OM = 4.9\%, \ DM = 26.8\%, \ DE = 68.3\%$

• Number of neutrinos

 $N_{eff} = 3.52 \pm 0.47 \quad 95\% \ CL$ Planck + WP + highL + BAO + HST

Masses of neutrinos

 $\Sigma m_{\nu} \ [eV] < 1.11(0.22)$ Planck + WP + lensing + HST

- still not explained
- requires larger GP than in the SM
- Understanding is beyond the SM

- Well suits the SM q <-> l
- Probably a hint towards new physics

Do we understand confinement?

Challenging problem in particle physics well inside the SM

Time to come back?

- How confinement actually works?
- Why colourless states?
- Which bound states exist in Nature?

Dense hadron matter - new phase?

Search for New Physics The Higgs Boson - Target #1

Is it the SM Higgs boson or not? What are the alternatives?

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Custodial symmetry as guiding principle for extensions

indicates that an approximate global symmetry exists,

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

broken by the vev to the diagonal 'custodial' symmetry

group $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$

Thus the Higgs field transforms under $SU(2)_L \times SU(2)_R : \Phi \to L\Phi R^{\dagger}$

$$\rho = \frac{\sum_{i=1}^{n} [I_i(I_i+1) - \frac{1}{4}Y_i^2]v_i}{\sum_{i=1}^{n} \frac{1}{2}Y_i^2v_i} \sim 1 \qquad \text{For both SU(2)-singlet with Y=0} \\ \text{and SU(2) doublet with Y=+-1} \qquad \text{M.Spannowsky}$$

Any number of singlets and doublets respects custodial symmetry at tree level. Not so for arbitrary triplet models ...

Search for New Physics

The Higgs Boson - Target #1

Is it the SM Higgs boson or not?

How to probe?

 Probe deviations from the SM Higgs couplings

- The Higgs physics has already started
- This is the task of vital importance.
- May require the electron-positron collider

 Perform direct search for additional scalars

Higgs Boson (125)

18

Extra Higgs Bosons

Heavy Higgs \rightarrow ZZ \rightarrow 4l Higgs→hh→bbττ CMS Preliminary 12.9 fb⁻¹ (13 TeV) Resonance search Non-resonance search GeV ATLAS Prei minary † Γ-ω Data Only SM **-** 47 New Physics 20 3 H(125) 70**[-**7 15 Jay, 14 D b^4 🔜 Leis, Velsi □ qq→ZZ, Zγ* □ gg→ZZ, Zγ* □ Z+X $\overline{}$ -h 000 Zerdeta, C and the tainty Interference معد 000 A7LAS Preliminary · Lulu 000 221 $1 \rightarrow 77^{\circ} \rightarrow 1$, coustave 12To2_11151 C(2, 52) 💶 2--Ma, U 22. Urbana riv 000 300 400 500 200 600 700 800 m 4/ (GeV) Non-Resonant Charged Resonant 12.9 fb⁻¹ (13 TeV) 12.9 fb⁻¹ (13 TeV) 10 bbπt) [fb] 10 bbπt) [pb] CMS CMS bb $\mu \tau_{h}$ + bb $e \tau_{h}$ + bb $\tau_{h} \tau_{h}$ bb $\mu\tau_{\rm h}$ + bb $e\tau_{\rm h}$ + bb $\tau_{\rm h}\tau_{\rm h}$ preliminary preliminary Combined channels Combined channels <u>6</u>0ع<u>ب</u> 400 866 006 200 7 1964 10 ⁸¹55 -BR(H→ hh→ Search for H±→tb BR(hh-50 300<m_H[±]<1000 Ge 10 45 š 40 10 Ы 10² on ax 35. ATLAS Preliminary -Ч Observed ATLAS Preliminary 200 x SM Observed Expected CLs ,s=10 TeV, 14 × to 30 95% -o--- Expected CLs ਹੋ^{10⁻} 18- 13 TeV, 14.7 Ib⁴ 10 Expected $\pm 1\sigma$ II to tv: hVSSM sconano-25 $\Pi^{*} \rightarrow \pi c$ hMSSM scenario Expected $\pm 2\sigma$ 95% Observed exclusion $20\pm$ 2016 result Expected exclusion 2 Coserved exclusion. 10 ₿₅ŗ —— Cbse vad. 300 400 500 600 700 800 90(1 - 1. ······ Expected exclusion 15 Excepted <u>-</u> 27 m_н [GeV] 50 + 1c ¹⁵200 250 300 350 400 450 500 550 600 ____ 1 2σ Heavy Higgs→ττ m - [GeV] ⊐ | 550_600 - n_ [GeV] тт)[pb] ≷ 5 10³ ... 35ATLAS Preliminary ATLAS Proliminary - Lura ATLAS Preliminary (a., 3 LaV, 147 lb) 301 10 √a – 18 TeV, 13 P Iy n,. (C: Gw? -20-1. 20 $H \rightarrow \infty; nVSSV scenario)$ MSSM m^(w) នាយ មូល ម Observed exclusion-H-A 12,27,2 Multi-al 25° 5.2 fb⁻¹ (13 TeV) N Observed exclusion - Expected exclusion BR(H/A-Z⊸÷ st o voto H→b 🗰 🗠 - Kas 20 = 2015 result ----- Expected exclusion = - Observed + 17 rī, citigie top rs = 13 TeV, 132 lb --- Expected 10 Observed ± 1p Cinera + 20 🐒 👋 II net zindy 15 = ---- Expected + 2σ **± 1**σ Pre-1 | backpround ĕ ± 2σ [gd](H 101 = ATLAS Proliminary m [GeV] Observe 471*48* E n interary. --- Expected H/A → ++, 95 % CL limits - 14-300 400 500 600 700 800 900 Z = 11 799, 121 1000 210 #116#C.# 65 = 13 TeV = 13.3 fb⁻¹ 10 Ellokist Der - **1** -24 m_{ir} [GeV] gluon-gluon fusion 2015, 3.2 R/1(Dbs BR(H/A 211510 х 600 DetarPred 0 ь ATLAS Preliminary 400 1 m^{ree} Observed exclusion 200 200 30 ----- Expected exclusion 10 5 m²⁰⁴ 200 400 600 800 1000 1 10 m_{H[#]} [GeV] 3 TeV, 13.2 lb⁻¹

Search for New Physics

The Dark Matter - Target # 2

- Macro objects Not seen
- New particles right heavy neutrino

WIMP

Supersymmetry - Target # 3

SUSY has been the prime candidate for BSM physics near the TeV scale.

What is the LHC Reach?

Universal scenario

CMSSM

NMSSM

LHC Run2

A Sta	TLAS SUSY Se tus: August 2016 Model	earches	s* - 95	5% C	L Lo	ver Limits	VE - 7 8 TeV	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$ Beference
Inclusive Searches	$\begin{array}{c} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{\chi}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{\chi}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{\chi}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{\chi}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{\chi}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{\chi}, \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi}$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 8 2-6 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	T Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3 20.3	2 1.35 Tr 608 GeV 1 1 1 1 1.37 T 900 GeV 900 GeV 865 GeV	1.85 TeV m(q̃)=m(q̃) eV m(q̃)=m(q̃) m(q̃)=m(q̃)>200 GeV, m(1" gen. q̃)=m(2 nd gen. q̃) m(q̃)=m(q̃)>5 GeV 1.86 TeV m(q̃)=0 GeV 1.83 TeV m(q̃)<400 GeV 1.7 TeV m(q̃)<400 GeV 1.7 TeV m(q̃)>400 GeV 1.8 TeV m(q̃)>500 GeV 2.0 TeV 85 TeV cr(NLSP)<0.1 eV m(q̃)>-1 1.8 TeV	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 S-CONF-2016-066 1503.03290 1502.01518
3" ^d gen. 8 med.	ğğ. ğ→būğ ⁰ ğğ. ğ→tī¥1 ğğ. ğ→tī¥1	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	list	Si useen.	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3" gen squarks direct production	$\begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b\tilde{\ell}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t\tilde{\ell}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t\tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b\tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow t\tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow c\tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{array}$	$\begin{array}{c} 0 \\ 2 e, \mu (\mathrm{SS}) \\ 0 - 2 e, \mu \\ 0 - 2 e, \mu \\ 0 \\ 2 e, \mu (\mathrm{Z}) \\ 3 e, \mu (\mathrm{Z}) \\ 1 e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 l mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes 4.7 Yes Yes Yes Yes Yes	3.2 13.2 7/13.3 7/13.3 3.2 20.3 13 5	experimentane why don	$ \begin{array}{c} & = V \\ & = 150 \text{ GeV}, \ m(\tilde{k}_1^+) = m(\tilde{k}_1^0) + 100 \text{ GeV} \\ & = m(\tilde{k}_1^+) = 2m(\tilde{k}_1^0), \ m(\tilde{k}_1^0) = 55 \text{ GeV} \\ & = m(\tilde{k}_1^-) = 1 \text{ GeV} \\ & = m(\tilde{k}_1^0) = 150 \text{ GeV} \\ & = m(\tilde{k}_1^0) > 150 \text{ GeV} \\ & = m(\tilde{k}_1^0) > 150 \text{ GeV} \\ & = m(\tilde{k}_1^0) < 300 \text{ GeV} \\ & = m(\tilde{k}_1^0) = 0 \text{ GeV} \end{array} $	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1508.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
direct	$ \begin{array}{l} \tilde{\ell}_{1,R} \tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{1} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{1} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{1} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / r \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod} \\ \text{GGM (bino NLSP) weak prod} \end{array} $	2 ε,μ 2 ε,μ 2 τ 3 2 - 3 τ/γγ ε,μ. 4 ε,μ 1 ε,μ + , 2 γ	gue SU	stig	500 is	-475 GeV -475 GeV -475 GeV -425 GeV -425 GeV -425 GeV -425 GeV -425 GeV -425 GeV -425 GeV -475 GeV -425 GeV	$\begin{split} & m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ & m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, ~m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, ~m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{\ell}_{1}^{0}){=}0, ~m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{\ell}_{1}^{0}){=}0, ~\tilde{\ell}~~\text{decoupled} \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~\tilde{\ell}~~\text{decoupled} \\ & m(\tilde{k}_{2}^{0}){=}m(\tilde{k}_{2}^{0}), ~m(\tilde{k}_{1}^{0}){=}0, ~m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{k}_{2}^{0}){*}m(\tilde{k}_{1}^{0})) \\ & c\tau{<}1~mm \\ & c\tau{<}1~mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\hat{x}_{1}^{+}\hat{x}_{1}^{-}$ prod., long-lived $\hat{\lambda}$ Direct $\hat{x}_{1}^{+}\hat{x}_{1}^{-}$ prod., long-lived $\hat{\lambda}$ Stable, stopped \hat{g} R-hadron Stable \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\hat{\tau}, \hat{x}_{1}^{0} \rightarrow \hat{\tau}(\hat{\tau}, \hat{\mu})_{\tau} \hat{\tau}$ GMSB, $\hat{x}_{1}^{0} \rightarrow \varphi \hat{G}$, long-lived \hat{x}_{1}^{0} $\hat{g}_{\hat{g}}, \hat{x}_{1}^{0} \rightarrow eev/e\muv/\mu\muv$ GGM $\hat{g}_{\hat{g}}, \hat{x}_{1}^{0} \rightarrow Z\hat{G}$	$ \begin{array}{c} \overset{*}{\underset{1}{l}} & \text{Disapp. trk} \\ \overset{*}{\underset{1}{l}} & \text{dE/dx trk} \\ 0 & \text{trk} \\ \text{dE/dx trk} \\ (e, \mu) & 1-2 \mu \\ 2 \gamma \\ \text{displ. } ee/e\mu/\mu, \\ \text{displ. vtx * jet} \end{array} $	1-5 jets - - -	Yes Yes Yes Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	270 GeV 495 GeV 850 GeV 1.5 537 GeV 440 GeV 1.0 TeV 1.0 TeV	$\begin{array}{c} \mathfrak{m}(\tilde{k}_{1}^{2}) \cdot \mathfrak{m}(\tilde{k}_{1}^{0}) - 160 \ \mathrm{MeV}, \ \tau(\tilde{k}_{1}^{2}) = 0.2 \ \mathrm{ns} \\ \mathfrak{m}(\tilde{k}_{1}^{2}) \cdot \mathfrak{m}(\tilde{k}_{1}^{0}) - 160 \ \mathrm{MeV}, \ \tau(\tilde{k}_{1}^{2}) < 15 \ \mathrm{ns} \\ \mathfrak{m}(\tilde{k}_{1}^{2}) = 100 \ \mathrm{GeV}, \ 10 \ \mathrm{ps} < \tau(\tilde{k}) < 1000 \ \mathrm{s} \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 100 \ \mathrm{GeV}, \ \tau > 10 \ \mathrm{ns} \\ 10 \cdot \mathrm{targ}^{2} < 50 \\ 1 < \tau(\tilde{k}_{1}^{0}) < 3 \ \mathrm{ns}, \ \mathrm{SPS8 \ model} \\ 7 < c\tau(\tilde{k}_{1}^{0}) < 3 \ \mathrm{ns}, \ \mathrm{SPS8 \ model} \\ 5 < c\tau(\tilde{k}_{1}^{0}) < 480 \ \mathrm{nm}, \ \mathfrak{m}(\tilde{k}) = 1.1 \ \mathrm{TeV} \end{array}$	1310.3675 1506.05332 1310.6584 1606.05129 1804.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\tau}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{0}^{0}, \tilde{X}_{1}^{0} \rightarrow eev, e\mu v,$ $\tilde{\chi}_{1}^{\dagger}\tilde{X}_{1}^{\tau}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{0}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau \tau$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow f_{1}f, \tilde{f}_{1} \rightarrow bs$ $\tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bs$ $\tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow b\ell$	$e\mu,er,\mu\tau$ $2e,\mu$ (SS) $\mu\mu\nu$ $4e,\mu$ $3e,\mu+\tau$ 0 $4-2e,\mu$ (SS) 0 $2e,\mu$	0-3 b 5 large-R je 5 large-R je 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes ts ts Yes -	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	ž 1.45 1.14 TeV 450 GeV 1.08 TeV 1.5 1.3 Te 410 GeV 450-510 GeV 0.4-1.0 TeV	$\begin{array}{c c} \textbf{1.9 ToV} & \mathcal{X}_{311} = 0.11, \mathcal{X}_{132(133/233} = 0.07 \\ \hline \textbf{TeV} & \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{g}), c\tau_{25,F} < 1 \textbf{mm} \\ & \textbf{m}(\tilde{k}_1^{0}) > 400 \text{GeV}, \mathcal{X}_{132} \neq 0 (k = 1,2) \\ & \textbf{m}(\tilde{k}_1^{0}) > 0.2 \times \textbf{m}(\tilde{k}_1^{1}), \mathcal{X}_{133} \neq 0 \\ & \textbf{BR}(r) = \textbf{BR}(b) = \textbf{BR}(c) = 0\% \\ \hline \textbf{5 TeV} & \textbf{m}(\tilde{k}_1^{0}) = 800 \textbf{GeV} \\ & \textbf{W} & \textbf{m}(\tilde{t}_1) < 750 \textbf{GeV} \\ & \textbf{BR}(\tilde{n} \rightarrow bc/\mu) > 20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2018-022, ATLAS-CONF-2018-02 ATLAS-CONF-2015-015
	-0	1943		Man	30.5	Eta Cell		1501 01225

Search for New Physics

Extra Dimensions/ Exotics

Experiment

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances
- Monojets + invisible

- Q: Do we really live on a brane?
 A: We have to check it
 Q: Do we have good reasons to
 believe in it?
 A: No, but it is appealing
 Q: Why D>4?
 A: String theory loves it
 Q: Is it what we believe in?
- A: We believe in BIG deal

Exotics

- Leptoquarks
- Long-lived particles
- Off-pointing photons
- Excited fermions
- Contact interactions

Drawback: No real motivation -> Unknown scale

32

- Up to 25% mass limit increase by extending 2015 to 2016
- ~50% of the analyses updated to Run2

Search for New Physics

Compositeness

New level of fundamental particles

Higgs boson -> pseudo Numbu-Goldstone boson

Global symmetry G broken to H of SM

Higgs boson $\Leftrightarrow \pi - meson$ W, Z bosons $\Leftrightarrow \rho - mesons$

Should be

 $\pi', \pi'', \rho', \rho'', \dots$

Advantage: No artificial scalar field Protection from high energy physics Quarks and Leptons made of preons

New strong confining forces

Technicolor Walking Technicolor Extended Technicolor

- No new excited states observed
- Problems with precision EW observables
- No viable simple scheme

```
Still possible
```

Concluding Remarks

MLHC experiments are at the front line of mystery land: be patient

Target #1: Higgs sector

Arget #2: Dark Matter
 Target #3: New physics (supersuries Will come!
 Future development discoveries Will come!
 Future development discoveries will come that that a complime bet that a complement of that a complement of the complem

The areas that were left behind come to the front: confinement, exotic hadrons, dense hadron matter